Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Meta-Analysis

Pharmacological Treatments for Congenital Myasthenic Syndromes Caused by COLQ Mutations

Author(s): Shuai Shao, Guanzhong Shi, Fang-Fang Bi and Kun Huang*

Volume 21, Issue 7, 2023

Published on: 01 March, 2023

Page: [1594 - 1605] Pages: 12

DOI: 10.2174/1570159X21666230126145652

Price: $65

Abstract

Background: Congenital myasthenic syndromes (CMS) refer to a series of inherited disorders caused by defects in various proteins. Mutation in the collagen-like tail subunit of asymmetric acetylcholinesterase (COLQ) is the second-most common cause of CMS. However, data on pharmacological treatments are limited.

Objective: In this study, we reviewed related reports to determine the most appropriate pharmacological strategy for CMS caused by COLQ mutations. A literature review and meta-analysis were also performed. PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched to identify studies published in English before July 22, 2022.

Results: A total of 42 studies including 164 patients with CMS due to 72 different COLQ mutations were selected for evaluation. Most studies were case reports, and none were randomized clinical trials. Our meta-analysis revealed evidence that β-adrenergic agonists, including salbutamol and ephedrine, can be used as first-line pharmacological treatments for CMS patients with COLQ mutations, as 98.7% of patients (74/75) treated with β-adrenergic agonists showed positive effects. In addition, AChEIs should be avoided in CMS patients with COLQ mutations, as 90.5% (105/116) of patients treated with AChEIs showed either no or negative effects.

Conclusion: (1) β-adrenergic agonist therapy is the first pharmacological strategy for treating CMS with COLQ mutations. (2) AChEIs should be avoided in patients with CMS with COLQ mutations.

Graphical Abstract

[1]
Wood, S.J.; Slater, C.R. Safety factor at the neuromuscular junction. Prog. Neurobiol., 2001, 64(4), 393-429.
[http://dx.doi.org/10.1016/S0301-0082(00)00055-1] [PMID: 11275359]
[2]
Iyer, S.R.; Shah, S.B.; Lovering, R.M. The neuromuscular junction: Roles in aging and neuromuscular disease. Int. J. Mol. Sci., 2021, 22(15), 8058.
[http://dx.doi.org/10.3390/ijms22158058] [PMID: 34360831]
[3]
Engel, A.G.; Shen, X.M.; Selcen, D.; Sine, S.M. Congenital myasthenic syndromes: Pathogenesis, diagnosis, and treatment. Lancet Neurol., 2015, 14(4), 420-434.
[http://dx.doi.org/10.1016/S1474-4422(14)70201-7] [PMID: 25792100]
[4]
Huang, K.; Duan, H.Q.; Li, Q.X.; Luo, Y.B.; Bi, F.F.; Yang, H. Clinicopathological‐genetic features of congenital myasthenic syndrome from a Chinese neuromuscular centre. J. Cell. Mol. Med., 2022, 26(14), 3828-3836.
[http://dx.doi.org/10.1111/jcmm.17417] [PMID: 35670010]
[5]
Ramdas, S.; Beeson, D. Congenital myasthenic syndromes: Where do we go from here? Neuromuscul. Disord., 2021, 31(10), 943-954.
[http://dx.doi.org/10.1016/j.nmd.2021.07.400] [PMID: 34736634]
[6]
Natera-de Benito, D.; Töpf, A.; Vilchez, J.J.; González-Quereda, L.; Domínguez-Carral, J.; Díaz-Manera, J.; Ortez, C.; Bestué, M.; Gallano, P.; Dusl, M.; Abicht, A.; Müller, J.S.; Senderek, J.; García-Ribes, A.; Muelas, N.; Evangelista, T.; Azuma, Y.; McMacken, G.; Paipa Merchan, A.; Rodríguez, C.P.M.; Camacho, A.; Jiménez, E.; Miranda-Herrero, M.C.; Santana-Artiles, A.; García-Campos, O.; Dominguez-Rubio, R.; Olivé, M.; Colomer, J.; Beeson, D.; Lochmüller, H.; Nascimento, A. Molecular characterization of congenital myasthenic syndromes in Spain. Neuromuscul. Disord., 2017, 27(12), 1087-1098.
[http://dx.doi.org/10.1016/j.nmd.2017.08.003] [PMID: 29054425]
[7]
Mihaylova, V.; Scola, R.H.; Gervini, B.; Lorenzoni, P.J.; Kay, C.K.; Werneck, L.C.; Stucka, R.; Guergueltcheva, V.; von der Hagen, M.; Huebner, A.; Abicht, A.; Müller, J.S.; Lochmüller, H. Molecular characterisation of congenital myasthenic syndromes in Southern Brazil. J. Neurol. Neurosurg. Psychiatry, 2010, 81(9), 973-977.
[http://dx.doi.org/10.1136/jnnp.2009.177816] [PMID: 20562457]
[8]
Parr, J.R.; Andrew, M.J.; Finnis, M.; Beeson, D.; Vincent, A.; Jayawant, S. How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch. Dis. Child., 2014, 99(6), 539-542.
[http://dx.doi.org/10.1136/archdischild-2013-304788] [PMID: 24500997]
[9]
Troha Gergeli, A.; Neubauer, D.; Golli, T.; Butenko, T.; Loboda, T.; Maver, A.; Osredkar, D. Prevalence and genetic subtypes of congenital myasthenic syndromes in the pediatric population of Slovenia. Eur. J. Paediatr. Neurol., 2020, 26, 34-38.
[http://dx.doi.org/10.1016/j.ejpn.2020.02.002] [PMID: 32070632]
[10]
Joshi, D.; Patil, S.; Dash, P.; Mishra, V.; Chaurasia, R.; Pathak, A. Congenital myathenic syndrome associated with COLQ mutation: An interesting report. J. Neurol. Sci., 2019, 405, 266.
[http://dx.doi.org/10.1016/j.jns.2019.10.1310]
[11]
Zhao, Y.; Li, Y.; Bian, Y.; Yao, S.; Liu, P.; Yu, M.; Zhang, W.; Wang, Z.; Yuan, Y. Congenital myasthenic syndrome in China: Genetic and myopathological characterization. Ann. Clin. Transl. Neurol., 2021, 8(4), 898-907.
[http://dx.doi.org/10.1002/acn3.51346] [PMID: 33756069]
[12]
Müller, J.S.; Petrova, S.; Kiefer, R.; Stucka, R.; König, C.; Baumeister, S.K.; Huebner, A.; Lochmüller, H.; Abicht, A. Synaptic congenital myasthenic syndrome in three patients due to a novel missense mutation (T441A) of the COLQ gene. Neuropediatrics, 2004, 35(3), 183-189.
[http://dx.doi.org/10.1055/s-2004-820996] [PMID: 15248101]
[13]
Laforgia, N.; De Cosmo, L.; Palumbo, O.; Ranieri, C.; Sesta, M.; Capodiferro, D.; Pantaleo, A.; Iapicca, P.; Lastella, P.; Capozza, M.; Schettini, F.; Bukvic, N.; Bagnulo, R.; Resta, N. The first case of congenital myasthenic syndrome caused by a large homozygous deletion in the C-terminal region of COLQ (collagen like tail subunit of asymmetric acetylcholinesterase) protein. Genes (Basel), 2020, 11(12), 1519.
[http://dx.doi.org/10.3390/genes11121519] [PMID: 33353066]
[14]
Durmus, H.; Shen, X.M.; Serdaroglu-Oflazer, P.; Kara, B.; Parman-Gulsen, Y.; Ozdemir, C.; Brengman, J.; Deymeer, F.; Engel, A.G. Congenital myasthenic syndromes in Turkey: Clinical clues and prognosis with long term follow-up. Neuromuscul. Disord., 2018, 28(4), 315-322.
[http://dx.doi.org/10.1016/j.nmd.2017.11.013] [PMID: 29395675]
[15]
Ceccanti, M.; Libonati, L.; Ruffolo, G.; Cifelli, P.; Moret, F.; Frasca, V.; Palma, E.; Inghilleri, M.; Cambieri, C. Effects of 3,4-diaminopyridine on myasthenia gravis: Preliminary results of an open-label study. Front. Pharmacol., 2022, 13, 982434.
[http://dx.doi.org/10.3389/fphar.2022.982434] [PMID: 36052140]
[16]
Thompson, R.; Bonne, G.; Missier, P.; Lochmüller, H. Targeted therapies for congenital myasthenic syndromes: Systematic review and steps towards a treatabolome. Emerg. Top. Life Sci., 2019, 3(1), 19-37.
[http://dx.doi.org/10.1042/ETLS20180100] [PMID: 30931400]
[17]
Wargon, I.; Richard, P.; Kuntzer, T.; Sternberg, D.; Nafissi, S.; Gaudon, K.; Lebail, A.; Bauche, S.; Hantaï, D.; Fournier, E.; Eymard, B.; Stojkovic, T. Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul. Disord., 2012, 22(4), 318-324.
[http://dx.doi.org/10.1016/j.nmd.2011.09.002] [PMID: 22088788]
[18]
Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol., 1993, 41(1), 31-91.
[http://dx.doi.org/10.1016/0301-0082(93)90040-Y] [PMID: 8321908]
[19]
Matlik, H.N.; Milhem, R.M.; Saadeldin, I.Y.; Al-Jaibeji, H.S.; Al-Gazali, L.; Ali, B.R. Clinical and molecular analysis of a novel COLQ missense mutation causing congenital myasthenic syndrome in a Syrian family. Pediatr. Neurol., 2014, 51(1), 165-169.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.03.012] [PMID: 24938146]
[20]
Huang, K.; Li, J.; Ito, M.; Takeda, J.I.; Ohkawara, B.; Ogi, T.; Masuda, A.; Ohno, K. Gene expression profile at the motor endplate of the neuromuscular junction of fast-twitch muscle. Front. Mol. Neurosci., 2020, 13, 154.
[http://dx.doi.org/10.3389/fnmol.2020.00154] [PMID: 33117128]
[21]
Sigoillot, S.M.; Bourgeois, F.; Lambergeon, M.; Strochlic, L.; Legay, C. ColQ controls postsynaptic differentiation at the neuromuscular junction. J. Neurosci., 2010, 30(1), 13-23.
[http://dx.doi.org/10.1523/JNEUROSCI.4374-09.2010] [PMID: 20053883]
[22]
Mihaylova, V.; Müller, J.S.; Vilchez, J.J.; Salih, M.A.; Kabiraj, M.M.; D’Amico, A.; Bertini, E.; Wölfle, J.; Schreiner, F.; Kurlemann, G.; Rasic, V.M.; Siskova, D.; Colomer, J.; Herczegfalvi, A.; Fabriciova, K.; Weschke, B.; Scola, R.; Hoellen, F.; Schara, U.; Abicht, A.; Lochmüller, H. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain, 2008, 131(3), 747-759.
[http://dx.doi.org/10.1093/brain/awm325] [PMID: 18180250]
[23]
Engel, A.G.; Shen, X.M.; Selcen, D.; Sine, S.M. What have we learned from the congenital myasthenic syndromes. J. Mol. Neurosci., 2010, 40(1-2), 143-153.
[http://dx.doi.org/10.1007/s12031-009-9229-0] [PMID: 19688192]
[24]
Katz, B.; Miledi, R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol., 1973, 231(3), 549-574.
[http://dx.doi.org/10.1113/jphysiol.1973.sp010248] [PMID: 4361216]
[25]
Engel, A.G.; Lambert, E.H.; Gomez, M.R. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann. Neurol., 1977, 1(4), 315-330.
[http://dx.doi.org/10.1002/ana.410010403] [PMID: 214017]
[26]
Katz, B.; Thesleff, S. A study of the ‘desensitization’ produced by acetylcholine at the motor end-plate. J. Physiol., 1957, 138(1), 63-80.
[http://dx.doi.org/10.1113/jphysiol.1957.sp005838] [PMID: 13463799]
[27]
Ohno, K.; Brengman, J.; Tsujino, A.; Engel, A.G. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9654-9659.
[http://dx.doi.org/10.1073/pnas.95.16.9654] [PMID: 9689136]
[28]
Ohno, K.; Engel, A.G.; Brengman, J.M.; Shen, X.M.; Heidenreich, F.; Vincent, A.; Milone, M.; Tan, E.; Demirci, M.; Walsh, P.; Nakano, S.; Akiguchi, I. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann. Neurol., 2000, 47(2), 162-170.
[http://dx.doi.org/10.1002/1531-8249(200002)47:2<162::AID-ANA5>3.0.CO;2-Q] [PMID: 10665486]
[29]
Shapira, Y.A.; Sadeh, M.E.; Bergtraum, M.P.; Tsujino, A.; Ohno, K.; Shen, X.M.; Brengman, J.; Edwardson, S.; Matoth, I.; Engel, A.G. Three novel COLQ mutations and variation of phenotypic expressivity due to G240X. Neurology, 2002, 58(4), 603-609.
[http://dx.doi.org/10.1212/WNL.58.4.603] [PMID: 11865139]
[30]
Donger, C.; Krejci, E.; Pou Serradell, A.; Eymard, B.; Bon, S.; Nicole, S.; Chateau, D.; Gary, F.; Fardeau, M.; Massoulié, J.; Guicheney, P. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am. J. Hum. Genet., 1998, 63(4), 967-975.
[http://dx.doi.org/10.1086/302059] [PMID: 9758617]
[31]
Huang, K.; Bi, F.F.; Yang, H. A systematic review and meta-analysis of the prevalence of congenital myopathy. Front. Neurol., 2021, 12, 761636.
[http://dx.doi.org/10.3389/fneur.2021.761636] [PMID: 34795634]
[32]
Huang, K.; Luo, Y.B.; Bi, F.F.; Yang, H. Pharmacological strategy for congenital myasthenic syndrome with CHRNE mutations: A meta-analysis of case reports. Curr. Neuropharmacol., 2021, 19(5), 718-729.
[http://dx.doi.org/10.2174/1570159X18666200729092332] [PMID: 32727330]
[33]
Shi, G.; Shao, S.; Zhou, J.; Huang, K.; Bi, F.F. Urinary p75(ECD) levels in patients with amyotrophic lateral sclerosis: A meta-analysis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2021, 23(5-6), 438-445.
[PMID: 34726989]
[34]
Liao, Q.; Zhang, Y.; He, J.; Huang, K. Global prevalence of myotonic dystrophy: An updated systematic review and meta-analysis. Neuroepidemiology, 2022, 56(3), 163-173.
[http://dx.doi.org/10.1159/000524734] [PMID: 35483324]
[35]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[36]
Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med., 2018, 23(2), 60-63.
[http://dx.doi.org/10.1136/bmjebm-2017-110853] [PMID: 29420178]
[37]
Al-Muhaizea, M.A.; Al-Mobarak, S.B. COLQ-mutant congenital myasthenic syndrome with microcephaly: A unique case with literature review. Transl. Neurosci., 2017, 8, 65-69.
[PMID: 28744372]
[38]
Al-Shahoumi, R.; Brady, L.I.; Schwartzentruber, J.; Tarnopolsky, M.A. Two cases of congenital myasthenic syndrome with vocal cord paralysis. Neurology, 2015, 84(12), 1281-1282.
[http://dx.doi.org/10.1212/WNL.0000000000001396] [PMID: 25695962]
[39]
Guven, A.; Demirci, M.; Anlar, B. Recurrent COLQ mutation in congenital myasthenic syndrome. Pediatr. Neurol., 2012, 46(4), 253-256.
[http://dx.doi.org/10.1016/j.pediatrneurol.2012.02.003] [PMID: 22490774]
[40]
Padmanabha, H.; Saini, A.G.; Sankhyan, N.; Singhi, P. COLQ-related congenital myasthenic syndrome and response to salbutamol therapy. J. Clin. Neuromuscul. Dis., 2017, 18(3), 162-163.
[http://dx.doi.org/10.1097/CND.0000000000000160] [PMID: 28221310]
[41]
Tay, C.G.; Fong, C.Y.; Li, L.; Ganesan, V.; Teh, C.M.; Gan, C.S.; Thong, M.K. Congenital myasthenic syndrome with novel pathogenic variants in the COLQ gene associated with the presence of antibodies to acetylcholine receptors. J. Clin. Neurosci., 2020, 72, 468-471.
[http://dx.doi.org/10.1016/j.jocn.2019.12.007] [PMID: 31831253]
[42]
Prabhudesai, S.P.; Pallithanam, J.J.; Naik, N.; Gauns, S. COLQ-related congenital myasthenic syndrome in a child from Western India. Neurol. India, 2021, 69(1), 228-229.
[http://dx.doi.org/10.4103/0028-3886.310105] [PMID: 33642313]
[43]
Vidanagamage, A.; Gooneratne, I.K.; Nandasiri, S.; Gunaratne, K.; Fernando, A.; Maxwell, S.; Cossins, J.; Beeson, D.; Chang, T. A rare mutation in the COLQ gene causing congenital myasthenic syndrome with remarkable improvement to fluoxetine: A case report. Neuromuscul. Disord., 2021, 31(3), 246-248.
[http://dx.doi.org/10.1016/j.nmd.2020.12.002] [PMID: 33487521]
[44]
Pattrakornkul, N.; Ittiwut, C.; Boonsimma, P.; Boonyapisit, K.; Khongkhatithum, C.; Sanmaneechai, O.; Suphapeetiporn, K.; Shotelersuk, V. Congenital myasthenic syndromes in the Thai population: Clinical findings and novel mutations. Neuromuscul. Disord., 2020, 30(10), 851-858.
[http://dx.doi.org/10.1016/j.nmd.2020.08.362] [PMID: 32978031]
[45]
Duran, G.S.; Uzunhan, T.A.; Ekici, B.; Çıtak, A.; Aydınlı, N.; Çalışkan, M. Severe scoliosis in a patient with COLQ mutation and congenital myasthenic syndrome: A clue for diagnosis. Acta Neurol. Belg., 2013, 113(4), 531-532.
[http://dx.doi.org/10.1007/s13760-013-0179-5] [PMID: 23371844]
[46]
Cho, A.; Kim, S.Y.; Lee, J.S.; Lim, B.C.; Kim, H.; Hwang, H.; Chae, J-H. Wide heterogeneity of congenital myasthenic syndromes: Analysis of clinical experience in a tertiary center. J. Genet. Med., 2020, 17(2), 73-78.
[http://dx.doi.org/10.5734/JGM.2020.17.2.73]
[47]
Ishigaki, K.; Nicolle, D.; Krejci, E.; Leroy, J.P.; Koenig, J.; Fardeau, M.; Eymard, B.; Hantaï, D. Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency. Neuromuscul. Disord., 2003, 13(3), 236-244.
[http://dx.doi.org/10.1016/s0960-8966(02)00243-2] [PMID: 12609505]
[48]
Chan, S.H.S.; Wong, V.C.N.; Engel, A.G. Neuromuscular junction acetylcholinesterase deficiency responsive to albuterol. Pediatr. Neurol., 2012, 47(2), 137-140.
[http://dx.doi.org/10.1016/j.pediatrneurol.2012.04.022] [PMID: 22759693]
[49]
Yeung, W.L.; Lam, C.W.; Ng, P.C. Intra-familial variation in clinical manifestations and response to ephedrine in siblings with congenital myasthenic syndrome caused by novel COLQ mutations. Dev. Med. Child Neurol., 2010, 52(10), e243-e244.
[http://dx.doi.org/10.1111/j.1469-8749.2010.03663.x] [PMID: 20370815]
[50]
Prior, D.E.; Ghosh, P.S. Congenital myasthenic syndrome from a single center: Phenotypic and genotypic features. J. Child Neurol., 2021, 36(8), 610-617.
[http://dx.doi.org/10.1177/0883073820987755] [PMID: 33471587]
[51]
Selvam, P.; Arunachal, G.; Danda, S.; Chapla, A.; Sivadasan, A.; Alexander, M.; Thomas, M.M.; Thomas, N.J. Congenital myasthenic syndrome: Spectrum of mutations in an indian cohort. J. Clin. Neuromuscul. Dis., 2018, 20(1), 14-27.
[http://dx.doi.org/10.1097/CND.0000000000000222] [PMID: 30124556]
[52]
Ohno, K.; Brengman, J.M.; Felice, K.J.; Cornblath, D.R.; Engel, A.G. Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing? Am. J. Hum. Genet., 1999, 65(3), 635-644.
[http://dx.doi.org/10.1086/302551] [PMID: 10441569]
[53]
Schreiner, F.; Hoppenz, M.; Klaeren, R.; Reimann, J.; Woelfle, J. Novel COLQ mutation 950delC in synaptic congenital myasthenic syndrome and symptomatic heterozygous relatives. Neuromuscul. Disord., 2007, 17(3), 262-265.
[http://dx.doi.org/10.1016/j.nmd.2006.11.010] [PMID: 17300939]
[54]
Mishra, S.; Girisha, K.; Shukla, A. Further delineation of clinical and molecular characteristics of congenital myasthenic syndromes in Indian families. Eur. J. Hum. Genet., 2020, 28(Suppl. 1), 428-428.
[55]
Nakata, T.; Ito, M.; Azuma, Y.; Otsuka, K.; Noguchi, Y.; Komaki, H.; Okumura, A.; Shiraishi, K.; Masuda, A.; Natsume, J.; Kojima, S.; Ohno, K. Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction. Hum. Mutat., 2013, 34(7), 997-1004.
[http://dx.doi.org/10.1002/humu.22325] [PMID: 23553736]
[56]
Arredondo, J.; Lara, M.; Ng, F.; Gochez, D.A.; Lee, D.C.; Logia, S.P.; Nguyen, J.; Maselli, R.A. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum. Genet., 2014, 133(5), 599-616.
[http://dx.doi.org/10.1007/s00439-013-1391-3] [PMID: 24281389]
[57]
Luo, X.; Wang, C.; Lin, L.; Yuan, F.; Wang, S.; Wang, Y.; Wang, A.; Wang, C.; Wu, S.; Lan, X.; Xu, Q.; Yin, R.; Cheng, H.; Zhang, Y.; Xi, J.; Zhang, J.; Sun, X.; Yan, J.; Zeng, F.; Chen, Y. Mechanisms of congenital myasthenia caused by three mutations in the COLQ gene. Front Pediatr., 2021, 9, 679342.
[http://dx.doi.org/10.3389/fped.2021.679342] [PMID: 34912755]
[58]
Gül Mert, G.; Özcan, N.; Hergüner, Ö.; Altunbaşak, Ş.; Incecik, F.; Bişgin, A.; Ceylaner, S. Congenital myasthenic syndrome in Turkey: Clinical and genetic features in the long-term follow-up of patients. Acta Neurol. Belg., 2021, 121(2), 529-534.
[http://dx.doi.org/10.1007/s13760-019-01246-9] [PMID: 31773638]
[59]
Ding, Q.; Shen, D.; Dai, Y.; Hu, Y.; Guan, Y.; Liu, M.; Cui, L. Mechanism hypotheses for the electrophysiological manifestations of two cases of endplate acetylcholinesterase deficiency related congenital myasthenic syndrome. J. Clin. Neurosci., 2018, 48, 229-232.
[http://dx.doi.org/10.1016/j.jocn.2017.10.084] [PMID: 29150079]
[60]
Gandolfi, B.; Grahn, R.A.; Creighton, E.K.; Williams, D.C.; Dickinson, P.J.; Sturges, B.K.; Guo, L.T.; Shelton, G.D.; Leegwater, P.A.J.; Longeri, M.; Malik, R.; Lyons, L.A. COLQ variant associated with D evon R ex and S phynx feline hereditary myopathy. Anim. Genet., 2015, 46(6), 711-715.
[http://dx.doi.org/10.1111/age.12350] [PMID: 26374066]
[61]
Bestue-Cardiel, M.; de Cabezon-Alvarez, A.S.; Capablo-Liesa, J.L.; López-Pisón, J.; Peña-Segura, J.L.; Martin-Martinez, J.; Engel, A.G. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology, 2005, 65(1), 144-146.
[http://dx.doi.org/10.1212/01.wnl.0000167132.35865.31] [PMID: 16009904]
[62]
Lee, J.D.; Woodruff, T.M. The emerging role of complement in neuromuscular disorders. Semin. Immunopathol., 2021, 43(6), 817-828.
[http://dx.doi.org/10.1007/s00281-021-00895-4] [PMID: 34705082]
[63]
Dani, N.; Broadie, K. Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev. Neurobiol., 2012, 72(1), 2-21.
[http://dx.doi.org/10.1002/dneu.20891] [PMID: 21509945]
[64]
Parkinson, W.; Dear, M.L.; Rushton, E.; Broadie, K. N-glycosylation requirements in neuromuscular synaptogenesis. Development, 2013, 140(24), 4970-4981.
[http://dx.doi.org/10.1242/dev.099192] [PMID: 24227656]
[65]
Wu, D.; Hersh, L.B. Choline acetyltransferase: Celebrating its fiftieth year. J. Neurochem., 1994, 62(5), 1653-1663.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62051653.x] [PMID: 8158117]
[66]
Finsterer, J. Congenital myasthenic syndromes. Orphanet J. Rare Dis., 2019, 14(1), 57.
[http://dx.doi.org/10.1186/s13023-019-1025-5] [PMID: 30808424]
[67]
Bragato, C.; Blasevich, F.; Ingenito, G.; Mantegazza, R.; Maggi, L. Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomed. Pharmacother., 2021, 137, 111357.
[http://dx.doi.org/10.1016/j.biopha.2021.111357] [PMID: 33724918]
[68]
Ionno, M.; Moyer, M.; Pollarine, J.; van Lunteren, E. Inotropic effects of the K+ channel blocker 3,4-diaminopyridine on fatigued diaphragm muscle. Respir. Physiol. Neurobiol., 2008, 160(1), 45-53.
[http://dx.doi.org/10.1016/j.resp.2007.08.003] [PMID: 17881299]
[69]
Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin. Drug Discov., 2014, 9(5), 567-578.
[http://dx.doi.org/10.1517/17460441.2014.907790] [PMID: 24738878]
[70]
Huang, K.; Luo, Y.B.; Yang, H. Autoimmune channelopathies at neuromuscular junction. Front. Neurol., 2019, 10, 516.
[http://dx.doi.org/10.3389/fneur.2019.00516] [PMID: 31156543]
[71]
Vrinten, C.; van der Zwaag, A.M.; Weinreich, S.S.; Scholten, R.J.P.M.; Verschuuren, J.J.G.M. Ephedrine for myasthenia gravis, neonatal myasthenia and the congenital myasthenic syndromes. Cochrane Libr., 2014, 2014(12), CD010028.
[http://dx.doi.org/10.1002/14651858.CD010028.pub2] [PMID: 25515947]
[72]
Edgeworth, H. A report of progress on the use of ephedrine in a case of myasthenia gravis. JAMA, 1930, 94(15), 1136.
[http://dx.doi.org/10.1001/jama.1930.27120410003009c]
[73]
Haller, C.A.; Benowitz, N.L. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N. Engl. J. Med., 2000, 343(25), 1833-1838.
[http://dx.doi.org/10.1056/NEJM200012213432502] [PMID: 11117974]
[74]
Lashley, D.; Palace, J.; Jayawant, S.; Robb, S.; Beeson, D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology, 2010, 74(19), 1517-1523.
[http://dx.doi.org/10.1212/WNL.0b013e3181dd43bf] [PMID: 20458068]
[75]
Müller, J.S.; Herczegfalvi, A.; Vilchez, J.J.; Colomer, J.; Bachinski, L.L.; Mihaylova, V.; Santos, M.; Schara, U.; Deschauer, M.; Shevell, M.; Poulin, C.; Dias, A.; Soudo, A.; Hietala, M.; Aärimaa, T.; Krahe, R.; Karcagi, V.; Huebner, A.; Beeson, D.; Abicht, A.; Lochmüller, H. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain, 2007, 130(6), 1497-1506.
[http://dx.doi.org/10.1093/brain/awm068] [PMID: 17439981]
[76]
Witting, N.; Vissing, J. Pharmacologic treatment of downstream of tyrosine kinase 7 congenital myasthenic syndrome. JAMA Neurol., 2014, 71(3), 350-354.
[http://dx.doi.org/10.1001/jamaneurol.2013.5590] [PMID: 24425145]
[77]
Maselli, R.A.; Linden, H., Jr; Ferns, M. Recessive congenital myasthenic syndrome caused by a homozygous mutation inSYT2 altering a highly conserved C‐terminal amino acid sequence. Am. J. Med. Genet. A., 2020, 182(7), 1744-1749.
[http://dx.doi.org/10.1002/ajmg.a.61579] [PMID: 32250532]
[78]
Malfatti, E.; Catchpool, T.; Nouioua, S.; Sihem, H.; Fournier, E.; Carlier, R.Y.; Cardone, N.; Davis, M.R.; Laing, N.G.; Sternberg, D.; Ravenscroft, G. A TOR1AIP1 variant segregating with an early onset limb girdle myasthenia—Support for the role of LAP1 in NMJ function and disease. Neuropathol. Appl. Neurobiol., 2022, 48(1), e12743.
[http://dx.doi.org/10.1111/nan.12743] [PMID: 34164833]
[79]
Lee, C.Y.; Petkova, M.; Morales-Gonzalez, S.; Gimber, N.; Schmoranzer, J.; Meisel, A.; Böhmerle, W.; Stenzel, W.; Schuelke, M.; Schwarz, J.M. A spontaneous missense mutation in the chromodomain helicase DNA‐binding protein 8 (CHD8) gene: a novel association with congenital myasthenic syndrome. Neuropathol. Appl. Neurobiol., 2020, 46(6), 588-601.
[http://dx.doi.org/10.1111/nan.12617] [PMID: 32267004]
[80]
Clausen, L.; Cossins, J.; Beeson, D. Beta-2 adrenergic receptor agonists enhance AChR clustering in C2C12 myotubes: Implications for therapy of myasthenic disorders. J. Neuromuscul. Dis., 2018, 5(2), 231-240.
[http://dx.doi.org/10.3233/JND-170293] [PMID: 29865088]
[81]
McMacken, G.; Cox, D.; Roos, A.; Müller, J.; Whittaker, R.; Lochmüller, H. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes. Hum. Mol. Genet., 2018, 27(9), 1556-1564.
[http://dx.doi.org/10.1093/hmg/ddy062] [PMID: 29462491]
[82]
McMacken, G.M.; Spendiff, S.; Whittaker, R.G.; O’Connor, E.; Howarth, R.M.; Boczonadi, V.; Horvath, R.; Slater, C.R.; Lochmüller, H. Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome. Hum. Mol. Genet., 2019, 28(14), 2339-2351.
[http://dx.doi.org/10.1093/hmg/ddz059] [PMID: 31220253]
[83]
Liewluck, T.; Selcen, D.; Engel, A.G. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and Dok-7 myasthenia. Muscle Nerve, 2011, 44(5), 789-794.
[http://dx.doi.org/10.1002/mus.22176] [PMID: 21952943]
[84]
Lynch, G.S.; Ryall, J.G. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol. Rev., 2008, 88(2), 729-767.
[http://dx.doi.org/10.1152/physrev.00028.2007] [PMID: 18391178]
[85]
Kim, Y.S.; Sainz, R.D. β-adrenergic agonists and hypertrophy of skeletal muscles. Life Sci., 1992, 50(6), 397-407.
[http://dx.doi.org/10.1016/0024-3205(92)90374-X] [PMID: 1346465]
[86]
Guo, Y.; Menezes, M.J.; Menezes, M.P.; Liang, J.; Li, D.; Riley, L.G.; Clarke, N.F.; Andrews, P.I.; Tian, L.; Webster, R.; Wang, F.; Liu, X.; Shen, Y.; Thorburn, D.R.; Keating, B.J.; Engel, A.; Hakonarson, H.; Christodoulou, J.; Xu, X. Delayed diagnosis of congenital myasthenia due to associated mitochondrial enzyme defect. Neuromuscul. Disord., 2015, 25(3), 257-261.
[http://dx.doi.org/10.1016/j.nmd.2014.11.017] [PMID: 25557462]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy