Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Contemporary Progress in the Applications of Iron-based Magnetic Nanoparticles in Multicomponent Synthesis: A Review

Author(s): Neelanjana Srivastava, Monika Verma, Ajay Thakur, Ruchi Bharti* and Renu Sharma

Volume 26, Issue 23, 2022

Published on: 02 February, 2023

Page: [2122 - 2142] Pages: 21

DOI: 10.2174/1385272827666230126124704

Price: $65

Abstract

In recent decades, organic synthetic reactions have advanced towards greener and sustainable reactions through the usage of magnetic nanoparticles (MNPs). These MNPs are used as an alternative to resolve the limitations of conventional materials. Amongst various MNPs, iron-based nanoparticles (NPs) are being profoundly explored. The main objective of this review targets to equip its readers a brief introduction to Iron-based MNPs, their properties, evolution and advantage in multicomponent reactions (MCRs) since 2010. MNPs have sown a great impact on multiple fields viz., biomedicine, environmental remediation projects, and catalysis. These are smaller and have a high surface area that allows them to have copious catalytic sites. MNPs can be recovered and reused in various organic syntheses using an external magnet conveniently. MNPs are a sustainable methodology while encountering environmental and profitable advantages. Studies revealed the degradation of catalytic activity after fewer cycles of utilization which is a good research gap to further study on.

Graphical Abstract

[1]
Fulekar, M.H. Nanotechnology; I. K. International Pvt Ltd: New Delhi, India, 2010.
[2]
Madsen, M.; Gothelf, K.V. Chemistries for DNA nanotechnology. Chem. Rev., 2019, 119(10), 6384-6458.
[http://dx.doi.org/10.1021/acs.chemrev.8b00570] [PMID: 30714731]
[3]
Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano, 2013, 7(9), 7442-7447.
[http://dx.doi.org/10.1021/nn404501g] [PMID: 24490875]
[4]
Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small, 2005, 1(2), 172-179.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[5]
Imran, M.; Revol-Junelles, A.M.; Martyn, A.; Tehrany, E.A.; Jacquot, M.; Linder, M.; Desobry, S. Active food packaging evolution: Transformation from micro- to nanotechnology. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 799-821.
[http://dx.doi.org/10.1080/10408398.2010.503694] [PMID: 20924864]
[6]
Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology. Hum. Exp. Toxicol., 2015, 34(12), 1318-1321.
[http://dx.doi.org/10.1177/0960327115603588] [PMID: 26614822]
[7]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[8]
Zhao, Q.Q.; Boxman, A.; Chowdhry, U. Nanotechnology in the chemical industry-opportunities and challenges. J. Nanopart. Res., 2003, 5, 567-572.
[9]
Huang, W.; Jiang, J.; Mandal, T. Ferrite nanoparticles: Catalysis in multicomponent reactions (MCR). Synth. Commun., 2021, 51(16), 2397-2422.
[http://dx.doi.org/10.1080/00397911.2021.1939883]
[10]
Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[11]
Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B. Iron nanoparticles supported on chemically-derived graphene: Catalytic hydrogenation with magnetic catalyst separation. Adv. Synth. Catal., 2011, 353(4), 523-527.
[http://dx.doi.org/10.1002/adsc.201000877]
[12]
Tandon, R.; Tandon, N.; Patil, S.M. Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11(47), 29333-29353.
[http://dx.doi.org/10.1039/D1RA03874E] [PMID: 35479579]
[13]
Simon, T.E.J. Obtaining iron nanoparticles from chip through top down technology. J. Nanotechnol. Mater. Sci., 2019, 6(1), 17-22.
[14]
Wu, Z.; Yang, S.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale, 2016, 8(3), 1237-1259.
[http://dx.doi.org/10.1039/C5NR07681A] [PMID: 26696235]
[15]
Calvaresi, M. The route towards nanoparticle shape metrology. Nat. Nanotechnol., 2020, 15(7), 512-513.
[http://dx.doi.org/10.1038/s41565-020-0689-2] [PMID: 32533115]
[16]
Ali, A.; Zafar, H.; Zia, M. ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[17]
Nagarajan, R. Nanoparticles: Building blocks for nanotechnology. In: Nanoparticles: Synthesis, Stabilization, Passivation, And Functionalization; ACS publications: Washington, D.C., USA, 2008; pp. 2-14.
[http://dx.doi.org/10.1021/bk-2008-0996.ch001]
[18]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[19]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[20]
Astruc, D. Nanoparticles and Catalysis; John Wiley & Sons: New Jersey, USA, 2008.
[21]
Biswas, P.; Wu, C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc., 2005, 55(6), 708-746.
[http://dx.doi.org/10.1080/10473289.2005.10464656] [PMID: 16022411]
[22]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[http://dx.doi.org/10.1002/smll.200500006] [PMID: 17193474]
[23]
Wang, N.; Cai, Y.; Zhang, R.Q. Growth of nanowires. Mater. Sci. Eng. Rep., 2008, 60(1-6), 1-51.
[http://dx.doi.org/10.1016/j.mser.2008.01.001]
[24]
Nasrollahzadeh, M.; Issaabadi, Z.; Sajjadi, M.; Sajadi, S.M.; Atarod, M. Types of nanostructures. In: Interface Science and Technology Elsevier: Amsterdam, 2019, 28, 29-80.
[http://dx.doi.org/10.1016/B978-0-12-813586-0.00002-X]
[25]
Mohammadinejad, R.; Karimi, S.; Iravani, S.; Varma, R.S. Plant-derived nanostructures: Types and applications. Green Chem., 2016, 18(1), 20-52.
[http://dx.doi.org/10.1039/C5GC01403D]
[26]
Himpsel, F.J.; Ortega, J.E.; Mankey, G.J.; Willis, R.F. Magnetic nanostructures. Adv. Phys., 1998, 47(4), 511-597.
[http://dx.doi.org/10.1080/000187398243519]
[27]
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater., 2003, 15(5), 353-389.
[28]
Fert, A.; Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater., 1999, 200(1-3), 338-358.
[http://dx.doi.org/10.1016/S0304-8853(99)00375-3]
[29]
Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Indian Chem. Soc., 2010, 7(1), 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[30]
Fortin, J.P.; Wilhelm, C.; Servais, J.; Ménager, C.; Bacri, J.C.; Gazeau, F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc., 2007, 129(9), 2628-2635.
[http://dx.doi.org/10.1021/ja067457e] [PMID: 17266310]
[31]
Kumar, A.; Dixit, C.K. Methods for Characterization of Nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Elsevier: Amsterdam, 2017; pp. 43-58.
[http://dx.doi.org/10.1016/B978-0-08-100557-6.00003-1]
[32]
Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. (Camb.), 2003, 3(8), 927-934.
[http://dx.doi.org/10.1039/b207789b] [PMID: 12744306]
[33]
Hayat, M.A. Basic Techniques for Transmission Electron Microscopy; Academic Press Inc.: Cambridge, USA, 1986.
[34]
Inkson, B.J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Methods, 2016, 17-43.
[http://dx.doi.org/10.1016/B978-0-08-100040-3.00002-X]
[35]
Anu Mary Ealia, S.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Series Mater. Sci. Eng., 2017, 263(3), 032019.
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[36]
Holder, C.F.; Schaak, R.E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 2019, 13(7), 7359-7365.
[http://dx.doi.org/10.1021/acsnano.9b05157] [PMID: 31336433]
[37]
Titus, D.; James Jebaseelan Samuel, E.; Roopan, S.M. Nanoparticle Characterization Techniques. In: Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, 2019; pp. 303-319.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00012-5]
[38]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[39]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18(3), 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[40]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[41]
Zhu, J.; Wang, Q.; Wang, M.X. Multicomponent Reactions in Organic Synthesis; Wiley: New York, USA, 2014.
[http://dx.doi.org/10.1002/9783527678174]
[42]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[43]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[44]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron, 2022, 119, 132813.
[http://dx.doi.org/10.1016/j.tet.2022.132813]
[45]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Recent advances in utilization of deep eutectic solvents: An environmentally friendly pathway for multi-component synthesis. Curr. Org. Chem., 2022, 26(3), 299-323.
[http://dx.doi.org/10.2174/1385272826666220126165925]
[46]
Verma, M.; Thakur, A.; Sharma, R.; Bharti, R. Recent advancement in the one-pot synthesis of the tri-substituted methanes (TRSMs) and their biological applications. Curr. Org. Synth., 2021, 18(1)
[http://dx.doi.org/10.2174/1570179418666210910105342] [PMID: 34515005]
[47]
Setia, P.; Bharti, R.; Sharma, R. Various synthetic pathways for the synthesis of 3,4-disubstituted isoxazole by one pot multicomponent reaction. Orbital: Electron. J. Chem., 2020, 12(4)
[http://dx.doi.org/10.17807/orbital.v12i4.1549]
[48]
Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923]
[49]
Mironov, M.A. Design of multi-component reactions: From libraries of compounds to libraries of reactions. QSAR Comb. Sci., 2006, 25(5-6), 423-431.
[http://dx.doi.org/10.1002/qsar.200540190]
[50]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[51]
Verma, A.; Bharti, R.; Sharma, R. Effect of methods and catalysts on the one-pot synthesis of tetrahydropyridine derivatives: A mini-review. Orbital: Electron. J. Chem., 2021, 13(4)
[http://dx.doi.org/10.17807/orbital.v13i4.1585]
[52]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3(10), 1189.
[http://dx.doi.org/10.1039/c2md20089a]
[53]
Brauch, S.; van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: Beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[54]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[55]
Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[56]
Wilson, K.; Sheldon, R.A.; Arends, I.; Hanefeld, U. Green chemistry and catalysis. Wiley-VCH, 2007, 448 pp; ISBN 978-3-527-30715-9 (Hardcover). Appl. Organomet. Chem., 2007, 21(11), 1002-1002.
[http://dx.doi.org/10.1002/aoc.1306]
[57]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743.
[http://dx.doi.org/10.1039/b921171c]
[58]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[59]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[60]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[61]
Gao, Z.; Qin, Y. Design and properties of confined nanocatalysts by atomic layer deposition. Acc. Chem. Res., 2017, 50(9), 2309-2316.
[http://dx.doi.org/10.1021/acs.accounts.7b00266] [PMID: 28787132]
[62]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[63]
Kitani, K.; Minami, C.; Yamamoto, T.; Kanai, S.; Ivy, G.O.; Carrillo, M.C. Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann. N. Y. Acad. Sci., 2002, 959(1), 295-307.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02101.x] [PMID: 11976204]
[64]
Han, H.S.; Choi, K.Y.; Ko, H.; Jeon, J.; Saravanakumar, G.; Suh, Y.D.; Lee, D.S.; Park, J.H. Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. J. Control. Release, 2015, 200, 158-166.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.032] [PMID: 25550153]
[65]
Zeng, T.; Chen, W.W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C.J. Fe3O4 nanoparticles: A robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12(4), 570.
[http://dx.doi.org/10.1039/b920000b]
[66]
Amini, M.; Kafshdouzsani, M.H.; Akbari, A.; Gautam, S.; Shim, C.H.; Chae, K.H. Spinel copper ferrite nanoparticles: Preparation, characterization and catalytic activity. Appl. Organomet. Chem., 2018, 32(9), e4470.
[http://dx.doi.org/10.1002/aoc.4470]
[67]
Sampath, C.; Harika, P.; Revaprasadu, N. Design, green synthesis, anti-microbial, and anti-oxidant activities of novel α -aminophosphonates via Kabachnik-Fields reaction. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1081-1085.
[http://dx.doi.org/10.1080/10426507.2015.1035379]
[68]
Bhattacharya, A.K.; Raut, D.S.; Rana, K.C.; Polanki, I.K.; Khan, M.S.; Iram, S. Diversity-oriented synthesis of α-aminophosphonates: A new class of potential anticancer agents. Eur. J. Med. Chem., 2013, 66, 146-152.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.036] [PMID: 23792352]
[69]
Reddy, B.V.S.; Krishna, A.S.; Ganesh, A.V.; Kumar, G.G.K.S.N. Nano Fe3O4 as magnetically recyclable catalyst for the synthesis of α-aminophosphonates in solvent-free conditions. Tetrahedron Lett., 2011, 52(12), 1359-1362.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.074]
[70]
Gawande, M.B.; Velhinho, A.; Nogueira, I.D.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. RSC Advances, 2012, 2(15), 6144.
[http://dx.doi.org/10.1039/c2ra20955a]
[71]
Narsimha, S.; Satheesh Kumar, N.; Kumara Swamy, B.; Vasudeva Reddy, N.; Althaf Hussain, S.K.; Srinivasa Rao, M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg. Med. Chem. Lett., 2016, 26(6), 1639-1644.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.055] [PMID: 26873415]
[72]
Lal, K.; Yadav, P. Recent Advancements in 1,4-Disubstituted 1H-1,2,3-Triazoles as Potential Anticancer Agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[73]
Kumar, D.; Reddy, V.B.; Kumar, A.; Mandal, D.; Tiwari, R.; Parang, K. Click chemistry inspired one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory activity. Bioorg. Med. Chem. Lett., 2011, 21(1), 449-452.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.121] [PMID: 21084189]
[74]
Crowley, J.D.; McMorran, D.A. “Click-Triazole” coordination chemistry: Exploiting 1,4-disubstituted-1,2,3-Triazoles as ligands. Top. Heterocycl. Chem., 2012, 28, 31-83.
[http://dx.doi.org/10.1007/7081_2011_67]
[75]
Anil Kumar, B.S.P.; Harsha Vardhan Reddy, K.; Madhav, B.; Ramesh, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett., 2012, 53(34), 4595-4599.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.077]
[76]
Murty, M.S.R.; Katiki, M.R.; Kommula, D. Multicomponent click synthesis of β-Hydroxy/Benzyl 1,2,3-Triazoles catalyzed by magnetically recyclable nano iron oxide in water. Can. Chem. Trans., 2016, 47-61.
[http://dx.doi.org/10.13179/canchemtrans.2016.04.01.0270]
[77]
Eisavi, R.; Karimi, A. CoFe2O4/Cu(OH)2 magnetic nanocomposite: An efficient and reusable heterogeneous catalyst for one-pot synthesis of β-hydroxy-1,4-disubstituted-1,2,3-triazoles from epoxides. RSC Advances, 2019, 9(51), 29873-29887.
[http://dx.doi.org/10.1039/C9RA06038C] [PMID: 35531545]
[78]
Bonyasi, R.; Gholinejad, M.; Saadati, F.; Nájera, C. Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: Multicomponent synthesis of 1,2,3-triazoles in water. New J. Chem., 2018, 42(4), 3078-3086.
[http://dx.doi.org/10.1039/C7NJ03284F]
[79]
Pavlovska, T.L.; Redkin, R.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2015, 20(1), 299-344.
[http://dx.doi.org/10.1007/s11030-015-9629-8] [PMID: 26419598]
[80]
Zhou, L.M.; Qu, R.Y.; Yang, G.F. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin. Drug Discov., 2020, 15(5), 603-625.
[http://dx.doi.org/10.1080/17460441.2020.1733526] [PMID: 32106717]
[81]
Reddy, C.N.; Nayak, V.L.; Mani, G.S.; Kapure, J.S.; Adiyala, P.R.; Maurya, R.A.; Kamal, A. Synthesis and biological evaluation of spiro[cyclopropane-1,3′-indolin]-2′-ones as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(20), 4580-4586.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.056] [PMID: 26330077]
[82]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97(1), 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[83]
Mathusalini, S.; Arasakumar, T.; Lakshmi, K.; Lin, C.H.; Mohan, P.S.; Ramnath, M.G.; Thirugnanasampandan, R. Synthesis and biological evaluation of new spirooxindoles with embedded pharmacophores. New J. Chem., 2016, 40(6), 5164-5169.
[http://dx.doi.org/10.1039/C6NJ00534A]
[84]
Bazgir, A.; Hosseini, G.; Ghahremanzadeh, R. Copper ferrite nanoparticles: An efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water. ACS Comb. Sci., 2013, 15(10), 530-534.
[http://dx.doi.org/10.1021/co400057h] [PMID: 24050156]
[85]
Dadaei, M.; Naeimi, H. Guanidine functionalized core–shell structured magnetic cobalt-ferrite: an efficient nanocatalyst for sonochemical synthesis of spirooxindoles in water. RSC Advances, 2021, 11(25), 15360-15368.
[http://dx.doi.org/10.1039/D1RA00967B] [PMID: 35424043]
[86]
Kumar, A.S.; Reddy, M.A.; Knorn, M.; Reiser, O.; Sreedhar, B. Magnetically recoverable CuFe2O4 nanoparticles: Catalyzed synthesis of Aryl Azides and 1,4-Diaryl-1,2,3-triazoles from boronic acids in water. Eur. J. Org. Chem., 2013, 2013(21), 4674-4680.
[http://dx.doi.org/10.1002/ejoc.201300343]
[87]
Hosseini, M.M.; Kolvari, E. Nano-magnetic zirconia sulfuric acid (Fe3O4 @ZrO2-SO3 H): Magnetically separable and reusable heterogeneous catalyst for multicomponent reactions. Chem. Lett., 2017, 46(1), 53-55.
[http://dx.doi.org/10.1246/cl.160793]
[88]
Kiasat, A.R.; Davarpanah, J. Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones. J. Mol. Catal. Chem., 2013, 373, 46-54.
[http://dx.doi.org/10.1016/j.molcata.2013.03.003]
[89]
Asif, M. Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr. Med. Chem., 2012, 19(18), 2984-2991.
[http://dx.doi.org/10.2174/092986712800672139] [PMID: 22519394]
[90]
Butnariu, R.M.; Caprosu, M.D.; Bejan, V.; Mangalagiu, I.I.; Ungureanu, M.; Poiata, A.; Tuchilus, C.; Florescu, M. Pyridazine and phthalazine derivatives with potential antimicrobial activity. J. Heterocycl. Chem., 2007, 44(5), 1149-1152.
[http://dx.doi.org/10.1002/jhet.5570440528]
[91]
Ryu, C.K.; Park, R.E.; Ma, M.Y.; Nho, J.H. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg. Med. Chem. Lett., 2007, 17(9), 2577-2580.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.003] [PMID: 17320386]
[92]
Zhang, L.; Guan, L.P.; Sun, X.Y.; Wei, C.X.; Chai, K.Y.; Quan, Z.S. Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines. Chem. Biol. Drug Des., 2009, 73(3), 313-319.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00776.x] [PMID: 19207467]
[93]
Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5(14), 1647-1660.
[http://dx.doi.org/10.4155/fmc.13.126] [PMID: 24047270]
[94]
Costa, M.; Dias, T.A.; Brito, A.; Proença, F. Biological importance of structurally diversified chromenes. Eur. J. Med. Chem., 2016, 123, 487-507.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.057] [PMID: 27494166]
[95]
Shestopalov, A.M.; Litvinov, Y.M.; Rodinovskaya, L.A.; Malyshev, O.R.; Semenova, M.N.; Semenov, V.V. Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Comb. Sci., 2012, 14(8), 484-490.
[http://dx.doi.org/10.1021/co300062e] [PMID: 22824131]
[96]
Rajput, J.K.; Kaur, G. Synthesis and applications of CoFe2O4 nanoparticles for multicomponent reactions. Catal. Sci. Technol., 2014, 4(1), 142-151.
[http://dx.doi.org/10.1039/C3CY00594A]
[97]
Rajput, J.K.; Arora, P.; Kaur, G.; Kaur, M. CuFe2O4 magnetic heterogeneous nanocatalyst: Low power sonochemical-coprecipitation preparation and applications in synthesis of 4H-chromene-3-carbonitrile scaffolds. Ultrason. Sonochem., 2015, 26, 229-240.
[http://dx.doi.org/10.1016/j.ultsonch.2015.01.008] [PMID: 25649833]
[98]
Ahankar, H.; Ramazani, A.; Slepokura, K. One-pot synthesis of substituted 4 H -chromenes by nickel ferrite nanoparticles as an efficient and magnetically reusable catalyst. Turk. J. Chem., 2018, 42(3), 719-734.
[http://dx.doi.org/10.3906/kim-1710-14]
[99]
Pourshojaei, Y.; Zolala, F.; Eskandari, K.; Talebi, M.; Morsali, L.; Amiri, M.; Khodadadi, A.; Shamsimeymandi, R.; Faghih-Mirzaei, E.; Asadipour, A. Nickel Ferrite (NiFe2O4) Nanoparticles as magnetically recyclable nanocatalyst for highly efficient synthesis of 4h-chromene derivatives. J. Nanosci. Nanotechnol., 2020, 20(5), 3206-3216.
[http://dx.doi.org/10.1166/jnn.2020.17396] [PMID: 31635666]
[100]
Maleki, A.; Hajizadeh, Z.; Valadi, K. Green and eco-friendly mica/Fe3O4 as an efficient nanocatalyst for the multicomponent synthesis of 2-amino-4 H -chromene derivatives. Green Chem. Lett. Rev., 2021, 14(1), 62-72.
[http://dx.doi.org/10.1080/17518253.2020.1860259]
[101]
Ghahremanzadeh, R.; Rashid, Z.; Zarnani, A.H.; Naeimi, H. Manganese ferrite nanoparticle catalyzed tandem and green synthesis of spirooxindoles. RSC Advances, 2014, 4(82), 43661-43670.
[http://dx.doi.org/10.1039/C4RA05756B]
[102]
Kulkarni, A.M.; Pandit, K.S.; Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P. Cobalt ferrite nanoparticles: A magnetically separable and reusable catalyst for Petasis-Borono–Mannich reaction. RSC Advances, 2015, 5(86), 70586-70594.
[http://dx.doi.org/10.1039/C5RA10693A]
[103]
Jain, K.S.; Chitre, T.S.; Miniyar, P.B.; Kathiravan, M.K.; Bendre, V.S.; Veer, V.S.; Shahane, S.R.; Shishoo, C.J. Biological and medicinal significance of pyrimidines. Curr. Sci., 2006, 90(6), 793-803.
[104]
Naik, T.A.; Chikhalia, K.H. Studies on synthesis of pyrimidine derivatives and their pharmacological evaluation. E-J. Chem., 2007, 4(1), 60-66.
[http://dx.doi.org/10.1155/2007/507590]
[105]
Rostom, S.A.F.; Ashour, H.M.A.; Abd El Razik, H.A. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimicrobial and anticancer agents. Arch. Pharm., 2009, 342(5), 299-310.
[http://dx.doi.org/10.1002/ardp.200800223] [PMID: 19415663]
[106]
Bedair, A. H.; Emam, H. A.; El-Hady, N. A.; Ahmed, K. A.; El-Agrody, A. M. Synthesis and antimicrobial activities of novel Naphtho[2,1-b]Pyran, Pyrano[2,3-d]Pyrimidine and Pyrano[3,2-e][1,2,4]Triazolo[2,3-c]-Pyrimidine derivatives. Farmaco (Societa Chimica Italiana: 1989), 2001, 56(12), 965-973.
[http://dx.doi.org/10.1016/S0014-827X(01)01168-5]
[107]
Khazaei, A.; Ranjbaran, A.; Abbasi, F.; Khazaei, M.; Moosavi-Zare, A.R. Synthesis, characterization and application of ZnFe2O4 nanoparticles as a heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines. RSC Advances, 2015, 5(18), 13643-13647.
[http://dx.doi.org/10.1039/C4RA16664G]
[108]
Maleki, A.; Niksefat, M.; Rahimi, J.; Taheri-Ledari, R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2019.05.001]
[109]
Ghasemzadeh, M.A.; Abdollahi-Basir, M.H.; Babaei, M. Fe3O4@SiO2 –NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. Green Chem. Lett. Rev., 2015, 8(3-4), 40-49.
[http://dx.doi.org/10.1080/17518253.2015.1107139]
[110]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Advances, 2016, 6(60), 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[111]
Sharma, R.K.; Yadav, S.; Sharma, S.; Dutta, S.; Sharma, A. Expanding the horizon of multicomponent oxidative coupling reaction via the design of a unique, 3D copper isophthalate MOF-based catalyst decorated with mixed spinel CoFe2O4 nanoparticles. ACS Omega, 2018, 3(11), 15100-15111.
[http://dx.doi.org/10.1021/acsomega.8b02061] [PMID: 31458175]
[112]
Nemati, F.; Elhampour, A.; Natanzi, M.B. Synthesis and characterization of nano-copper ferrite as a magnetically separable catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles under solvent-free condition. Inorganic and Nano-Metal Chemistry, 2017, 47(5), 666-671.
[http://dx.doi.org/10.1080/15533174.2016.1212223]
[113]
Varzi, Z.; Maleki, A. Design and preparation of ZnS‐ZnFe2O4: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2,4,5‐triaryl‐1 H ‐imidazoles. Appl. Organomet. Chem., 2019, 33(8)
[http://dx.doi.org/10.1002/aoc.5008]
[114]
Varzi, Z.; Esmaeili, M.S.; Taheri-Ledari, R.; Maleki, A. Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 2021, 125, 108465.
[http://dx.doi.org/10.1016/j.inoche.2021.108465]
[115]
Gurav, R.; Surve, S.K.; Babar, S.; Choudhari, P.; Patil, D.; More, V.; Sankpal, S.; Hangirgekar, S. Rust-derived Fe 2 O 3 nanoparticles as a green catalyst for the one-pot synthesis of hydrazinyl thiazole derivatives. Org. Biomol. Chem., 2020, 18(24), 4575-4582.
[http://dx.doi.org/10.1039/D0OB00109K] [PMID: 32319501]
[116]
Foroughi Kaldareh, M.; Mokhtary, M.; Nikpassand, M. Nicotinic acid‐supported cobalt ferrite‐catalyzed one‐pot synthesis of substituted chromeno[3,4‐ b]quinolines. Appl. Organomet. Chem., 2020, 34(4)
[http://dx.doi.org/10.1002/aoc.5469]
[117]
Eisavi, R.; Naseri, K. Preparation, characterization and application of MgFe 2 O 4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. RSC Advances, 2021, 11(22), 13061-13076.
[http://dx.doi.org/10.1039/D1RA01588E] [PMID: 35423852]
[118]
Geedkar, D.; Kumar, A.; Kumar, K.; Sharma, P. Hydromagnesite sheets impregnated with cobalt–ferrite magnetic nanoparticles as heterogeneous catalytic system for the synthesis of imidazo[1,2- a]pyridine scaffolds. RSC Advances, 2021, 11(38), 23207-23220.
[http://dx.doi.org/10.1039/D1RA02516C] [PMID: 35479776]
[119]
Norouzi, F.H.; Foroughifar, N.; Khajeh-Amiri, A.; Pasdar, H. A novel superparamagnetic powerful guanidine-functionalized γ-Fe2O3 based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3 H)-one derivatives in Green media. RSC Advances, 2021, 11(48), 29948-29959.
[http://dx.doi.org/10.1039/D1RA05560G] [PMID: 35480261]
[120]
Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M.A.; Shirmardi-Shaghasemi, B.; Khavasi, H.R. Hantzsch reaction on free nano-Fe2O3 catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun., 2011, 47(32), 9230-9232.
[http://dx.doi.org/10.1039/c1cc12693h] [PMID: 21766097]
[121]
Ravikumar Naik, T.R.; Shivashankar, S.A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water. Tetrahedron Lett., 2016, 57(36), 4046-4049.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[122]
Jafari-Chermahini, M.T.; Tavakol, H. One‐pot synthesis of hantzsch 1,4‐dihydropyridines by a series of iron oxide nanoparticles: putative synthetic trpv6 calcium channel blockers. ChemistrySelect, 2021, 6(9), 2360-2365.
[http://dx.doi.org/10.1002/slct.202004390]
[123]
Ghasemzadeh, M.A.; Safaei-Ghomi, J.; Molaei, H. Fe3O4 nanoparticles: As an efficient, green and magnetically reusable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent-free conditions. C. R. Chim., 2012, 15(11-12), 969-974.
[http://dx.doi.org/10.1016/j.crci.2012.08.010]
[124]
Fardood, S.T.; Ramazani, A.; Moradi, S. Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J. Sol-Gel Sci. Technol., 2017, 82(2), 432-439.
[http://dx.doi.org/10.1007/s10971-017-4310-6]
[125]
Tamoradi, T.; Mousavi, S.M.; Mohammadi, M. Synthesis of a new Ni complex supported on CoFe2O4 and its application as an efficient and green catalyst for the synthesis of bis(pyrazolyl)methane and polyhydroquinoline derivatives. New J. Chem., 2020, 44(20), 8289-8302.
[http://dx.doi.org/10.1039/D0NJ00223B]
[126]
Kanto, J.H. Midazolam: the first water-soluble benzodiazepine. Pharmacology, pharmacokinetics and efficacy in insomnia and anesthesia. Pharmacotherapy, 1985, 5(3), 138-155.
[http://dx.doi.org/10.1002/j.1875-9114.1985.tb03411.x] [PMID: 3161005]
[127]
Wood, A.J.J.; Shader, R.I.; Greenblatt, D.J. Use of benzodiazepines in anxiety disorders. N. Engl. J. Med., 1993, 328(19), 1398-1405.
[http://dx.doi.org/10.1056/NEJM199305133281907] [PMID: 8292115]
[128]
De Sarro, G.; Ferreri, G.; Gareri, P.; Russo, E.; De Sarro, A.; Gitto, R.; Chimirri, A. Comparative anticonvulsant activity of some 2,3-benzodiazepine derivatives in rodents. Pharmacol. Biochem. Behav., 2003, 74(3), 595-602.
[http://dx.doi.org/10.1016/S0091-3057(02)01040-7] [PMID: 12543224]
[129]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22(1), 1-7.
[http://dx.doi.org/10.1021/jm00187a001] [PMID: 34039]
[130]
Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 2013, 54(16), 2055-2059.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.123]
[131]
Safari, J.; Zarnegar, Z. A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. J. Mol. Catal. Chem., 2013, 379, 269-276.
[http://dx.doi.org/10.1016/j.molcata.2013.08.028]
[132]
Gawande, M.B.; Bonifácio, V.D.B.; Varma, R.S.; Nogueira, I.D.; Bundaleski, N.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst-applications in multicomponent reactions under benign conditions. Green Chem., 2013, 15(5), 1226.
[http://dx.doi.org/10.1039/c3gc40375k]
[133]
Maleki, A.; Kamalzare, M.; Aghaei, M. Efficient one-pot four-component synthesis of 1,4-dihydropyridines promoted by magnetite/chitosan as a magnetically recyclable heterogeneous nanocatalyst. J. Nanostructure Chem., 2015, 5(1), 95-105.
[http://dx.doi.org/10.1007/s40097-014-0140-z]
[134]
Li, B.L.; Zhang, M.; Hu, H.C.; Du, X.; Zhang, Z.H. Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles. New J. Chem., 2014, 38(6), 2435.
[http://dx.doi.org/10.1039/c3nj01368e]
[135]
Moghaddam, F.M.; Koushki Foroushani, B.; Rezvani, H.R. Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles. RSC Advances, 2015, 5(23), 18092-18096.
[http://dx.doi.org/10.1039/C4RA09348H]
[136]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Heidari-Baghbahadorani, E. Znfe2o4 nanoparticles as a robust and reusable magnetically catalyst in the four component synthesis of [(5-hydroxy-3-methyl-1h-pyrazol-4yl) (phenyl) methyl]propanedinitriles and substituted 6-amino-pyrano[2,3-c]pyrazoles. J. Chem. Res., 2015, 39(7), 410-413.
[http://dx.doi.org/10.3184/174751915X14358475706316]
[137]
Ganta, R.K.; Ramgopal, A.; Ramesh, C.; Babu, K.R.; Krishna Kumar, M.M.; Rao, B.V. Four-component, one-pot synthesis of spiropyrazolo pyrimidine derivatives by using recyclable nanocopper ferrite catalyst and antibacterial studies. Synth. Commun., 2016, 46(24), 1999-2008.
[http://dx.doi.org/10.1080/00397911.2016.1244271]
[138]
Aleem Ali El-Remaily, M.A.E.; Abu-Dief, A.M.; El-Khatib, R.M. A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organomet. Chem., 2016, 30(12), 1022-1029.
[http://dx.doi.org/10.1002/aoc.3536]
[139]
Marzouk, A.A.; Abu-Dief, A.M.; Abdelhamid, A.A. Hydrothermal preparation and characterization of ZnFe2O4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi-substituted imidazoles and study of their anti-inflammatory activity. Appl. Organomet. Chem., 2018, 32(1), e3794.
[http://dx.doi.org/10.1002/aoc.3794]
[140]
Hossaini, Z.; Noushin, A.; Valipour, P.; Ghazvini, M.; Rostam, M.H. reusable fe3o4/zno/mwcnts magnetic nanocomposites promoted synthesis of new naphthyridines. Polycycl. Aromat. Compd., 2020, 1-20.
[http://dx.doi.org/10.1080/10406638.2020.1852285]
[141]
Maleki, A.; Hajizadeh, Z.; Salehi, P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep., 2019, 9(1), 5552.
[http://dx.doi.org/10.1038/s41598-019-42126-9] [PMID: 30944394]
[142]
Azizi, S.; Soleymani, J.; Hasanzadeh, M. Iron oxide magnetic nanoparticles supported on amino propyl‐functionalized KCC‐1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl. Organomet. Chem., 2020, 34(3)
[http://dx.doi.org/10.1002/aoc.5440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy