Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Benzothiazole as a Promising Scaffold for the Development of Antifungal Agents

Author(s): Christophe Tratrat*

Volume 23, Issue 7, 2023

Published on: 01 March, 2023

Page: [491 - 519] Pages: 29

DOI: 10.2174/1568026623666230124152429

Price: $65

Abstract

Despite great efforts in the discovery of antifungal drugs in the last two decades, the increasing incidence of infectious diseases from diverse pathogenic fungi threatens public healthcare and medical sector. Particularly, the invasive infection caused by the yeast Candida Albicans in immunocompromised patients has been widely reported with 25-55% of mortality rate. The major concerns faced by the use of current antifungal agents are the development of fungal resistance, side effects, toxicity, narrow spectrum of fungal activity, and constraints in the route of administration. However, among the four known classes of antifungal drugs currently used in therapy against invasive fungal infections, only one novel antifungal class has been approved by the FDA in 2021 for medical use. In addition, two derivatives with the identification of their corresponding novel molecular targets are currently in the last phase of clinical trial. In this context, the discovery of novel compounds with potential antifungal activity needs to be explored urgently in order to address these concerns. Among various heterocycles, benzothiazole presents a privileged scaffold for developing bio-active compounds with a broad spectrum of pharmacological activities. Many derivatives incorporating the benzothiazole core have been reported to display prominent activity against a variety of non-resistant and resistant fungal microorganisms and have been found to be very attractive for the development of novel antifungal agents. Therefore, in this review, the latest advances in the discovery of benzothiazole-containing antifungal agents are summarized with an emphasis on their spectrum of activity and their structure-activity relationship. We hope that this study will provide researchers structural insight into antifungal molecules for the development of the next generation of antifungal drugs.

Next »
Graphical Abstract

[1]
Abbas, A.A.; Abdellattif, M.H.; Dawood, K.M. Inhibitory activities of bipyrazoles: a patent review. Expert Opin. Ther. Pat., 2022, 32(1), 63-87.
[http://dx.doi.org/10.1080/13543776.2021.1953474] [PMID: 34232805]
[2]
Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-resistant fungi: an emerging challenge threatening our limited antifungal armamentarium. Antibiotics (Basel), 2020, 9(12), 877.
[http://dx.doi.org/10.3390/antibiotics9120877] [PMID: 33302565]
[3]
Wall, G.; Lopez-Ribot, J.L. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics (Basel), 2020, 9(8), 445.
[http://dx.doi.org/10.3390/antibiotics9080445] [PMID: 32722455]
[4]
Tratrat, C. 1, 2, 4-triazole: a privileged scaffold for the development of potent antifungal agents-a brief review. Curr. Top. Med. Chem., 2020, 20(24), 2235-2258.
[http://dx.doi.org/10.2174/1568026620666200704140107] [PMID: 32621720]
[5]
Denning, D.W. Echinocandin antifungal drugs. Lancet, 2003, 362(9390), 1142-1151.
[http://dx.doi.org/10.1016/S0140-6736(03)14472-8] [PMID: 14550704]
[6]
Armstrong-James, D.; Meintjes, G.; Brown, G.D. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol., 2014, 22(3), 120-127.
[http://dx.doi.org/10.1016/j.tim.2014.01.001] [PMID: 24530175]
[7]
Perfect, J.R. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[8]
Shaw, K.J.; Ibrahim, A.S. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi (Basel), 2020, 6(4), 239.
[http://dx.doi.org/10.3390/jof6040239] [PMID: 33105672]
[9]
Wiederhold, N.P. Review of the novel investigational antifungal olorofim. J. Fungi (Basel), 2020, 6(3), 122.
[http://dx.doi.org/10.3390/jof6030122] [PMID: 32751765]
[10]
Chaudhuri, S.; Ghosh, A.; Chattopadhyay, S.K. Green synthetic approaches for medium ring-sized heterocycles of biological and pharmaceutical interest. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021; 2, pp. 617-653.
[http://dx.doi.org/10.1016/B978-0-12-820792-5.00004-4]
[11]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[12]
Haroun, M.; Petrou, A.; Tratrat, C.; Kositsi, K.; Gavalas, A.; Geronikaki, A.; Venugopala, K.N.; Sreeharsha, N. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR QSAR Environ. Res., 2022, 33(6), 485-497.
[http://dx.doi.org/10.1080/1062936X.2022.2084772] [PMID: 35703013]
[13]
Doğruer, D.S.; Ünlü, S.; Şahin, M.F.; Yqilada, E. Anti-nociceptive and anti-inflammatory activity of some (2-benzoxazolone-3-yl and 2-benzothiazolone-3-yl) acetic acid derivatives. Farmaco, 1998, 53(1), 80-84.
[http://dx.doi.org/10.1016/S0014-827X(97)00017-7] [PMID: 9543729]
[14]
Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ciric, A.; Sokovic, M. 2-Aryl-3-(6-trifluoromethoxy)benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2021, 32, 127718.
[http://dx.doi.org/10.1016/j.bmcl.2020.127718] [PMID: 33253880]
[15]
Haroun, M.; Tratrat, C.; Kositzi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[16]
Tratrat, C. Novel thiazole-based thiazolidinones as potent anti-infective Agents: In silico PASS and toxicity prediction, synthesis, biological evaluation and molecular modelling. Comb. Chem. High Throughput Screen., 2020, 23(2), 126-140.
[http://dx.doi.org/10.2174/1386207323666200127115238] [PMID: 31985370]
[17]
Herrera Cano, N.; Ballari, M.S.; López, A.G.; Santiago, A.N. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J. Agric. Food Chem., 2015, 63(14), 3681-3686.
[http://dx.doi.org/10.1021/acs.jafc.5b00150] [PMID: 25797910]
[18]
Liu, Y.; Wang, Y.; Dong, G.; Zhang, Y.; Wu, S.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure-activity relationships. MedChemComm, 2013, 4(12), 1551-1561.
[http://dx.doi.org/10.1039/c3md00215b]
[19]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035] [PMID: 29697293]
[20]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Bhandary, S.; Kandeel, M.; Mahomoodally, F.M.; Morsy, M.A.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K.; Odhav, B. Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: In-silico screening for possible target identification. Med. Chem., 2019, 15(3), 311-326.
[http://dx.doi.org/10.2174/1573406414666180703121815] [PMID: 29968540]
[21]
Moodley, R.; Mashaba, C.; Rakodi, G.; Ncube, N.; Maphoru, M.; Balogun, M.; Jordan, A.; Warner, D.; Khan, R.; Tukulula, M. New Quinoline-Urea-Benzothiazole hybrids as promising antitubercular agents: synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling. Pharmaceuticals (Basel), 2022, 15(5), 576.
[http://dx.doi.org/10.3390/ph15050576] [PMID: 35631402]
[22]
Ke, S.; Wei, Y.; Yang, Z.; Wang, K.; Liang, Y.; Shi, L. Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg. Med. Chem. Lett., 2013, 23(18), 5131-5134.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.023] [PMID: 23920438]
[23]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[24]
Nagarajan, S.R.; De Crescenzo, G.A.; Getman, D.P.; Lu, H.F.; Sikorski, J.A.; Walker, J.L.; McDonald, J.J.; Houseman, K.A.; Kocan, G.P.; Kishore, N.; Mehta, P.P.; Funkes-Shippy, C.L.; Blystone, L. Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg. Med. Chem., 2003, 11(22), 4769-4777.
[http://dx.doi.org/10.1016/j.bmc.2003.07.001] [PMID: 14556792]
[25]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H.; Lam, K.H.; Cheng, C.H.; Lai, P.B.; Yu, M.W.; Cheung, F.; Tang, J.C.; Chan, A.S. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005] [PMID: 18295491]
[26]
Huang, S.T.; Hsei, I.J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg. Med. Chem., 2006, 14(17), 6106-6119.
[http://dx.doi.org/10.1016/j.bmc.2006.05.007] [PMID: 16714116]
[27]
Ismail, M.A.H.; Tratrat, C.; Haroun, M.G. Molecular modelling design, synthesis and cytotoxic evaluation of certain substituted 2-(3,4,5-triacetoxybenzoylamino)benzo[d]thiazole and 2-(galloylami] no)benzo[ d]thiazole derivatives having potential topoisomerase-I inhibitory activity. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1331-1345.
[http://dx.doi.org/10.3109/14756366.2012.716835] [PMID: 22957723]
[28]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[29]
Su, X.; Vicker, N.; Ganeshapillai, D.; Smith, A.; Purohit, A.; Reed, M.J.; Potter, B.V.L. Benzothiazole derivatives as novel inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. Mol. Cell. Endocrinol., 2006, 248(1-2), 214-217.
[http://dx.doi.org/10.1016/j.mce.2005.10.022] [PMID: 16325333]
[30]
Moreno-Díaz, H.; Villalobos-Molina, R.; Ortiz-Andrade, R.; Díaz-Coutiño, D.; Medina-Franco, J.L.; Webster, S.P.; Binnie, M.; Estrada-Soto, S.; Ibarra-Barajas, M.; León-Rivera, I.; Navarrete-Vázquez, G. Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl)benzenesulfonamides. Bioorg. Med. Chem. Lett., 2008, 18(9), 2871-2877.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.086] [PMID: 18424136]
[31]
Haroun, M. Novel hybrids of pyrazolidinedione and benzothiazole as TZD analogues. rationale design, synthesis and in vivo anti-diabetic evaluation. Med. Chem., 2019, 15(6), 624-633.
[http://dx.doi.org/10.2174/1573406415666190515093657] [PMID: 31113352]
[32]
Haroun, M. In silico design, synthesis and evaluation of novel series of benzothiazole- based pyrazolidinediones as potent hypoglycemic agents. Med. Chem., 2020, 16(6), 812-825.
[http://dx.doi.org/10.2174/1573406416666191227113716] [PMID: 31880249]
[33]
Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.C.; Boireau, A.; Bour, Y.; Coléno, M.A.; Doble, A.; Doerflinger, G.; Do Huu, C.; Donat, M.H.; Duchesne, J.M.; Ganil, P.; Guérémy, C.; Honoré, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P.M.; Le Blevec, J.; Meunier, M.; Miquet, J.M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J.M.; Mignani, S. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem., 1999, 42(15), 2828-2843.
[http://dx.doi.org/10.1021/jm980202u] [PMID: 10425092]
[34]
Benazzouz, A.; Boraud, T.; Dubédat, P.; Boireau, A.; Stutzmann, J.M.; Gross, C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur. J. Pharmacol., 1995, 284(3), 299-307.
[http://dx.doi.org/10.1016/0014-2999(95)00362-O] [PMID: 8666012]
[35]
Neres, J.; Brewer, M.L.; Ratier, L.; Botti, H.; Buschiazzo, A.; Edwards, P.N.; Mortenson, P.N.; Charlton, M.H.; Alzari, P.M.; Frasch, A.C.; Bryce, R.A.; Douglas, K.T. Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorg. Med. Chem. Lett., 2009, 19(3), 589-596.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.065] [PMID: 19144516]
[36]
Sreenivasa, G.; Jayachandran, E.; Shivakumar, B.; Jayaraj, K.; Vijay, K. Synthesis of bioactive molecule fluoro benzothiazole comprising potent heterocyclic moieties for anthelmintic activity. Arch. Pharm. Sci. Res, 2009, 1, 150-157.
[37]
Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 2020, 25(7), 1675.
[http://dx.doi.org/10.3390/molecules25071675] [PMID: 32260500]
[38]
Luo, B.; Li, D.; Zhang, A.L.; Gao, J.M. Synthesis, antifungal activities and molecular docking studies of Benzoxazole and Benzothiazole Derivatives. Molecules, 2018, 23(10), 2457.
[http://dx.doi.org/10.3390/molecules23102457] [PMID: 30257495]
[39]
Ebara, S.; Naito, H.; Nakazawa, K.; Ishii, F.; Nakamura, M. FTR1335 is a novel synthetic inhibitor of Candida albicans N-myristoyltransferase with fungicidal activity. Biol. Pharm. Bull., 2005, 28(4), 591-595.
[http://dx.doi.org/10.1248/bpb.28.591] [PMID: 15802792]
[40]
Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S.B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab. J. Chem., 2016, 9(5), 681-687.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.003]
[41]
Gupta, A. Synthesis of novel methoxy substituted benzothiazole derivatives and antifungal activity against Aspergillus niger. J. Glob. Pharma Technol., 2018, 10, 1-6.
[42]
Gupta, A. Antifungal activity of novel C-6 Methyl Substituted Benzothiazole Derivatives against Candida albicans. J. Cosmetol. Trichol., 2018, 4(2), 2.
[http://dx.doi.org/10.4172/2471-9323.1000134]
[43]
Sharma, P.C.; Padwal, S.; Saini, A.; Bansal, K. Synthesis, characterization and antimicrobial evaluation of benzimidazole clubbed benzothiazole derivatives. Chem. Biol. Lett., 2017, 4, 63-68.
[44]
Kumbhare, M.R.; Nagragu, C. Synthesis and study of the antimicrobial activity of novel tricyclic 2 hpyrimido [2,1-b]benzothiazoles. Lett. Drug Des. Discov., 2011, 8, 633-639.
[http://dx.doi.org/10.2174/157018011796235211]
[45]
Nehra, N.; Tittal, R.K.; Ghule Vikas, D.; Naveen; Lal, K. Synthesis, antifungal studies, molecular docking, ADME and DNA interaction studies of 4-hydroxyphenyl benzothiazole linked 1,2,3-triazoles. J. Mol. Struct., 2021, 1245, 131013.
[http://dx.doi.org/10.1016/j.molstruc.2021.131013]
[46]
Catalano, A.; Carocci, A.; Defrenza, I.; Muraglia, M.; Carrieri, A.; Van Bambeke, F.; Rosato, A.; Corbo, F.; Franchini, C. 2-Aminobenzothiazole derivatives: Search for new antifungal agents. Eur. J. Med. Chem., 2013, 64, 357-364.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.064] [PMID: 23644218]
[47]
Defrenza, I.; Catalano, A.; Carocci, A.; Carrieri, A.; Muraglia, M.; Rosato, A.; Corbo, F.; Franchini, C. 1,3-Benzothiazoles as antimicrobial agents. J. Heterocycl. Chem., 2015, 52(6), 1705-1712.
[http://dx.doi.org/10.1002/jhet.2222]
[48]
Osmaniye, D.; Saglık, B.N. Synthesis and characterization of new series benzothiazole-dithiocarbamate derivatives as potential antifungal agents. DEÜ FMD, 2022, 24(70), 105-110.
[49]
Toshniwal, M.; Bundel, M.; Ravikant; Pareek, A. Antifungal activity of synthesized benzothiazole derivatives using structure activity relationship. Asian J. Chem., 2019, 31(8), 1885-1888.
[http://dx.doi.org/10.14233/ajchem.2019.21858]
[50]
Jagadish, P.; Soni, N.; Verma, A. Design, synthesis, and in vitro antioxidant activity of 1, 3, 5-trisubstituted-2-pyrazolines derivatives. J. Chem., 2013, 2013, 6.
[51]
Verma, A. Lead finding from Phyllanthus debelis with hepatoprotective potentials. Asian Pac. J. Trop. Biomed., 2012, 2(3), S1735-S1737.
[http://dx.doi.org/10.1016/S2221-1691(12)60486-9]
[52]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[53]
Balakrishnan, N.; Raj, J.S.; Kandakatla, N. In silico studies on new indazole derivatives as gsk-3 β inhibitors. Int. J. Pharm. Pharm. Sci., 2015, 7, 295-299.
[54]
Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics (Basel), 2020, 9(5), 221.
[http://dx.doi.org/10.3390/antibiotics9050221] [PMID: 32365587]
[55]
Djuidje, E.N.; Barbari, R.; Baldisserotto, A.; Durini, E.; Sciabica, S.; Balzarini, J.; Liekens, S.; Vertuani, S.; Manfredini, S. Benzothiazole derivatives as multifunctional antioxidant agents for skin damage: structure-activity relationship of a scaffold bearing a five-membered ring system. Antioxidants, 2022, 11(2), 407.
[http://dx.doi.org/10.3390/antiox11020407] [PMID: 35204288]
[56]
Parle, A.; Amin, S. Synthesis, characterization and evaluation of novel 2-aryl benzothiazole derivatives as potential antifungal agents. Int. J. Pharm. Sci. Res., 2018, 9, 4332-4337.
[57]
Yurttaş, L.; Kaplancıklı, Z.A.; Göger, G.; Demirci, F. Synthesis and anticandidal evaluation of new benzothiazole derivatives with hydrazone moiety. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 714-720.
[http://dx.doi.org/10.3109/14756366.2015.1060481] [PMID: 26247354]
[58]
Ballari, M.S.; Herrera Cano, N.; Wunderlin, D.A.; Feresin, G.E.; Santiago, A.N. One-pot sequential synthesis and antifungal activity of 2-(benzylsulfonyl)benzothiazole derivatives. RSC Advances, 2019, 9(50), 29405-29413.
[http://dx.doi.org/10.1039/C9RA04488D]
[59]
Chazin, E.L.; Terra, L.; Moor, L.; Sanches, P.; Pinto, L.; Martins, T.; de Souza, M.; Gomes, C.; Montenegro, R.; Novais, J. 1, 3-Benzoxathiol-2-one and 1, 3-Benzothiazole compounds as potential anticancer and antimicrobial agents. Rev. Virtual Quím., 2020, 12, 1586-1598.
[http://dx.doi.org/10.21577/1984-6835.20200125]
[60]
Pawar, S.J.; Kale, A.; Zori, P.; Dorugade, R. Synthesis, molecular docking and antimicrobial evaluation of some benzothiazoles. Res. Square, 2021, 2021, 1-26.
[http://dx.doi.org/10.21203/rs.3.rs-225494/v1]
[61]
Zhao, S.; Zhao, L.; Zhang, X.; Liu, C.; Hao, C.; Xie, H.; Sun, B.; Zhao, D.; Cheng, M. Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents. Eur. J. Med. Chem., 2016, 123, 514-522.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.067] [PMID: 27494168]
[62]
Bepary, S.; Biswas, B.K.; Ghosh, P.; Haque, M.A.; De, T.Q. N-acetylation of 2-aminobenzothiazoles with acetic acid for evaluation of antifungal activity and in silico analysis. J. Mol. Dock., 2021, 1(2), 78-83.
[http://dx.doi.org/10.33084/jmd.v1i2.3142]
[63]
Osmaniye, D.; Levent, S.; Karaduman, A.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z. Synthesis of new benzothiazole acylhydrazones as anticancer agents. Molecules, 2018, 23(5), 1054.
[http://dx.doi.org/10.3390/molecules23051054] [PMID: 29724002]
[64]
Osmaniye, D.; Saglik, B.N.; Cevik, U.A.; Mustafa, E. Evaluation of antifungal activity of some benzothiazole derivatives. Kocatepe Vet. J., 2019, 12, 407-412.
[65]
Mirjalili, B.; Kabnadideh, S.; Zomorodian, K.; Zamani, L.; Faghih, M.; Haghighijoo, Z.; Kananizadehgan, S. Synthesis, Docking study and antifungal activity evaluation of some 1,3-benzo[d]thiazole analogs: A promotion in synthetic method with Nano-γ-Al2O3/BF3-n under solvent free conditions. J. Pharm. Res. Int., 2017, 19(2), 1-26.
[http://dx.doi.org/10.9734/JPRI/2017/35831]
[66]
Maliyappa, M.R.; Keshavayya, J.; Nazrulla, M.A.; Sudhanva, M.S.; Rangappa, S. Six-substituted benzothiazole based dispersed Azo dyes having antipyrine moiety: synthesis, characterization, DFT, antimicrobial, anticancer and molecular docking studies. J. Indian Chem. Soc., 2022, 19(9), 3815-3835.
[http://dx.doi.org/10.1007/s13738-022-02569-w]
[67]
Yao, J.; Liu, H.; Zhou, T.; Chen, H.; Miao, Z.; Sheng, C.; Zhang, W. Total synthesis and structure-activity relationships of new echinocandin-like antifungal cyclolipohexapeptides. Eur. J. Med. Chem., 2012, 50, 196-208.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.054] [PMID: 22348827]
[68]
Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Ahsan, M.J. Design, synthesis and biological evaluation of benzothiazole-thiophene hybrids: A new class of potent antimicrobial agents. Antiinfect. Agents, 2018, 16(1), 57-63.
[http://dx.doi.org/10.2174/2211352515666171124155327]
[69]
Alang, G.; Kaur, R.; Singh, A.; Budhlakoti, P.; Singh, A.; Sanwal, R. Synthesis, characterization and antifungal activity of certain (E)-1-(1-(substitutedphenyl) ethylidene)-2-(6-methylbenzo [d] thiazol-2-yl) hydrazine analogues. Int. J. Pharm. Biol. Arch., 2010, 1, 56-61.
[70]
Sarkar, S.; Pasha, T.; Shivakumar, B.; Chimkode, R. Synthesis of benzothiazole derivatives and study of their antifungal activities. Orient. J. Chem., 2008, 24, 705.
[71]
Kukreja, S.; Sidhu, A.; Sharma, V.K. Synthesis of novel 7-fluoro-3-substituted-1,2,4-triazolo[3,4-b]benzothiazoles (FTBs) as potent antifungal agents: molecular docking and in silico evaluation. Res. Chem. Intermed., 2016, 42(12), 8329-8344.
[http://dx.doi.org/10.1007/s11164-016-2599-3]
[72]
Malunavar, S.S.; Prabhala, P.; Sutar, S.M.; Kapavarapu, R.; Mittal, M.K.; Kalkhambkar, R.G. Molecular modeling and in vitro antimicrobial evaluation of some 2-aryl-benzoxazoles/benzothiazole analogues containing alkyl, alkenyl and alkynyl linkages. Chem. Data Collect., 2022, 39, 100876.
[http://dx.doi.org/10.1016/j.cdc.2022.100876]
[73]
Gilani, S.J.; Nagarajan, K.; Dixit, S.P.; Taleuzzaman, M.; Khan, S.A. Benzothiazole incorporated thiazolidin-4-ones and azetidin-2-ones derivatives: Synthesis and in vitro antimicrobial evaluation. Arab. J. Chem., 2016, 9, S1523-S1531.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.004]
[74]
Maddili, S.K.; Li, Z.Z.; Kannekanti, V.K.; Bheemanaboina, R.R.Y.; Tuniki, B.; Tangadanchu, V.K.R.; Zhou, C.H. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg. Med. Chem. Lett., 2018, 28(14), 2426-2431.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.016] [PMID: 29929884]
[75]
Fadda, A.A.; Soliman, N.N.; Fekri, A. Convenient route synthesis of some new benzothiazole derivatives and their pharmacological screening as antimicrobial agents. Ann. Adv. Chem., 2017, 1(1), 032-046.
[http://dx.doi.org/10.29328/journal.aac.1001004]
[76]
Bondock, S.; Khalifa, W.; Fadda, A.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde. Eur. J. Med. Chem., 2007, 42(7), 948-954.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.025] [PMID: 17316908]
[77]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[78]
Seenaiah, D.; Reddy, P.R.; Reddy, G.M.; Padmaja, A.; Padmavathi, V. Siva krishna, N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur. J. Med. Chem., 2014, 77, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[79]
Nehra, N.; Tittal, R.K.; Ghule, V.D. 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and Studies (DNA Binding, Antimicrobial, Molecular Docking, ADME, and DFT). ACS Omega, 2021, 6(41), 27089-27100.
[http://dx.doi.org/10.1021/acsomega.1c03668] [PMID: 34693129]
[80]
Can, N.Ö.; Acar Çevik, U.; Sağlık, B.N.; Levent, S.; Korkut, B.; Özkay, Y.; Kaplancıklı, Z.A.; Koparal, A.S. Synthesis, molecular docking studies, and antifungal activity evaluation of new benzimidazole-triazoles as potential lanosterol 14α-demethylase inhibitors. J. Chem., 2017, 2017, 9387102.
[81]
Sidhu, A.; Ghatelwal, S.R.; Gumber, K.; Bala, A. Augmented antifungal potential of benzothiazol-2-ylcarbamodithioates as hybrid-silver aqua nanoformulations. Appl. Nanosci., 2017, 7(8), 617-623.
[http://dx.doi.org/10.1007/s13204-017-0600-0]
[82]
Ghatelwal, S.R.; Sidhu, A.; Gumber, K.; Sharma, V.K. Solid phase symthesis of benzo[d]thiazol-2-ylcarbamodithioates and their evaluation as potential antifungals. Int. Res. J. Chem., 2017, 18, 30-37.
[83]
Sai Priya, D.; Kini, S.G.; Bhatt, V.G.; Rathi, E.; Muralidharan, A.; Koteshwara, A. Novel schiff’s bases of substituted 2-amino benzothiazoles: Design, synthesis and antimicrobial activity. Indian Drugs, 2018, 55(4), 18-26.
[http://dx.doi.org/10.53879/id.55.04.11219]
[84]
Sidhu, A.; Sharma, P.; Gumber, K.; Sharma, V.K. Synthesis and antifungal evaluation of benzothiazol-2-ylcarbamodithioates against covered smut and loose smut infections in barley and wheat. Plant Dis. Res., 2016, 31, 114-116.
[85]
Padalkar, V.S.; Borse, B.N.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Sekar, N. Synthesis and antimicrobial activities of novel 2-[substituted-1 H -pyrazol-4-yl] benzothiazoles, benzoxazoles, and benzimidazoles. J. Heterocycl. Chem., 2016, 53(5), 1347-1355.
[http://dx.doi.org/10.1002/jhet.1506]
[86]
Kumar, P.; Bhatia, R.; Khanna, R.; Dalal, A.; Kumar, D.; Surain, P.; Kamboj, R.C. Synthesis of some benzothiazoles by developing a new protocol using urea nitrate as a catalyst and their antimicrobial activities. J. Sulfur Chem., 2017, 38, 1-12.
[http://dx.doi.org/10.1080/17415993.2017.1334781]
[87]
Rezki, N.; Aouad, M.R. Green ultrasound-assisted three-component click synthesis of novel 1 H -1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation. Acta Pharm., 2017, 67(3), 309-324.
[http://dx.doi.org/10.1515/acph-2017-0024] [PMID: 28858836]
[88]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[89]
Varaldo, P.E. Antimicrobial resistance and susceptibility testing: an evergreen topic. J. Antimicrob. Chemother., 2002, 50(1), 1-4.
[http://dx.doi.org/10.1093/jac/dkf093] [PMID: 12095999]
[90]
Zbancioc, G.; Mangalagiu, I.I.; Moldoveanu, C. Ultrasound assisted synthesis of imidazolium salts: An efficient way to ionic liquids. Ultrason. Sonochem., 2015, 23, 376-384.
[http://dx.doi.org/10.1016/j.ultsonch.2014.10.028] [PMID: 25465880]
[91]
Groll, A.H.; Lumb, J. New developments in invasive fungal disease. Future Microbiol., 2012, 7(2), 179-184.
[http://dx.doi.org/10.2217/fmb.11.154] [PMID: 22324986]
[92]
Kennedy, J.; Thorley, M.; Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical substances; New York, 1999.
[93]
Zablotskaya, A.; Segal, I.; Geronikaki, A.; Eremkina, T.; Belyakov, S.; Petrova, M.; Shestakova, I.; Zvejniece, L.; Nikolajeva, V. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanami-des. Eur. J. Med. Chem., 2013, 70, 846-856.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.008] [PMID: 24262377]
[94]
Ahlawat, A.; Khatkar, P.; Singh, V.; Asija, S. Diorganotin(IV) complexes of Schiff bases derived from salicylaldehyde and 2-amino-6-substituted benzothiazoles: synthesis, spectral studies, in vitro antimicrobial evaluation and QSAR studies. Res. Chem. Intermed., 2018, 44(7), 4415-4435.
[http://dx.doi.org/10.1007/s11164-018-3395-z]
[95]
Devi, J.; Devi, S.; Kumar, A. Synthesis, spectral, and in vitro antimicrobial studies of organosilicon(IV) complexes with Schiff bases derived from dehydroacetic acid. Monatsh. Chem., 2016, 147(12), 2195-2207.
[http://dx.doi.org/10.1007/s00706-016-1720-z]
[96]
Dias, L.C.; de Lima, G.M.; Takahashi, J.A.; Ardisson, J.D. New di- and triorganotin(IV) carboxylates derived from a Schiff base: synthesis, characterization and in vitro antimicrobial activities. Appl. Organomet. Chem., 2015, 29(5), 305-313.
[http://dx.doi.org/10.1002/aoc.3292]
[97]
Czympiel, L.; Lekeu, J.M.; Hegemann, C.; Mathur, S. Oxidative halogenation of Sn(II)heteroaryl alkenolates: Formation of unusual trans -dihalo Sn(IV) complexes. Inorg. Chim. Acta, 2017, 455, 197-203.
[http://dx.doi.org/10.1016/j.ica.2016.10.023]
[98]
Pal, N.; Arya, A.K. An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities. Res. Chem. Intermed., 2013, 39(2), 553-560.
[http://dx.doi.org/10.1007/s11164-012-0578-x]
[99]
Kyhoiesh, H.A.K.; Al-Adilee, K.J. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. Chem. Zvesti, 2022, 76(5), 2777-2810.
[http://dx.doi.org/10.1007/s11696-022-02072-9]
[100]
Tweedy, B. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology, 1964, 55, 910-914.
[101]
Noreen, S.; Sumrra, S.H. Aminothiazole-linked metal chelates: Synthesis, density functional theory, and antimicrobial studies with antioxidant correlations. ACS Omega, 2021, 6(48), 33085-33099.
[http://dx.doi.org/10.1021/acsomega.1c05290] [PMID: 34901660]
[102]
Mohapatra, R.K.; Sarangi, A.K.; Azam, M.; El-ajaily, M.M.; Kudrat-E-Zahan, M.; Patjoshi, S.B.; Dash, D.C. Synthesis, structural investigations, DFT, molecular docking and antifungal studies of transition metal complexes with benzothiazole based Schiff base ligands. J. Mol. Struct., 2019, 1179, 65-75.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy