Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Current Advances in Nanomaterial-associated Micro and Nano-devices for SARS-CoV-2 Detection

Author(s): Thikra S. Dhahi, Tijjani Adam*, Subash C.B. Gopinath, Uda Hashim, Aeshah M. Mohammed, Mohammed Mohammed and Muhammad N.A. Uda

Volume 19, Issue 6, 2023

Published on: 10 February, 2023

Page: [783 - 802] Pages: 20

DOI: 10.2174/1573413719666230124144535

Price: $65

Abstract

COVID-19 spread rapidly around the world in 18 months, with various forms of variants caused by severe acute respiratory syndrome (SARS-CoV). This has put pressure on the world community and created an urgent need for understanding its early occurrence through rapid, simple, cheap, and yet highly accurate diagnosis. The most widely adopted method as of today is the real-time reverse-transcriptase polymerase chain reaction. This test has shown the potential for rapid testing, but unfortunately, the test is not rapid and, in some cases, displays false negatives or false positives. The nanomaterials play an important role in creating highly sensitive systems, and have been thought to significantly improve the performance of the SARSCoV- 2 protocols. Several biosensors based on micro-and nano-sensors for SARS-CoV-2 detection have been reported, and they employ multi-dimensional hybrids on sensing surfaces with devices having different sizes and geometries. Zero-to-three-dimension nanomaterial hybrids on sensing surfaces, including nanofilm hybrids for SARS-CoV-2 detection, were employed with unprecedented sensitivity and accuracy. Furthermore, the sensors were nanofluidic and mediated high-performance SARS-CoV-2 detection. This breakthrough has brought the possibility of making a biosystem on a chip (Bio-SoC) for rapid, cheap, and point-of-care detection. This review summarises various advancements in nanomaterial-associated nanodevices and metasurface devices for detecting SARS-CoV-2.

[1]
Radamson, H.H.; He, X.; Zhang, Q.; Liu, J.; Cui, H.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Gao, J.; Yang, H.; Gu, S.; Zhao, X.; Du, Y.; Yu, J.; Wang, G. Miniaturization of CMOS. Micromachines (Basel), 2019, 10(5), 293.
[http://dx.doi.org/10.3390/mi10050293] [PMID: 31052223]
[2]
Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Cui, H.; Gao, J.; Yang, H.; Du, Y.; Xu, B.; Li, B.; Zhao, X.; Yu, J.; Dong, Y.; Wang, G. State of the art and future perspectives in advanced CMOS technology. Nanomaterials (Basel), 2020, 10(8), 1555.
[http://dx.doi.org/10.3390/nano10081555] [PMID: 32784801]
[3]
Li, Y.; Zhu, H.; Kong, Z.; Zhang, Y.; Ai, X.; Wang, G.; Wang, Q.; Liu, Z.; Lu, S.; Xie, L.; Huang, W.; Liu, Y.; Li, C.; Li, J.; Lin, H.; Su, J.; Zeng, C.; Radamson, H.H. The effect of doping on the digital etching of silicon-selective silicon-germanium using nitric acids. Nanomaterials (Basel), 2021, 11(5), 1209.
[http://dx.doi.org/10.3390/nano11051209] [PMID: 34063569]
[4]
Waltl, M. Reliability of miniaturized transistors from the perspective of single-defects. Micromachines (Basel), 2020, 11(8), 1-12.
[http://dx.doi.org/10.3390/mi11080736] [PMID: 32751280]
[5]
Pishva, P.; Yüce, M. Nanomaterials to tackle the COVID-19 pandemic. Emergent Mater., 2021, 4, 211-229.
[http://dx.doi.org/10.1007/s42247-021-00184-8]
[6]
Behera, S.; Rana, G.; Satapathy, S.; Mohanty, M.; Pradhan, S.; Panda, M.K.; Ningthoujam, R.; Hazarika, B.N.; Singh, Y.D. Biosensors in diagnosing COVID-19 and recent development. Sensors International, 2020, 1, 100054.
[http://dx.doi.org/10.1016/j.sintl.2020.100054]
[7]
He, B-S.; Zhang, J-X. Rapid detection of ascorbic acid based on a dual-electrode sensor system using a powder microelectrode embedded with carboxyl multi-walled carbon nanotubes. Sensors (Basel), 2017, 17(7), 1549.
[http://dx.doi.org/10.3390/s17071549] [PMID: 28671599]
[8]
Zhang, Y.; Figueroa-Miranda, G.; Wu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale, 2020, 12(31), 16501-16513.
[http://dx.doi.org/10.1039/D0NR03421E] [PMID: 32729601]
[9]
Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS electrochemical instrumentation for biosensor microsystems: A review. Sensors, 2017, 17(1), 74.
[http://dx.doi.org/10.3390/s17010074]
[10]
Rashed, M.Z.; Kopechek, J.A.; Priddy, M.C.; Hamorsky, K.T.; Palmer, K.E.; Mittal, N.; Valdez, J.; Flynn, J.; Williams, S.J. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens. Bioelectron., 2021, 171, 112709.
[http://dx.doi.org/10.1016/j.bios.2020.112709] [PMID: 33075724]
[11]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S-H.; Choi, M.; Ku, K.B.; Lee, C-S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S-J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[12]
DomBourian. M.G.; Annen, K.; Huey, L.; Andersen, G.; Merkel, P.A.; Jung, S.; Dominguez, S.R.; Knight, V. Analysis of COVID-19 convalescent plasma for SARS-CoV-2 IgG using two commercial immunoassays. J. Immunol. Methods, 2020, 486, 112837.
[http://dx.doi.org/10.1016/j.jim.2020.112837]
[13]
Jin, H.; Sun, Y.; Sun, Z.; Yang, M.; Gui, R. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications. Coord. Chem. Rev., 2021, 438, 213913.
[http://dx.doi.org/10.1016/j.ccr.2021.213913]
[14]
Ali, M.E.; Hashim, U.; Mustafa, S.; Che Man Y.B.; Adam, T.; Humayun, Q. Nanobiosensor for the detection and quantification of pork adulteration in meatball formulation. J. Exp. Nanosci., 2014, 9(2), 152-160.
[http://dx.doi.org/10.1080/17458080.2011.640946]
[15]
Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y.; Yao, H.; Li, N.; Zhao, H.; Feng, Y.; Liu, S.; Zhang, Q.; Liu, D. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin. Microbiol. Infect., 2020, 26, 773-779.
[16]
Harun-Ur-Rashid, M.; Foyez, T.; Jahan, I.; Pal, K.; Imran, A.B. Rapid diagnosis of COVID-19 via nano-biosensorimplemented biomedical utilization: A systematic review. RSC Advances, 2022, 12, 9445-9465.
[http://dx.doi.org/10.1039/D2RA01293F]
[17]
Srivastava, M.; Srivastava, N.; Mishra, P.K.; Malhotra, B.D. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci. Total Environ., 2021, 754, 142363.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142363] [PMID: 33254928]
[18]
Alhalaili, B.; Popescu, I.N.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the detection of novel coronavirus 2019-nCoV and other pandemic/epidemic respiratory viruses: A review. Sensors (Basel), 2020, 20(22), 6591.
[http://dx.doi.org/10.3390/s20226591] [PMID: 33218097]
[19]
Drobysh, M.; Ramanaviciene, A.; Viter, R.; Chen, C-F.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection. Int. J. Mol. Sci., 2022, 23(2), 666.
[http://dx.doi.org/10.3390/ijms23020666] [PMID: 35054850]
[20]
Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: Covid-19. ACS Nano, 2020, 14(7), 7783-7807.
[http://dx.doi.org/10.1021/acsnano.0c04421] [PMID: 32551559]
[21]
Adam, T.; Dhahi, T.S.; Gopinath, S.C.B.; Hashim, U.; Uda, M.N.A. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review. Biotechnol. Appl. Biochem., 2021, 1-23.
[http://dx.doi.org/10.1002/bab.2212] [PMID: 34143905]
[22]
Mavrikou, S.; Moschopoulou, G.; Tsekouras, V.; Kintzios, S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors (Basel), 2020, 20(11), 3121.
[http://dx.doi.org/10.3390/s20113121] [PMID: 32486477]
[23]
Palomar, Q.; Xu, X.; Gondran, C.; Holzinger, M.; Cosnier, S.; Zhang, Z. Voltammetric sensing of recombinant viral dengue virus 2 NS1 based on Au nanoparticle-decorated multiwalled carbon nanotube composites. Mikrochim. Acta, 2020, 187(6), 363.
[http://dx.doi.org/10.1007/s00604-020-04339-y] [PMID: 32488309]
[24]
Eissa, S.; Alhadrami, H.A.; Al-Mozaini, M.; Hassan, A.M.; Zourob, M. Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Mikrochim. Acta, 2021, 188(6), 199.
[http://dx.doi.org/10.1007/s00604-021-04867-1] [PMID: 34041585]
[25]
Eissa, S.; Zourob, M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal. Chem., 2021, 93(3), 1826-1833.
[http://dx.doi.org/10.1021/acs.analchem.0c04719] [PMID: 33370087]
[26]
Sheikhzadeh, E.; Eissa, S.; Ismail, A.; Zourob, M. Diagnostic techniques for COVID-19 and new developments. Talanta, 2020, 220, 121392.
[http://dx.doi.org/10.1016/j.talanta.2020.121392] [PMID: 32928412]
[27]
Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron., 2020, 165, 112349.
[http://dx.doi.org/10.1016/j.bios.2020.112349] [PMID: 32510340]
[28]
Adam, T.; Hashim, U. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens. Bioelectron., 2015, 67, 656-661.
[http://dx.doi.org/10.1016/j.bios.2014.10.005] [PMID: 25453738]
[29]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[30]
Grant, B.D.; Anderson, C.E.; Williford, J.R.; Alonzo, L.F.; Glukhova, V.A.; Boyle, D.S.; Weigl, B.H.; Nichols, K.P. SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip lateral flow assay toward the development of point of care tests using commercially available reagents. Anal. Chem., 2020, 92(16), 11305-11309.
[http://dx.doi.org/10.1021/acs.analchem.0c01975] [PMID: 32605363]
[31]
Yu, S.; Nimse, S.B.; Kim, J.; Song, K-S.; Kim, T. Development of a lateral flow strip membrane assay for rapid and sensitive detection of the SARS-CoV-2. Anal. Chem., 2020, 92(20), 14139-14144.
[http://dx.doi.org/10.1021/acs.analchem.0c03202] [PMID: 32967427]
[32]
Orooji, Y.; Sohrabi, H.; Hemmat, N.; Oroojalian, F.; Baradaran, B.; Mokhtarzadeh, A.; Mohaghegh, M.; Karimi-Maleh, H. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett., 2021, 13(1), 18.
[http://dx.doi.org/10.1007/s40820-020-00533-y] [PMID: 33163530]
[33]
Ghaemi, F.; Amiri, A.; Bajuri, M.Y.; Yuhana, N.Y.; Ferrara, M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustain Cities Soc., 2021, 72, 103046.
[http://dx.doi.org/10.1016/j.scs.2021.103046] [PMID: 34055576]
[34]
Gorbalenya, S.; Baker, S.; Baric, R.; de Groot, R.; Drosten, C.; Gulyaeva, A.; Haagmans, B.; Lauber, C.; Leontovich, A.; Neuman, B.; Penzar, D.; Perlman, S.; Poon, L.; Samborskiy, D.; Sidorov, I.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5, 536-544.
[35]
Adam, H.; Gopinath, S.C.B.; Arshad, M.K.M.; Adam, T.; Hashim, U. Perspectives of nanobiotechnology and biomacromolecules in parkinson’s disease. Process Biochem., 2019, 86, 32-39.
[http://dx.doi.org/10.1016/j.procbio.2019.07.019]
[36]
Lee, J.H.; Choi, M.; Jung, Y.; Lee, S.K.; Lee, C.S.; Kim, J.; Kim, J.; Kim, N.H.; Kim, B.T.; Kim, H.G. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens. Bioelectron., 2021, 171, 112715.
[http://dx.doi.org/10.1016/j.bios.2020.112715] [PMID: 33099241]
[37]
Huang, C.; Wen, T.; Shi, F-J.; Zeng, X-Y.; Jiao, Y-J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega, 2020, 5(21), 12550-12556.
[http://dx.doi.org/10.1021/acsomega.0c01554] [PMID: 32542208]
[38]
Jung, Y.; Park, G.S.; Moon, J.H.; Ku, K.; Beak, S.H.; Lee, C.S.; Kim, S.; Park, E.C.; Park, D.; Lee, J.H.; Byeon, C.W.; Lee, J.J.; Maeng, J.S.; Kim, S.J.; Kim, S.I.; Kim, B.T.; Lee, M.J.; Kim, H.G. Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2). ACS Infect. Dis., 2020, 6(9), 2513-2523.
[http://dx.doi.org/10.1021/acsinfecdis.0c00464] [PMID: 32786273]
[39]
Arshak, Poghossian.; Melanie, Jablonski.; Denise, Molinnus.; Christina, Wege.; Schöning, Michael.J. Field-effect sensors for virus detection: From Ebola to SARS-CoV-2 and plant viral enhancers. Front. Plant Sci., 2020, 11, 1792.
[http://dx.doi.org/10.3389/fpls.2020.598103]
[40]
Singh, B.P. Alimardani, Vahid, Abolmaali, Samira Sadat, Tamaddon, Ali Mohammad,Recent Advances on Nanotechnology-Based Strategies for Prevention, Diagnosis, and Treatment of Coronavirus Infections. J. Nanomater., 2021, 9495126, 1-20.
[http://dx.doi.org/10.1155/2021/9495126]
[41]
Kravchyk, K.V.; Kovalenko, M.V. Aluminum electrolytes for Al dual-ion batteries. Commun. Chem., 2020, 3(1), 120.
[http://dx.doi.org/10.1038/s42004-020-00365-2]
[42]
Qiu, G.; Gai, Z.; Tao, Y. Jean Schmitt, Gerd A. Kullak-Ublick, and Jing Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory yndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[43]
Akib, T.B.A.; Mou, S.F.; Rahman, M.M.; Rana, M.M.; Islam, M.R.; Mehedi, I.M.; Mahmud, M.A.P.; Kouzani, A.Z. Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus. Sensors (Basel), 2021, 21(10), 3491.
[http://dx.doi.org/10.3390/s21103491] [PMID: 34067769]
[44]
Mobed, A.; Sepehri Shafigh, E. Biosensors promising bio-device for pandemic screening “COVID-19”. Microchem. J., 2021, 164, 106094.
[http://dx.doi.org/10.1016/j.microc.2021.106094] [PMID: 33623173]
[45]
Huggett, J.F.; Moran-Gilad, J.; Lee, J.E. COVID-19 new diagnostics development: Novel detection methods for SARS-CoV-2 infection and considerations for their translation to routine use. Curr. Opin. Pulm. Med., 2021, 27(3), 155-162.
[http://dx.doi.org/10.1097/MCP.0000000000000768] [PMID: 33654014]
[46]
Thanihaichelvan, M.; Surendran, S.N.; Kumanan, T.; Sutharsini, U.; Ravirajan, P.; Valluvan, R.; Tharsika, T. Selective and electronic detection of COVID-19 (Coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. Mater. Today Proc., 2022, 49, 2546-2549.
[http://dx.doi.org/10.1016/j.matpr.2021.05.011] [PMID: 33996512]
[47]
Smith, G.; Jeeraruangrattana, Y.; Ermolina, I. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development. Eur. J. Pharm. Biopharm., 2018, 130, 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.019] [PMID: 29940225]
[48]
Smith, G.; Polygalov, E.; Arshad, M.S.; Page, T.; Taylor, J.; Ermolina, I. An impedance-based process analytical technology for monitoring the lyophilisation process. Int. J. Pharm., 2013, 449(1-2), 72-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.060] [PMID: 23591008]
[49]
Jeeraruangrattana, Y.; Smith, G.; Polygalov, E.; Ermolina, I. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy. Eur. J. Pharm. Biopharm., 2020, 152, 144-163.
[http://dx.doi.org/10.1016/j.ejpb.2020.04.015] [PMID: 32353532]
[50]
Sato, A.; Bianchessi, A.; Martins, T.; Lima, R.; Tsuzuki, M. A new 2D dual layered electrode model for the electrical impedance tomography. IFAC-PapersOnLine, 2018, 51(27), 41-46.
[http://dx.doi.org/10.1016/j.ifacol.2018.11.605]
[51]
Velmanickam, Logeeshan; Jayasooriya, Vidura Nawarathna, Dharmakeerthi Integrated dielectrophoretic and impedimetric biosensor provides a template for universal biomarker sensing in clinical samples. Electrophoresis, 2021, 42, 9-10.
[http://dx.doi.org/10.1002/elps.202000347]
[52]
Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sens. Biosensing Res., 2020, 29, 100317.
[http://dx.doi.org/10.1016/j.sbsr.2019.100317]
[53]
Butina, K.; Löffler, S.; Rhen, M.; Richter-Dahlfors, A. Electrochemical sensing of bacteria via secreted redox active compounds using conducting polymers. Sens. Actuators B Chem., 2019, 297, 126703.
[http://dx.doi.org/10.1016/j.snb.2019.126703]
[54]
Fysun, O.; Schmitt, A.; Auernhammer, P.T.; Rauschnabel, J.; Langowski, H-C. Electrochemical detection of food-spoiling bacteria using interdigitated platinum microelectrodes. J. Microbiol. Methods, 2019, 161, 63-70.
[http://dx.doi.org/10.1016/j.mimet.2019.04.015] [PMID: 31022418]
[55]
Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron., 2020, 159, 112214.
[http://dx.doi.org/10.1016/j.bios.2020.112214] [PMID: 32364936]
[56]
Khan, M.Z.H.; Hasan, M.R.; Hossain, S.I.; Ahommed, M.S.; Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens. Bioelectron., 2020, 166, 112431.
[http://dx.doi.org/10.1016/j.bios.2020.112431] [PMID: 32862842]
[57]
Hashemi, S.A.; Golab Behbahan, N.G.; Bahrani, S.; Mousavi, S.M.; Gholami, A.; Ramakrishna, S.; Firoozsani, M.; Moghadami, M.; Lankarani, K.B.; Omidifar, N. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens. Bioelectron., 2021, 171, 112731.
[http://dx.doi.org/10.1016/j.bios.2020.112731] [PMID: 33075725]
[58]
Xi, H.; Juhas, M.; Zhang, Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens. Bioelectron., 2020, 167, 112494.
[http://dx.doi.org/10.1016/j.bios.2020.112494] [PMID: 32791468]
[59]
Shoaie, N.; Forouzandeh, M.; Omidfar, K. Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Mikrochim. Acta, 2018, 185(4), 217.
[http://dx.doi.org/10.1007/s00604-018-2749-y] [PMID: 29594544]
[60]
Maity, D. C R, M.; R T, R.K. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C, 2019, 105, 110075.
[http://dx.doi.org/10.1016/j.msec.2019.110075] [PMID: 31546385]
[61]
Popov, A.; Aukstakojyte, R.; Gaidukevic, J.; Lisyte, V.; Kausaite-Minkstimiene, A.; Barkauskas, J.; Ramanaviciene, A. Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor. Sensors (Basel), 2021, 21(3), 948.
[http://dx.doi.org/10.3390/s21030948] [PMID: 33535400]
[62]
Sakr, M.A.; Elgammal, K.; Delin, A.; Serry, M. Performance-enhanced non-enzymatic glucose sensor based on graphene-heterostructure. Sensors (Basel), 2019, 20(1), 145.
[http://dx.doi.org/10.3390/s20010145] [PMID: 31878328]
[63]
Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim. Acta, 2019, 186(4), 224.
[http://dx.doi.org/10.1007/s00604-019-3345-5]
[64]
Antiochia, R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: From past to perspectives. Mikrochim. Acta, 2020, 187(12), 639.
[http://dx.doi.org/10.1007/s00604-020-04615-x] [PMID: 33151419]
[65]
Adam, T.; Dhahi, T.S.; Gopinath, S.C.B.; Hashim, U. Novel approaches in fabrication and integration of nanowire for micro/nano systems. Crit. Rev. Anal. Chem., 2021, 1-17.
[http://dx.doi.org/10.1080/10408347.2021.1925523] [PMID: 34254863]
[66]
Ou, J.; Tan, H.; Chen, Z.; Chen, X. FRET-based semiconducting polymer dots for pH sensing. Sensors, 2019, 19, 1455.
[http://dx.doi.org/10.3390/s19061455]
[67]
Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Feng, H. A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens. Bioelectron., 2015, 68, 225-231.
[http://dx.doi.org/10.1016/j.bios.2014.12.057]
[68]
Peng, L.; Mei, X.; He, J.; Xu, J.; Zhang, W.; Liang, R. Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Adv. Mater., 2018, 30, 1707389.
[http://dx.doi.org/10.1002/adma.201707389]
[69]
Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of zero-dimensional nanomaterials in biosensing. Front Chem., 2020, 8, 320.
[http://dx.doi.org/10.3389/fchem.2020.00320]
[70]
Pathan, S.; Jalal, M.; Prasad, S.; Bose, S. Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As (III) sensing. J. Mater. Chem. A, 2019, 7, 8510-8520.
[http://dx.doi.org/10.1039/C8TA11358K]
[71]
Raj, M.; Goyal, R.N. Silver nanoparticles and electrochemically reduced graphene oxide nanocomposite based biosensor for determining the effect of caffeine on estradiol release in women of child-bearing age. Sens. Actuators B Chem., 2019, 284, 759-767.
[http://dx.doi.org/10.1016/j.snb.2019.01.018]
[72]
Sun, H.; Zhou, Y.; Ren, J.; Qu, X. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9224-9237.
[http://dx.doi.org/10.1002/anie.201712469] [PMID: 29504678]
[73]
Seshadri, D.R.; Davies, E.V.; Harlow, E.R.; Hsu, J.J.; Knighton, S.C.; Walker, T.A.; Voos, J.E.; Drummond, C.K. Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Front. Digit. Health, 2020, 2, 8.
[http://dx.doi.org/10.3389/fdgth.2020.00008] [PMID: 34713021]
[74]
Samson, R.; Navale, G. R.; Dharne, M. S. Biosensors: Frontiers in rapid detection of COVID-19. 3 Biotech, 2020, 10(9), 385.
[http://dx.doi.org/10.1007/s13205-020-02369-0]
[75]
Chen, S.H.; Chuang, Y.C.; Lu, Y.C.; Lin, H.C.; Yang, Y.L.; Lin, C.S. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology, 2009, 20(21), 215501.
[http://dx.doi.org/10.1088/0957-4484/20/21/215501] [PMID: 19423930]
[76]
Huang, L.; Ding, L.; Zhou, J.; Chen, S.; Chen, F.; Zhao, C.; Xu, J.; Hu, W.; Ji, J.; Xu, H.; Liu, G.L. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens. Bioelectron., 2021, 171, 112685.
[http://dx.doi.org/10.1016/j.bios.2020.112685] [PMID: 33113383]
[77]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[78]
Bhaskar, S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors (Basel), 2020, 20(20), 1-10, 5871.
[http://dx.doi.org/10.3390/s20205871]
[79]
Wintjens, A.G.W.E.; Hintzen, K.F.H.; Engelen, S.M.E. Applying the electronic nose for pre-operative SARS-CoV-2 screening. Surg. Endosc., 2021, 35(12), 6671-6678.
[http://dx.doi.org/10.1007/s00464-020-08169-0] [PMID: 33269428]
[80]
Wang, Z.; Murphy, A.; O’Riordan, A.; O’Connell, I. Equivalent impedance models for electrochemical nanosensor-based integrated system design. Sensors (Basel), 2021, 21(9), 3259.
[http://dx.doi.org/10.3390/s21093259] [PMID: 34066740]
[81]
Schöning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst (Lond.), 2002, 127(9), 1137-1151.
[http://dx.doi.org/10.1039/B204444G] [PMID: 12375833]
[82]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[83]
Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.; Mandale, A.; Rao, M.; Sastry, M. Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir, 2001, 17(5), 1674-1679.
[http://dx.doi.org/10.1021/la001164w]
[84]
Gole, A.; Vyas, S.; Phadtare, S.; Lachke, A.; Sastry, M. Studies on the formation of bioconjugates of endoglucanase with colloidal gold. Colloids Surf. B Biointerfaces, 2002, 25(2), 129-138.
[http://dx.doi.org/10.1016/S0927-7765(01)00301-0]
[85]
Hayat, A.; Catanante, G.; Marty, J.L. Current trends in nanomaterial-based amperometric biosensors. Sensors (Basel), 2014, 14(12), 23439-23461.
[http://dx.doi.org/10.3390/s141223439] [PMID: 25494347]
[86]
Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. “Plugging into Enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299(5614), 1877-1881.
[http://dx.doi.org/10.1126/science.1080664] [PMID: 12649477]
[87]
Liu, S.; Ju, H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron., 2003, 19(3), 177-183.
[http://dx.doi.org/10.1016/S0956-5663(03)00172-6] [PMID: 14611752]
[88]
Ghalkhani, M.; Shahrokhian, S.; Ghorbani-Bidkorbeh, F. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles. Talanta, 2009, 80(1), 31-38.
[http://dx.doi.org/10.1016/j.talanta.2009.06.019] [PMID: 19782189]
[89]
Claussen, J.C.; Artiles, M.S.; McLamore, E.S.; Mohanty, S.; Shi, J.; Rickus, J.L.; Fisher, T.S.; Porterfield, D.M. Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: A comparative study. J. Mater. Chem., 2011, 21(30), 11224-11231.
[http://dx.doi.org/10.1039/c1jm11561h]
[90]
Claussen, J.C.; Hengenius, J.B.; Wickner, M.M.; Fisher, T.S.; Umulis, D.M.; Porterfield, D.M. Effects of carbon nanotube-tethered nanosphere density on amperometric biosensing: Simulation and experiment. J. Phys. Chem. C, 2011, 115(43), 20896-20904.
[http://dx.doi.org/10.1021/jp205569z]
[91]
Claussen, J.C.; Kim, S.S.; Haque, A.U.; Artiles, M.S.; Porterfield, D.M.; Fisher, T.S. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. J. Diabetes Sci. Technol., 2010, 4(2), 312-319.
[http://dx.doi.org/10.1177/193229681000400211] [PMID: 20307391]
[92]
Lei, J.; Ju, H. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev., 2012, 41(6), 2122-2134.
[http://dx.doi.org/10.1039/c1cs15274b] [PMID: 22278386]
[93]
Ding, L.; Bond, A.M.; Zhai, J.; Zhang, J. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review. Anal. Chim. Acta, 2013, 797, 1-12.
[http://dx.doi.org/10.1016/j.aca.2013.07.035] [PMID: 24050664]
[94]
Xiao, Y.; Li, C.M. Nanocomposites: From fabrications to electrochemical bioapplications. Electroanalysis, 2008, 20(6), 648-662.
[http://dx.doi.org/10.1002/elan.200704125]
[95]
Wu, L.; Xiong, E.; Zhang, X.; Zhang, X.; Chen, J. Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today, 2014, 9(2), 197-211.
[http://dx.doi.org/10.1016/j.nantod.2014.04.002]
[96]
Li, M.; Wang, P.; Li, F.; Chu, Q.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens. Bioelectron., 2017, 87, 752-759.
[http://dx.doi.org/10.1016/j.bios.2016.08.076] [PMID: 27649331]
[97]
Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors (Basel), 2017, 17(8), E1866.
[http://dx.doi.org/10.3390/s17081866] [PMID: 28805693]
[98]
Lee, H.; Song, C.; Hong, Y.S.; Kim, M.S.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3(3), e1601314.
[http://dx.doi.org/10.1126/sciadv.1601314] [PMID: 28345030]
[99]
Lin, T.; Gal, A.; Mayzel, Y.; Horman, K.; Bahartan, K. Non-invasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci., 2017, 6(5), 1-8.
[http://dx.doi.org/10.19080/CTBEB.2017.06.555696]
[100]
Rama, E.C.; Costa-García, A.; Fernández-Abedul, M.T. Pin-based electrochemical glucose sensor with multiplexing possibilities. Biosens. Bioelectron., 2017, 88, 34-40.
[http://dx.doi.org/10.1016/j.bios.2016.06.068] [PMID: 27396821]
[101]
Rauf, S.; Hayat Nawaz, M.A.; Badea, M.; Marty, J.L.; Hayat, A. Nano-engineered biomimetic optical sensors for glucose monitoring in diabetes. Sensors (Basel), 2016, 16(11), E1931.
[http://dx.doi.org/10.3390/s16111931] [PMID: 27869658]
[102]
Nasir, M.; Nawaz, M.H.; Latif, U.; Yaqub, M.; Hayat, A.; Rahim, A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim. Acta, 2017, 184(2), 323-342. [CrossRef] [Google Scholar]
[http://dx.doi.org/10.1007/s00604-016-2036-8]
[103]
Xiao, X.; Wang, M.; Li, H.; Pan, Y.; Si, P. Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids. Talanta, 2014, 125, 366-371.
[http://dx.doi.org/10.1016/j.talanta.2014.03.030] [PMID: 24840458]
[104]
Liang, R.; Yan, D.; Tian, R.; Yu, X.; Shi, W.; Li, C.; Wei, M.; Evans, D.G.; Duan, X. Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes. Chem. Mater., 2014, 26(8), 2595-2600. b
[http://dx.doi.org/10.1021/cm404218y]
[105]
Lin, G.; Makarov, D.; Schmidt, O.G. Magnetic sensing platform technologies for biomedical applications. Lab Chip, 2017, 17(11), 1884-1912.
[http://dx.doi.org/10.1039/C7LC00026J] [PMID: 28485417]
[106]
Liu, C.; Yu, Y.; Chen, D.; Zhao, J.; Yu, Y.; Li, L.; Lu, Y. Cupredoxin engineered upconversion nanoparticles for ratiometric luminescence sensing of Cu2. Nanoscale Adv., 2019, 1(7), 2580-2585.
[http://dx.doi.org/10.1039/C9NA00168A] [PMID: 32195453]
[107]
Liu, H.; Na, W.; Liu, Z.; Chen, X.; Su, X. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens. Bioelectron., 2017, 92, 229-233.
[http://dx.doi.org/10.1016/j.bios.2017.02.005] [PMID: 28222367]
[108]
Liu, J.N.; Bu, W.; Shi, J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev., 2017, 117(9), 6160-6224.
[http://dx.doi.org/10.1021/acs.chemrev.6b00525] [PMID: 28426202]
[109]
Liu, L.; Zhang, H.; Wang, Z.; Song, D. Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection in vitro and in vivo. Biosens. Bioelectron., 2019, 141, 111403.
[http://dx.doi.org/10.1016/j.bios.2019.111403] [PMID: 31176111]
[110]
Liu, T.; Li, N.; Dong, J.X.; Zhang, Y.; Fan, Y.Z.; Lin, S.M.; Luo, H.Q.; Li, N.B. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens. Bioelectron., 2017, 87, 772-778.
[http://dx.doi.org/10.1016/j.bios.2016.08.098] [PMID: 27649334]
[111]
Loo, A.H.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Bonanni, A.; Pumera, M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces, 2016, 8(3), 1951-1957.
[http://dx.doi.org/10.1021/acsami.5b10160] [PMID: 26762211]
[112]
Lu, L.; Zhou, L.; Chen, J.; Yan, F.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Nanochannel-confined graphene quantum dots for ultrasensitive electrochemical analysis of complex samples. ACS Nano, 2018, 12(12), 12673-12681.
[http://dx.doi.org/10.1021/acsnano.8b07564] [PMID: 30485066]
[113]
Lu, S.; Li, G.; Lv, Z.; Qiu, N.; Kong, W.; Gong, P.; Chen, G.; Xia, L.; Guo, X.; You, J.; Wu, Y. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect. Biosens. Bioelectron., 2016, 85, 358-362.
[http://dx.doi.org/10.1016/j.bios.2016.05.021] [PMID: 27196253]
[114]
Luo, J.H.; Li, Q.; Chen, S.H.; Yuan, R. Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA. ACS Appl. Mater. Interfaces, 2019, 11(30), 27363-27370.
[http://dx.doi.org/10.1021/acsami.9b09339] [PMID: 31287297]
[115]
Ma, Y.; Zhang, Y.; William, W.Y. Near infrared emitting quantum dots: Synthesis, luminescence properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(44), 13662-13679.
[http://dx.doi.org/10.1039/C9TC04065J]
[116]
Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev., 2017, 6(3), 301-329.
[http://dx.doi.org/10.1515/ntrev-2016-0014] [PMID: 29335674]
[117]
Mao, K.; Zhou, Z.; Han, S.; Zhou, X.; Hu, J.; Li, X.; Yang, Z. A novel biosensor based on Au@Ag core-shell nanoparticles for sensitive detection of methylamphetamine with surface enhanced Raman scattering. Talanta, 2018, 190, 263-268.
[http://dx.doi.org/10.1016/j.talanta.2018.07.071] [PMID: 30172508]
[118]
Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Label-free SERS quantum semiconductor probe for molecular-level and in vitro cellular detection: A Noble-metal-free methodology. ACS Appl. Mater. Interfaces, 2018, 10(41), 34886-34904.
[http://dx.doi.org/10.1021/acsami.8b10590] [PMID: 30239189]
[119]
Kim, D.; Lee, Y.D.; Jo, S.; Kim, S.; Lee, T.S. Detection and imaging of cathepsin L in cancer cells using the aggregation of conjugated polymer dots and magnetic nanoparticles. Sens. Actuators B Chem., 2020, 307, 127641.
[http://dx.doi.org/10.1016/j.snb.2019.127641]
[120]
Kim, S.J.; Choi, S.J.; Jang, J.S.; Cho, H.J.; Kim, I.D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res., 2017, 50(7), 1587-1596.
[http://dx.doi.org/10.1021/acs.accounts.7b00047] [PMID: 28481075]
[121]
KneŽević N.Ž.; Gadjanski, I.; Durand, J.O. Magnetic nanoarchitectures for cancer sensing, imaging and therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(1), 9-23.
[http://dx.doi.org/10.1039/C8TB02741B] [PMID: 32254946]
[122]
Koh, I.; Josephson, L. Magnetic nanoparticle sensors. Sensors (Basel), 2009, 9(10), 8130-8145.
[http://dx.doi.org/10.3390/s91008130] [PMID: 22408498]
[123]
Lee, Y.E.; Smith, R.; Kopelman, R. Nanoparticle PEBBLE sensors in live cells and in vivo. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2009, 2(1), 57-76.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112823] [PMID: 20098636]
[124]
Kurochkina, M.; Konshina, E.; Oseev, A.; Hirsch, S. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications. Nanotechnol. Sci. Appl., 2018, 11, 15-21.
[http://dx.doi.org/10.2147/NSA.S155045] [PMID: 29731613]
[125]
Lee, C.Y.; Wu, L.P.; Chou, T.T.; Hsieh, Y.Z. Functional magnetic nanoparticles–assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sens. Actuators B Chem., 2018, 257, 672-677.
[http://dx.doi.org/10.1016/j.snb.2017.11.033]
[126]
Lee, J.; Ahmed, S.R.; Oh, S.; Kim, J.; Suzuki, T.; Parmar, K.; Park, S.S.; Lee, J.; Park, E.Y. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens. Bioelectron., 2015, 64, 311-317.
[http://dx.doi.org/10.1016/j.bios.2014.09.021] [PMID: 25240957]
[127]
Lei, Y.M.; Zhou, J.; Chai, Y.Q.; Zhuo, Y.; Yuan, R. SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal. Chem., 2018, 90(20), 12270-12277.
[http://dx.doi.org/10.1021/acs.analchem.8b03623] [PMID: 30226050]
[128]
Li, B.L.; Wang, J.; Zou, H.L.; Garaj, S.; Lim, C.T.; Xie, J.; Li, N.B.; Leong, D.T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater., 2016, 26(39), 7034-7056.
[http://dx.doi.org/10.1002/adfm.201602136]
[129]
Li, C.; Li, W.; Liu, H.; Zhang, Y.; Chen, G.; Li, Z.; Wang, Q. An activatable NIR-II nanoprobe for in vivo early real-time diagnosis of traumatic brain injury. Angew. Chem. Int. Ed. Engl., 2020, 59(1), 247-252.
[http://dx.doi.org/10.1002/anie.201911803] [PMID: 31626380]
[130]
Li, H.; Xu, Q.; Wang, X.; Liu, W. Ultrasensitive surface-enhanced raman spectroscopy detection based on amorphous molybdenum oxide quantum dots. Small, 2018, 14(28), e1801523. a
[http://dx.doi.org/10.1002/smll.201801523] [PMID: 29882238]
[131]
Li, H.; Yan, X.; Qiao, S.; Lu, G.; Su, X. Yellow-emissive carbon dot-based optical sensing platforms: Cell imaging and analytical applications for biocatalytic reactions. ACS Appl. Mater. Interfaces, 2018, 10(9), 7737-7744.
[http://dx.doi.org/10.1021/acsami.7b17619] [PMID: 29441784]
[132]
Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of carbon and graphene quantum dots for sensing. ACS Sens., 2019, 4(7), 1732-1748.
[http://dx.doi.org/10.1021/acssensors.9b00514] [PMID: 31267734]
[133]
Yang, M.; Jin, H.; Sun, Z.; Gui, R. Experimental synthesis, functionalized modifications and potential applications of monoelemental zero-dimensional boron nanomaterials. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(10), 5111-5146.
[http://dx.doi.org/10.1039/D1TA10132C]
[134]
Afreen, S.; Muthoosamy, K.; Manickam, S.; Hashim, U. Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron., 2015, 63, 354-364.
[http://dx.doi.org/10.1016/j.bios.2014.07.044] [PMID: 25125029]
[135]
Alhogail, S.; Suaifan, G.A.R.Y.; Bikker, F.J.; Kaman, W.E.; Weber, K.; Cialla-May, D.; Popp, J.; Zourob, M.M. Rapid colorimetric detection of Pseudomonas aeruginosa in clinical isolates using a magnetic nanoparticle biosensor. ACS Omega, 2019, 4(26), 21684-21688.
[http://dx.doi.org/10.1021/acsomega.9b02080] [PMID: 31891046]
[136]
Alizadeh, N.; Salimi, A. Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform. Anal. Chim. Acta, 2019, 1091, 40-49.
[http://dx.doi.org/10.1016/j.aca.2019.08.036] [PMID: 31679573]
[137]
Altintas, Z.; Akgun, M.; Kokturk, G.; Uludag, Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron., 2018, 100, 541-548.
[http://dx.doi.org/10.1016/j.bios.2017.09.046] [PMID: 28992610]
[138]
Altintas, Z.; Kallempudi, S.S.; Gurbuz, Y. Gold nanoparticle modified capacitive sensor platform for multiple marker detection. Talanta, 2014, 118, 270-276.
[http://dx.doi.org/10.1016/j.talanta.2013.10.030] [PMID: 24274298]
[139]
de la Escosura-Muñiz, A.; Baptista-Pires, L.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Magnetic bead/gold nanoparticle double-labeled primers for electrochemical detection of isothermal amplified leishmania DNA. Small, 2016, 12(2), 205-213.
[http://dx.doi.org/10.1002/smll.201502350] [PMID: 26578391]
[140]
Dhenadhayalan, N.; Lin, K.C.; Saleh, T.A. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small, 2020, 16(1), e1905767.
[http://dx.doi.org/10.1002/smll.201905767] [PMID: 31769599]
[141]
Fan, Q.; Li, J.; Zhu, Y.; Yang, Z.; Shen, T.; Guo, Y.; Wang, L.; Mei, T.; Wang, J.; Wang, X. Functional carbon quantum dots towards highly sensitive graphene transistors for Cu2+ ion detection. ACS Appl. Mater. Interfaces, 2020, 12(4), 4797-4803.
[http://dx.doi.org/10.1021/acsami.9b20785] [PMID: 31909585]
[142]
Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 2017, 9(15), 4928-4933.
[http://dx.doi.org/10.1039/C7NR00888K] [PMID: 28368056]
[143]
Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 2020, 206, 120201.
[http://dx.doi.org/10.1016/j.talanta.2019.120201] [PMID: 31514868]
[144]
Freeman, R.; Finder, T.; Bahshi, L.; Gill, R.; Willner, I. Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives. Adv. Mater., 2012, 24(48), 6416-6421.
[http://dx.doi.org/10.1002/adma.201202793] [PMID: 23008159]
[145]
Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nano-photosen-sitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun., 2018, 9(1), 2798.
[http://dx.doi.org/10.1038/s41467-018-05223-3] [PMID: 30022060]
[146]
Gloag, L.; Mehdipour, M.; Chen, D.; Tilley, R.D.; Gooding, J.J. Advances in the application of magnetic nanoparticles for sensing. Adv. Mater., 2019, 31(48), e1904385.
[http://dx.doi.org/10.1002/adma.201904385] [PMID: 31538371]
[147]
Gu, Y.; Wang, J.; Shi, H.; Pan, M.; Liu, B.; Fang, G.; Wang, S. Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens. Bioelectron., 2019, 128, 129-136.
[http://dx.doi.org/10.1016/j.bios.2018.12.043] [PMID: 30658229]
[148]
Guldi, D.M.; Sgobba, V. Carbon nanostructures for solar energy conversion schemes. Chem. Commun. (Camb.), 2011, 47(2), 606-610.
[http://dx.doi.org/10.1039/C0CC02411B] [PMID: 20871887]
[149]
Guo, C.X.; Yang, H.B.; Sheng, Z.M.; Lu, Z.S.; Song, Q.L.; Li, C.M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. Engl., 2010, 49(17), 3014-3017.
[http://dx.doi.org/10.1002/anie.200906291] [PMID: 20349480]
[150]
Kim, N.; Han, K.; Su, P.C.; Kim, I.; Yoon, Y.J. A rotationally focused flow (RFF) microfluidic biosensor by density difference for early-stage detectable diagnosis. Sci. Rep., 2021, 11(1), 9277.
[http://dx.doi.org/10.1038/s41598-021-88647-0] [PMID: 33927298]
[151]
Seo, K.W.; Choi, Y.S.; Lee, S.J. Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Exp. Fluids, 2012, 53(6), 1867-1877.
[http://dx.doi.org/10.1007/s00348-012-1403-4]
[152]
Xie, Z.; Cao, Z.; Liu, Y.; Zhang, Q.; Zou, J.; Shao, L.; Wang, Y.; He, J.; Li, M. Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules. Opt. Express, 2017, 25(26), 33193-33201.
[http://dx.doi.org/10.1364/OE.25.033193]
[153]
Fan, X.; White, I.M. Optofuidic microsystems for chemical and biological analysis. Nat. Photonics, 2011, 5(10), 591-597.
[http://dx.doi.org/10.1038/nphoton.2011.206] [PMID: 22059090]
[154]
Abbas, A.; Linman, M.J.; Cheng, Q. Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sens. Actuators B Chem., 2011, 156(1), 169-175.
[http://dx.doi.org/10.1016/j.snb.2011.04.008] [PMID: 21666780]
[155]
Zhang, L.; Dong, T.; Zhao, X.; Yang, Z.; Pires, N.M. Engineering in medicine and biology society (EMBC). 2012 Annual International Conference of the IEEE2012 , pp. 523-526.
[156]
Lagae, L. Magnetic biosensors for genetic screening of cystic fbrosis. IEE Proc.-Circuits Devices Syst., 2005, 152, pp. 393-400.
[157]
Serra, B.; Gamella, M.; Reviejo, A.J.; Pingarrón, J.M. Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal. Bioanal. Chem., 2008, 391(5), 1853-1860.
[http://dx.doi.org/10.1007/s00216-008-2141-6] [PMID: 18523759]
[158]
Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta, 2008, 620(1-2), 8-26.
[http://dx.doi.org/10.1016/j.aca.2008.05.022] [PMID: 18558119]
[159]
Luan, E.; Yun, H.; Laplatine, L.; Dattner, Y.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors. IEEE J. Sel. Top. Quantum Electron., 2018, 25(3), 1-11.
[http://dx.doi.org/10.1109/JSTQE.2018.2821842]
[160]
Wu, S.; Guo, Y.; Wang, W.; Zhou, J.; Zhang, Q. Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels. Rev. Sci. Instrum., 2019, 90(3), 035004.
[http://dx.doi.org/10.1063/1.5074134] [PMID: 30927803]
[161]
Jahani, Y.; Arvelo, E.R.; Yesilkoy, F.; Koshelev, K.; Cianciaruso, C.; De Palma, M.; Kivshar, Y.; Altug, H. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun., 2021, 12(1), 3246.
[http://dx.doi.org/10.1038/s41467-021-23257-y] [PMID: 34059690]
[162]
Sankhyabrata, B.; Liu, T-H.; Shao, L.Y. Review on metasurface: From principle to smart metadevices. Front. Phys., 2021, 8, 566087.
[http://dx.doi.org/10.3389/fphy.2020.586087]
[163]
Ghosh, S.K.; Chaudhuri, A.; Bhattacharyya, S.; Pal, P. Graphene-metasurface-based biosensor for SARS-CoV-2 detection. 2022, 12011, 1201109-1201111.
[164]
Guo, B.; Jiang, L.; Hua, Y.; Zhan, N.; Jia, J.; Chu, K.; Lu, Y. Beam manipulation mechanisms of dielectric metasurfaces. ACS Omega, 2019, 4(4), 7467-7473.
[http://dx.doi.org/10.1021/acsomega.9b00641] [PMID: 31459843]
[165]
Che, Y.; Wang, X.; Song, Q.; Zhu, Y.; Xiao, S. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 2020, 9(15), 4407-4431.
[http://dx.doi.org/10.1515/nanoph-2020-0311]
[166]
Song, Q. Novel metasurface phase-modulation mechanism. Light Sci. Appl., 2021, 10(1), 184.
[http://dx.doi.org/10.1038/s41377-021-00629-z] [PMID: 34521821]
[167]
Iwanaga, Masanobu High-sensitivity high-throughput detection of nucleic acid targets on metasurface fluorescence biosensors. Biosensors, 2021, 11(2), 33.
[http://dx.doi.org/10.3390/bios11020033]
[168]
Wang, Z.; Chen, J.; Khan, S.A.; Li, F.; Shen, J.; Duan, Q.; Liu, X.; Zhu, J. Plasmonic metasurfaces for medical diagnosis applications: A review. Sensors (Basel), 2021, 22(1), 133.
[http://dx.doi.org/10.3390/s22010133] [PMID: 35009676]
[169]
Palermo, G.; Rippa, M.; Conti, Y.; Vestri, A.; Castagna, R.; Fusco, G.; Suffredini, E.; Zhou, J.; Zyss, J.; De Luca, A.; Petti, L. Plasmonic metasurfaces based on pyramidal nanoholes for high-efficiency SERS biosensing. ACS Appl. Mater. Interfaces, 2021, 13(36), 43715-43725.
[http://dx.doi.org/10.1021/acsami.1c12525] [PMID: 34469103]
[170]
Zhu, Y.; Li, Z.; Hao, Z.; DiMarco, C.; Maturavongsadit, P.; Hao, Y.; Lu, M.; Stein, A.; Wang, Q.; Hone, J.; Yu, N.; Lin, Q. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light Sci. Appl., 2018, 7(1), 67.
[http://dx.doi.org/10.1038/s41377-018-0066-1] [PMID: 30275947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy