Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

The Derivatives of Cromolyn Ameliorate the Abnormal Misfolding of Amyloid Proteins and Neuroinflammation in the Neural Cells

Author(s): Joo-Hee Lee, Nivethasri Lakshmana Perumal, Sehee Kwon, Hee-Cheol Kim, Na-Hyun Ahn, Su-Bin Choi, Eunjin Hwang, Hyoryeong Song, David R. Elmaleh, Aryun Kim, Woong-Suk Yang, Cheorl-Ho Kim*, Byeong-Churl Jang*, Sungwoon Choi* and Seung-Hoon Yang*

Volume 30, Issue 39, 2023

Published on: 16 February, 2023

Page: [4479 - 4491] Pages: 13

DOI: 10.2174/0929867330666230123101934

Price: $65

Abstract

Background: The representative symptom of Alzheimer’s Disease (AD) has mainly been mentioned to be misfolding of amyloid proteins, such as amyloid-beta (Aβ) and tau protein. In addition, the neurological pathology related to neuroinflammatory signaling has recently been raised as an important feature in AD. Currently, numerous drug candidates continue to be investigated to reduce symptoms of AD, including amyloid proteins misfolding and neuroinflammation.

Objective: Our research aimed to identify the anti-AD effects of two chemical derivatives modified from cromoglicic acid, CNU 010 and CNU 011.

Methods: CNU 010 and CNU 011 derived from cromoglicic acid were synthesized. The inhibitory effects of Aβ and tau were identified by thioflavin T assay. Moreover, western blots were conducted with derivates CNU 010 and CNU 011 to confirm the effects on inflammation.

Results: CNU 010 and CNU 011 significantly inhibited the aggregation of Aβ and tau proteins. Moreover, they reduced the expression levels of mitogen-activated protein (MAP) kinase and nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) signaling proteins, which are representative early inflammatory signaling markers. Also, the inhibitory effects on the lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expression referring to late inflammation were confirmed.

Conclusion: Our results showing multiple beneficial effects of cromolyn derivatives against abnormal aggregation of amyloid proteins and neuroinflammatory signaling provide evidence that CNU 010 and CNU 011 could be further developed as potential drug candidates for AD treatment.

[1]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[2]
Mander, P.; Brown, G.C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: A dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation, 2005, 2(1), 20.
[http://dx.doi.org/10.1186/1742-2094-2-20] [PMID: 16156895]
[3]
Bachstetter, A.D.; Xing, B.; de Almeida, L.; Dimayuga, E.R.; Watterson, D.M.; Van Eldik, L.J. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J. Neuroinflammation, 2011, 8(1), 79.
[http://dx.doi.org/10.1186/1742-2094-8-79] [PMID: 21733175]
[4]
Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med., 2015, 3(10), 136.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.03.49] [PMID: 26207229]
[5]
Chung, Y.J.; Zhou, H.R.; Pestka, J.J. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol., 2003, 193(2), 188-201.
[http://dx.doi.org/10.1016/S0041-008X(03)00299-0] [PMID: 14644621]
[6]
Tawfik, H. A.; Ewies, E. F.; El-Hamouly, W.S.J.I. Synthesis of chromones and their applications during the last ten years during the last ten years. IJRPC, 2014, 4(4), 1046-1085.
[7]
Kilpatrick, L.E.; Jakabovics, E.; McCawley, L.J.; Kane, L.H.; Korchak, H.M. Cromolyn inhibits assembly of the NADPH oxidase and superoxide anion generation by human neutrophils. J. Immunol., 1995, 154(7), 3429-3436.
[http://dx.doi.org/10.4049/jimmunol.154.7.3429] [PMID: 7897224]
[8]
Viscardi, R.M.; Hasday, J.D.; Gumpper, K.F.; Taciak, V.; Campbell, A.B.; Palmer, T.W. Cromolyn sodium prophylaxis inhibits pulmonary proinflammatory cytokines in infants at high risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med., 1997, 156(5), 1523-1529.
[http://dx.doi.org/10.1164/ajrccm.156.5.9611088] [PMID: 9372670]
[9]
Hori, Y.; Takeda, S.; Cho, H.; Wegmann, S.; Shoup, T.M.; Takahashi, K.; Irimia, D.; Elmaleh, D.R.; Hyman, B.T.; Hudry, E. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. J. Biol. Chem., 2015, 290(4), 1966-1978.
[http://dx.doi.org/10.1074/jbc.M114.586602] [PMID: 25468905]
[10]
Zhang, C.; Griciuc, A.; Hudry, E.; Wan, Y.; Quinti, L.; Ward, J.; Forte, A.M.; Shen, X.; Ran, C.; Elmaleh, D.R.; Tanzi, R.E. Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci. Rep., 2018, 8(1), 1144.
[http://dx.doi.org/10.1038/s41598-018-19641-2] [PMID: 29348604]
[11]
Gupta, S.K.; Kumar, S.; Bolton, S.; Behl, C.R.; Malick, A.W. Optimization of iontophoretic transdermal delivery of a peptide and a non-peptide drug. J. Control. Release, 1994, 30(3), 253-261.
[http://dx.doi.org/10.1016/0168-3659(94)90031-0]
[12]
Leone-Bay, A.; Leipold, H.; Sarubbi, D.; Variano, B.; Rivera, T.; Baughman, R.A. Oral delivery of sodium cromolyn: preliminary studies in vivo and in vitro. Pharm. Res., 1996, 13(2), 222-226.
[http://dx.doi.org/10.1023/A:1016034913181] [PMID: 8932440]
[13]
Lozupone, M.; Solfrizzi, V.; D’Urso, F.; Di Gioia, I.; Sardone, R.; Dibello, V.; Stallone, R.; Liguori, A.; Ciritella, C.; Daniele, A.; Bellomo, A.; Seripa, D.; Panza, F. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: An update on emerging drugs. Expert Opin. Emerg. Drugs, 2020, 25(3), 319-335.
[http://dx.doi.org/10.1080/14728214.2020.1808621] [PMID: 32772738]
[14]
Brune, K. Persistence of NSAIDs at effect sites and rapid disappearance from side-effect compartments contributes to tolerability. Curr. Med. Res. Opin., 2007, 23(12), 2985-2995.
[http://dx.doi.org/10.1185/030079907X242584] [PMID: 17949535]
[15]
Azam, F.; Alabdullah, N.H.; Ehmedat, H.M.; Abulifa, A.R.; Taban, I.; Upadhyayula, S. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: An investigation by docking, molecular dynamics, and DFT studies. J. Biomol. Struct. Dyn., 2018, 36(8), 2099-2117.
[http://dx.doi.org/10.1080/07391102.2017.1338164] [PMID: 28571516]
[16]
Thomas, T.; Nadackal, T.G.; Thomas, K. Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-β aggregation. Neuroreport, 2001, 12(15), 3263-3267.
[http://dx.doi.org/10.1097/00001756-200110290-00024] [PMID: 11711868]
[17]
Kim, S.; Chang, W.E.; Kumar, R.; Klimov, D.K. Naproxen interferes with the assembly of Aβ oligomers implicated in Alzheimer’s disease. Biophys. J., 2011, 100(8), 2024-2032.
[http://dx.doi.org/10.1016/j.bpj.2011.02.044] [PMID: 21504739]
[18]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[19]
Ling, Q.; Murdoch, E.; Ruan, K.H. How can we address the controversies surrounding the use of NSAIDS in neurodegeneration? Future Med. Chem., 2016, 8(11), 1153-1155.
[http://dx.doi.org/10.4155/fmc-2016-0084] [PMID: 27357618]
[20]
Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol., 2019, 10, 1008.
[http://dx.doi.org/10.3389/fphar.2019.01008] [PMID: 31572186]
[21]
Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci., 2020, 41(7), 434-445.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[22]
Palomer, A.; Cabré, F.; Pascual, J.; Campos, J.; Trujillo, M.A.; Entrena, A.; Gallo, M.A.; García, L.; Mauleón, D.; Espinosa, A. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J. Med. Chem., 2002, 45(7), 1402-1411.
[http://dx.doi.org/10.1021/jm010458r] [PMID: 11906281]
[23]
Katritzky, A.; Sahu, S.; Panda, S.; Asiri, A. NSAID conjugates with carnosine and amino acids. Synthesis, 2013, 45(24), 3369-3374.
[http://dx.doi.org/10.1055/s-0033-1339920]
[24]
Majumder, J.; Das, M.R.; Deb, J.; Jana, S.S.; Dastidar, P. β-Amino acid and amino-alcohol conjugation of a nonsteroidal anti-inflammatory drug (NSAID) imparts hydrogelation displaying remarkable biostability, biocompatibility, and anti-inflammatory properties. Langmuir, 2013, 29(32), 10254-10263.
[http://dx.doi.org/10.1021/la401929v] [PMID: 23859562]
[25]
Li, W.; Mak, M.; Jiang, H.; Wang, Q.; Pang, Y.; Chen, K.; Han, Y. Novel anti-Alzheimer’s dimer bis(7)-Cognitin: Cellular and molecular mechanisms of neuroprotection through multiple targets. Neurotherapeutics, 2009, 6(1), 187-201.
[http://dx.doi.org/10.1016/j.nurt.2008.10.040] [PMID: 19110209]
[26]
Cairns, H.; Fitzmaurice, C.; Hunter, D.; Johnson, P.B.; King, J.; Lee, T.B.; Lord, G.H.; Minshull, R.; Cox, J.S.G. Synthesis and structure-activity relations of disodium cromoglycate and some related compounds. J. Med. Chem., 1972, 15(6), 583-589.
[http://dx.doi.org/10.1021/jm00276a003] [PMID: 4624147]
[27]
Soto, C.; Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1332-1340.
[http://dx.doi.org/10.1038/s41593-018-0235-9] [PMID: 30250260]
[28]
Kim, W.G.; Mohney, R.P.; Wilson, B.; Jeohn, G.H.; Liu, B.; Hong, J.S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci., 2000, 20(16), 6309-6316.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06309.2000] [PMID: 10934283]
[29]
Citron, M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy