Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

Psycho-neuroendocrine-immune Aspects of COVID-19 and its Relationship with Post-traumatic Stress Disorder

Author(s): Sakineh Shafia, Sahand Talei, Soheila Molaei, Vahid Asghariazr and Masoomeh Dadkhah*

Volume 20, Issue 2, 2024

Published on: 10 February, 2023

Page: [112 - 124] Pages: 13

DOI: 10.2174/2666082219666230118142926

Price: $65

Abstract

A large body of literature indicates that the novel coronavirus disease (COVI D-19) was, and still is, a stressful and traumatic experience for different groups of people. Exposure to unexpected deaths or fear of death increases the risk of developing post-traumatic stress disorder (PTSD) anxiety disorder. Understanding the relationship between PTSD and SARS-CoV- 2 infection can help reduce the risk of developing psychiatric diseases, especially anxiety disorders. Here, we used the central mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We explored the articles based on keywords and related articles. Social isolation stress during quarantine and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis via increased cortisol synthesis and release seems to be key findings in current literature. Evidence shows that induced neuroendocrine changes in patients with COVID-19 can cause psychiatric diseases related to fear and anxiety. Studies suspect that angiotensinconverting enzyme 2 (ACE2) expressed in the hypothalamus and pituitary gland can be targeted by the infection and thereby could be a player in inducing psychiatric disorders. Here, we discuss the relationship between Covid-19 and post-traumatic stress disorder from psychoneuroendocrine- immune aspects and highlight the pro-inflammatory cytokines as mediators in the CNS-related processes, hoping to provide insights into the pathophysiology of PTSD.

Graphical Abstract

[1]
Karnik SS, Unal H, Kemp JR, et al. International union of basic and clinical pharmacology. XCIX. angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimuli. Pharmacol Rev 2015; 67(4): 754-819.
[http://dx.doi.org/10.1124/pr.114.010454] [PMID: 26315714]
[2]
Huang RR, Hu W, Yin YY, Wang YC, Li WP, Li WZ. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice. Int J Mol Med 2015; 35(2): 553-9.
[http://dx.doi.org/10.3892/ijmm.2014.2026] [PMID: 25482165]
[3]
Galea S, Merchant RM, Lurie N. The mental health consequences of COVID-19 and physical distancing: The need for prevention and early intervention. JAMA Intern Med 2020; 180(6): 817-8.
[http://dx.doi.org/10.1001/jamainternmed.2020.1562] [PMID: 32275292]
[4]
Torales J, O’Higgins M, Castaldelli-Maia JM, et al. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soci Psy 2020; p. 0020764020915212.
[5]
Shafia S, Vafaei AA. ashidRy-Pour A. Effects of moderate treadmill exercise and fluoxetine on spatial memory and serum bdnf levels in an animal model of post-traumatic stress disorder. J Mazandaran Univ Med Sci 2019; 29: 1-17.
[6]
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 2020; 296(2): E119-20.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[7]
Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 2020; 68(2): 251-2.
[http://dx.doi.org/10.1007/s12020-020-02325-1] [PMID: 32346813]
[8]
Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 2020; 12(2): 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[9]
Glowacka I, Bertram S, Müller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011; 85(9): 4122-34.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[10]
Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-Cov2 interaction with renin angiotensin system. J Am Coll Cardiol 2020; 75(24): 3085-95.
[http://dx.doi.org/10.1016/j.jacc.2020.04.028]
[11]
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[12]
Tan BL, Norhaizan ME, Huynh K, et al. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complement Altern Med 2015; 15(1): 205.
[http://dx.doi.org/10.1186/s12906-015-0730-4] [PMID: 26122204]
[13]
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020; 11(7): 995-8.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[14]
Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun 2020; 87: 115-9.
[http://dx.doi.org/10.1016/j.bbi.2020.04.077] [PMID: 32360439]
[15]
Mao XY, Jin WL. The COVID-19 pandemic: consideration for brain infection. Neuroscience 2020; 437: 130-1.
[http://dx.doi.org/10.1016/j.neuroscience.2020.04.044] [PMID: 32380269]
[16]
Steardo L, Steardo L Jr, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf) 2020; 229(3): e13473.
[http://dx.doi.org/10.1111/apha.13473] [PMID: 32223077]
[17]
Mirza J, Ganguly A, Ostrovskaya A, Tusher A, Viswanathan R. Command suicidal hallucination as initial presentation of coronavirus disease 2019 (COVID-19): A case report. Psychosomatics 2020; 61(5): 561-4.
[http://dx.doi.org/10.1016/j.psym.2020.05.022] [PMID: 32593478]
[18]
Gibbison B, Angelini GD, Lightman SL. Dynamic output and control of the hypothalamic-pituitary-adrenal axis in critical illness and major surgery. Br J Anaesth 2013; 111(3): 347-60.
[http://dx.doi.org/10.1093/bja/aet077] [PMID: 23661405]
[19]
Steenblock C, Todorov V, Kanczkowski W, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psy 2020; pp. 1-7.
[20]
Agarwal S, Agarwal SK. Endocrine changes in SARS-CoV-2 patients and lessons from SARS-CoV. Postgrad Med J 2020; 96(1137): 412-6.
[http://dx.doi.org/10.1136/postgradmedj-2020-137934] [PMID: 32527756]
[21]
Vian J, Pereira C, Chavarria V, et al. The renin–angiotensin system: a possible new target for depression. BMC Med 2017; 15(1): 144.
[http://dx.doi.org/10.1186/s12916-017-0916-3] [PMID: 28760142]
[22]
Raony ح, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-neuroendocrine-immune interactions in COVID-19: potential impacts on mental health. Front Immunol 2020; 11: 1170.
[http://dx.doi.org/10.3389/fimmu.2020.01170] [PMID: 32574266]
[23]
Chew NWS, Lee GKH, Tan BYQ, et al. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav Immun 2020; 88: 559-65.
[http://dx.doi.org/10.1016/j.bbi.2020.04.049] [PMID: 32330593]
[24]
Mascolo A, Sessa M, Scavone C, et al. New and old roles of the peripheral and brain renin–angiotensin–aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2017; 227: 734-42.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.069] [PMID: 27823897]
[25]
Wright JW, Harding JW. The angiotensin AT 4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst 2008; 9(4): 226-37.
[http://dx.doi.org/10.1177/1470320308099084] [PMID: 19126664]
[26]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[27]
de Kloet AD, Cahill KM, Scott KA, Krause EG. Overexpression of angiotensin converting enzyme 2 reduces anxiety-like behavior in female mice. Physiol Behav 2020; 224: 113002.
[http://dx.doi.org/10.1016/j.physbeh.2020.113002] [PMID: 32525008]
[28]
Becker LK, Etelvino GM, Walther T, Santos RAS, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol 2007; 293(3): H1416-24.
[http://dx.doi.org/10.1152/ajpheart.00141.2007] [PMID: 17496218]
[29]
Saavedra JM. COVID-19, angiotensin receptor blockers, and the brain. Cell Mol Neurobiol 2020; 40(5): 667-74.
[http://dx.doi.org/10.1007/s10571-020-00861-y] [PMID: 32385549]
[30]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[31]
Liang L, Ren H, Cao R, et al. The effect of COVID-19 on youth mental health. Psy Quart 2020; pp. 1-12.
[32]
Dutheil F, Trousselard M, Perrier C, et al. Urinary interleukin-8 is a biomarker of stress in emergency physicians, especially with advancing age-the JOBSTRESS* randomized trial. PLoS One 2013; 8(8): e71658.
[http://dx.doi.org/10.1371/journal.pone.0071658] [PMID: 23977105]
[33]
Saavedra JM, Benicky J. Brain and peripheral angiotensin II play a major role in stress. Stress 2007; 10(2): 185-93.
[http://dx.doi.org/10.1080/10253890701350735] [PMID: 17514587]
[34]
Krause EG, de Kloet AD, Scott KA, et al. Blood-borne angiotensin II acts in the brain to influence behavioral and endocrine responses to psychogenic stress. J Neurosci 2011; 31(42): 15009-15.
[http://dx.doi.org/10.1523/JNEUROSCI.0892-11.2011] [PMID: 22016534]
[35]
Bregonzio C, Seltzer A, Armando I, et al. Angiotensin II AT1 receptor blockade selectively enhances brain AT2 receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats: Original research paper. Stress 2008; 11: 457-66.
[http://dx.doi.org/10.1080/10253890801892040] [PMID: 18609298]
[36]
Phua DH, Tang HK, Tham KY. Coping responses of emergency physicians and nurses to the 2003 severe acute respiratory syndrome outbreak. Acad Emerg Med 2005; 12(4): 322-8.
[http://dx.doi.org/10.1197/j.aem.2004.11.015] [PMID: 15805323]
[37]
Lee SM, Kang WS, Cho AR, Kim T, Park JK. Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compr Psychiatry 2018; 87: 123-7.
[http://dx.doi.org/10.1016/j.comppsych.2018.10.003] [PMID: 30343247]
[38]
Chevance A, Gourion D, Hoertel N, et al. Ensuring mental health care during the SARS-CoV-2 epidemic in France: A narrative review. Encephale 2020; 46(3): 193-201.
[http://dx.doi.org/10.1016/j.encep.2020.04.005] [PMID: 32370982]
[39]
Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psy Res 2020; p. 112954.
[40]
Guo Q, Zheng Y, Shi J, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav Immun 2020; 88: 17-27.
[http://dx.doi.org/10.1016/j.bbi.2020.05.038] [PMID: 32416290]
[41]
Su T, Lien T, Yang C, et al. Prevalence of psychiatric morbidity and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: A prospective and periodic assessment study in Taiwan. J Psychiatr Res 2007; 41(1-2): 119-30.
[http://dx.doi.org/10.1016/j.jpsychires.2005.12.006] [PMID: 16460760]
[42]
Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 2020; 395(10227): 912-20.
[http://dx.doi.org/10.1016/S0140-6736(20)30460-8] [PMID: 32112714]
[43]
Mak IWC, Chu CM, Pan PC, Yiu MGC, Chan VL. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiatry 2009; 31(4): 318-26.
[http://dx.doi.org/10.1016/j.genhosppsych.2009.03.001] [PMID: 19555791]
[44]
Bo H-X, Li W, Yang Y, et al. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol Med 2020; 51(6): 1-2.
[PMID: 32216863]
[45]
Karavelioğlu E, Gönül Y, Kokulu S, et al. Antiinflammatory and antiapoptotic effect of interleukine- 18 binding protein on the spinal cord ischemiareperfusion injury. Inflammation 2014; 37(3): 917-23.
[http://dx.doi.org/10.1007/s10753-014-9811-7] [PMID: 24429913]
[46]
Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav Immun 2017; 64: 208-19.
[http://dx.doi.org/10.1016/j.bbi.2017.01.011] [PMID: 28089638]
[47]
Wang W, Wang L, Xu H, et al. Characteristics of pro- and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. J Affect Disord 2019; 248: 52-8.
[http://dx.doi.org/10.1016/j.jad.2019.01.029] [PMID: 30711869]
[48]
Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci 2019; 73(4): 143-53.
[http://dx.doi.org/10.1111/pcn.12820] [PMID: 30653780]
[49]
Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995; 2(4): 241-8.
[http://dx.doi.org/10.1159/000097202] [PMID: 8963753]
[50]
Wilson CB, Ebenezer PJ, McLaughlin LD, Francis J. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One 2014; 9(2): e89104.
[http://dx.doi.org/10.1371/journal.pone.0089104] [PMID: 24551226]
[51]
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochimica et Biophysica Acta (BBA)-. Mol Cell Res 2016; 1863: 1218-27.
[52]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[53]
Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 2020; 395(10234): 1407-9.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[54]
Bartee E, McFadden G. Cytokine synergy: An underappreciated contributor to innate anti-viral immunity. Cytokine 2013; 63(3): 237-40.
[http://dx.doi.org/10.1016/j.cyto.2013.04.036] [PMID: 23693158]
[55]
Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2012; 2(3): 264-75.
[http://dx.doi.org/10.1016/j.coviro.2012.04.004] [PMID: 22572391]
[56]
Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol 2015; 32: 48-53.
[http://dx.doi.org/10.1016/j.coi.2014.12.012] [PMID: 25594890]
[57]
Braciale TJ, Hahn YS. Immunity to viruses. Immunol Rev 2013; 255(1): 5-12.
[http://dx.doi.org/10.1111/imr.12109] [PMID: 23947343]
[58]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[59]
Bruenig D, Mehta D, Morris CP, et al. Genetic and serum biomarker evidence for a relationship between TNFα and PTSD in Vietnam war combat veterans. Compr Psychiatry 2017; 74: 125-33.
[http://dx.doi.org/10.1016/j.comppsych.2017.01.015] [PMID: 28160694]
[60]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[61]
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 327-31.
[PMID: 32171193]
[62]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[63]
Haga S, Yamamoto N, Nakai-Murakami C, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci USA 2008; 105(22): 7809-14.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[64]
Silverman MN, Pearce BD, Biron CA, Miller AH. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18(1): 41-78.
[http://dx.doi.org/10.1089/vim.2005.18.41] [PMID: 15802953]
[65]
del Rey A, Besedovsky HO. Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. Front Horm Res 2017; 48: 1-18.
[http://dx.doi.org/10.1159/000452902]
[66]
McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007; 81(2): 813-21.
[http://dx.doi.org/10.1128/JVI.02012-06] [PMID: 17079315]
[67]
Chan JNM, Lee JCD, Lee SSP, et al. Interaction effect of social isolation and high dose corticosteroid on neurogenesis and emotional behavior. Front Behav Neurosci 2017; 11: 18.
[http://dx.doi.org/10.3389/fnbeh.2017.00018] [PMID: 28270754]
[68]
Alshammari TK, Alghamdi H, Alkhader LF, et al. Analysis of the molecular and behavioral effects of acute social isolation on rats. Behav Brain Res 2020; 377: 112191.
[http://dx.doi.org/10.1016/j.bbr.2019.112191] [PMID: 31473289]
[69]
Krügel U, Fischer J, Bauer K, Sack U, Himmerich H. The impact of social isolation on immunological parameters in rats. Arch Toxicol 2014; 88(3): 853-5.
[http://dx.doi.org/10.1007/s00204-014-1203-0] [PMID: 24500571]
[70]
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18(2): 132-41.
[http://dx.doi.org/10.1038/ni.3656] [PMID: 28092376]
[71]
Xiang YT, Yang Y, Li W, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psy 2020; 7(3): 228-9.
[72]
Kong X, Zheng K, Tang M, et al. Prevalence and factors associated with depression and anxiety of hospitalized patients with COVID-19. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.24.20043075]
[73]
Pull CN, Pull CB. Current status of treatment for posttraumatic stress disorder: Focus on treatments combining pharmacotherapy and cognitive-behavioral therapy. Int J Cogn Ther 2014; 7(2): 149-61.
[http://dx.doi.org/10.1521/ijct.2014.7.2.149]
[74]
Serra R, Borrazzo C, Vassalini P, et al. Post-traumatic stress disorder trajectories the year after COVID-19 hospitalization. Int J Environ Res Public Health 2022; 19(14): 8452.
[http://dx.doi.org/10.3390/ijerph19148452] [PMID: 35886306]
[75]
Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020; 89: 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[76]
Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine 2021; 31: 100683.
[http://dx.doi.org/10.1016/j.eclinm.2020.100683] [PMID: 33490928]
[77]
Tomasoni D, Bai F, Castoldi R, et al. Anxiety and depression symptoms after virological clearance of COVID-19: A cross-sectional study in Milan, Italy. J Med Virol 2021; 93(2): 1175-9.
[http://dx.doi.org/10.1002/jmv.26459] [PMID: 32841387]
[78]
Bonazza F, Borghi L, di San Marco EC, et al. Psychological outcomes after hospitalization for COVID- 19: data from a multidisciplinary follow-up screening program for recovered patients. Res Psy: Psyc Proc Outcome 2020; 23
[79]
Cai X, Hu X, Ekumi IO, et al. Psychological distress and its correlates among COVID-19 survivors during early convalescence across age groups. Am J Geriatr Psychiatry 2020; 28(10): 1030-9.
[http://dx.doi.org/10.1016/j.jagp.2020.07.003] [PMID: 32753338]
[80]
Mandal S, Barnett J, Brill SE, et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021; 76(4): 396-8.
[http://dx.doi.org/10.1136/thoraxjnl-2020-215818] [PMID: 33172844]
[81]
Speth MM, Singer-Cornelius T, Oberle M, Gengler I, Brockmeier SJ, Sedaghat AR. Mood, anxiety and olfactory dysfunction in COVID-19: evidence of central nervous system involvement? Laryngoscope 2020; 130(11): 2520-5.
[http://dx.doi.org/10.1002/lary.28964] [PMID: 32617983]
[82]
Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-A mechanistic approach. Toxicol Lett 2014; 230(2): 85-103.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.039] [PMID: 24503016]
[83]
Daher A, Balfanz P, Cornelissen C, et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir Med 2020; 174: 106197.
[http://dx.doi.org/10.1016/j.rmed.2020.106197] [PMID: 33120193]
[84]
Liu D, Wang Y, Wang J, et al. Characteristics and outcomes of a sample of patients with COVID-19 identified through social media in Wuhan, China: observational study. J Med Internet Res 2020; 22(8): e20108.
[http://dx.doi.org/10.2196/20108] [PMID: 32716901]
[85]
Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung 2021; 199(2): 113-9.
[http://dx.doi.org/10.1007/s00408-021-00423-z] [PMID: 33569660]
[86]
Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020; 7(7): 611-27.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy