Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Receptor Type Protein Tyrosine Phosphatase Epsilon (PTPRE) Plays an Oncogenic Role in Thyroid Carcinoma by Activating the AKT and ERK1/2 Signaling Pathway

Author(s): Chen Peng, Chunming Zhang, Wenjie Yu, Le Li, Zhen Zhang, Ting Liu, Yan Zhang, Gaiping Fan* and Hui Huangfu*

Volume 23, Issue 6, 2023

Published on: 15 February, 2023

Page: [471 - 481] Pages: 11

DOI: 10.2174/1568009623666230118111745

Price: $65

Abstract

Background: Thyroid carcinoma (TC) is a common malignant tumor in human and its incidence has been increasing in recent years. Studies have shown that receptor type protein tyrosine phosphatase epsilon (PTPRE) is a key regulator of tumorigenesis in cancer progression, but its role in TC has not been revealed.

Objective: Here, in this work, we explored the essential role of PTPRE in TC progression.

Methods: The expression of PTPRE in TC clinical samples and cell lines was detected by RT-qPCR and Western blot. Cell proliferation was measured by MTT and cell cycle analysis. Cell migration, invasion and epithelial-mesenchymal transition (EMT) were analyzed by wound healing, transwell, and immunofluorescent staining assays. AKT and ERK1/2 signaling pathway related protein level was analyzed by Western blot.

Results: PTPRE was highly expressed in TC clinical samples and cell lines, especially anaplastic thyroid carcinoma (ATC). High level of PTPRE was associated with tumor size and TNM stage. Upregulated PTPRE promoted cell proliferation, and enhanced the migration, invasion and EMT of TC cells, whereas the knockdown of PTPRE suppressed these behaviors. Importantly, we confirmed that the AKT and ERK1/2 signaling pathways were activated by PTPRE, reflected by the enhanced protein level of phosphorylated AKT and ERK1/2.

Conclusion: Accordingly, we indicated that PTPRE plays an oncogenic role in TC progression via activating the AKT and ERK1/2 signaling pathway. These findings indicated that modulation of PTPRE expression may as a potential strategy to interfere with the progression of TC.

Graphical Abstract

[1]
Hu, J.; Yuan, I.J.; Mirshahidi, S.; Simental, A.; Lee, S.C.; Yuan, X. Thyroid carcinoma: Phenotypic features, underlying biology and potential relevance for targeting therapy. Int. J. Mol. Sci., 2021, 22(4), 1950.
[http://dx.doi.org/10.3390/ijms22041950] [PMID: 33669363]
[2]
Sherma, S.I. Thyroid carcinoma. Lancet, 2003, 361(9356), 501-511.
[http://dx.doi.org/10.1016/S0140-6736(03)12488-9] [PMID: 12583960]
[3]
Sadowski, S.M.; Köhler, B.B.; Meyer, P.; Pusztaszeri, M.; Robert, J.H.; Triponez, F. Treatment of differentiated thyroid cancer. Rev. Med. Suisse, 2012, 8(346), 1321-1325.
[PMID: 22792596]
[4]
Kazaure, H.S.; Roman, S.A.; Sosa, J.A. Aggressive variants of papillary thyroid cancer: Incidence, characteristics and predictors of survival among 43,738 patients. Ann. Surg. Oncol., 2012, 19(6), 1874-1880.
[http://dx.doi.org/10.1245/s10434-011-2129-x] [PMID: 22065195]
[5]
Baloch, Z.W. LiVolsi, V.A. Special types of thyroid carcinoma. Histopathology, 2018, 72(1), 40-52.
[http://dx.doi.org/10.1111/his.13348] [PMID: 29239042]
[6]
Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet, 2016, 388(10061), 2783-2795.
[http://dx.doi.org/10.1016/S0140-6736(16)30172-6] [PMID: 27240885]
[7]
Nath, M.C.; Erickson, L.A. Aggressive variants of papillary thyroid carcinoma: Hobnail, tall cell, columnar, and solid. Adv. Anat. Pathol., 2018, 25(3), 172-179.
[http://dx.doi.org/10.1097/PAP.0000000000000184] [PMID: 29351089]
[8]
Skuletic, V.; Radosavljevic, G.D.; Pantic, J.; Markovic, B.S.; Jovanovic, I.; Jankovic, N.; Petrovic, D.; Jevtovic, A.; Dzodic, R.; Arsenijevic, N. Angiogenic and lymphangiogenic profiles in histological variants of papillary thyroid carcinoma. Polish Arch. Intern. Med., 2017, 127(6), 429-437.
[http://dx.doi.org/10.20452/pamw.3999] [PMID: 28425432]
[9]
Xu, X.; Jing, J. Advances on circRNAs contribute to carcinogenesis and progression in papillary thyroid carcinoma. Front. Endocrinol., 2021, 11555243
[http://dx.doi.org/10.3389/fendo.2020.555243] [PMID: 33551989]
[10]
Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Updates on WHO classification, clinicopathological features and staging. Histol. Histopathol., 2021, 36(3), 239-248.
[PMID: 33170501]
[11]
Abe, I.; Lam, A.K. Anaplastic thyroid carcinoma: Current issues in genomics and therapeutics. Curr. Oncol. Rep., 2021, 23(3), 31.
[http://dx.doi.org/10.1007/s11912-021-01019-9] [PMID: 33582932]
[12]
Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer, 2018, 17(1), 154.
[http://dx.doi.org/10.1186/s12943-018-0903-0] [PMID: 30352606]
[13]
Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC Research Consortium of Japan cohort study of 677 patients. World J. Surg., 2012, 36(6), 1247-1254.
[http://dx.doi.org/10.1007/s00268-012-1437-z] [PMID: 22311136]
[14]
Krueger, N.X.; Streuli, M.; Saito, H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J., 1990, 9(10), 3241-3252.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07523.x] [PMID: 2170109]
[15]
Fischer, E.H.; Charbonneau, H.; Tonks, N.K. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science, 1991, 253(5018), 401-406.
[http://dx.doi.org/10.1126/science.1650499] [PMID: 1650499]
[16]
Charbonneau, H.; Tonks, N.K. 1002 protein phosphatases? Annu. Rev. Cell Biol., 1992, 8(1), 463-493.
[http://dx.doi.org/10.1146/annurev.cb.08.110192.002335] [PMID: 1335746]
[17]
Hunter, T. The genesis of tyrosine phosphorylation. Cold Spring Harb. Perspect. Biol., 2014, 6(5)a020644
[http://dx.doi.org/10.1101/cshperspect.a020644] [PMID: 24789824]
[18]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[19]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[20]
Torkamani, A.; Verkhivker, G.; Schork, N.J. Cancer driver mutations in protein kinase genes. Cancer Lett., 2009, 281(2), 117-127.
[http://dx.doi.org/10.1016/j.canlet.2008.11.008] [PMID: 19081671]
[21]
Liang, J.; Shi, J.; Wang, N.; Zhao, H.; Sun, J. Tuning the protein phosphorylation by receptor type protein tyrosine phosphatase epsilon (PTPRE) in normal and cancer cells. J. Cancer, 2019, 10(1), 105-111.
[http://dx.doi.org/10.7150/jca.27633] [PMID: 30662530]
[22]
Chen, B.; Liao, Z.; Qi, Y.; Zhang, H.; Su, C.; Liang, H.; Zhang, B.; Chen, X. miR-631 inhibits intrahepatic metastasis of hepatocellular carcinoma by targeting PTPRE. Front. Oncol., 2020, 10565266
[http://dx.doi.org/10.3389/fonc.2020.565266] [PMID: 33344226]
[23]
Nunes-Xavier, C.E.; Elson, A.; Pulido, R. Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J. Biol. Chem., 2012, 287(5), 3433-3444.
[http://dx.doi.org/10.1074/jbc.M111.293928] [PMID: 22117074]
[24]
Laczmanska, I.; Laczmanski, L.; Sasiadek, M.M. Expression analysis of tyrosine phosphatase genes at different stages of renal cell carcinoma. Anticancer Res., 2020, 40(10), 5667-5671.
[http://dx.doi.org/10.21873/anticanres.14580] [PMID: 32988891]
[25]
Kabir, N.N.; Rönnstrand, L.; Kazi, J.U. Deregulation of protein phosphatase expression in acute myeloid leukemia. Med. Oncol., 2013, 30(2), 517.
[http://dx.doi.org/10.1007/s12032-013-0517-8] [PMID: 23440723]
[26]
Yu, X.M.; Schneider, D.F.; Leverson, G.; Chen, H.; Sippel, R.S. Follicular variant of papillary thyroid carcinoma is a unique clinical entity: A population-based study of 10,740 cases. Thyroid, 2013, 23(10), 1263-1268.
[http://dx.doi.org/10.1089/thy.2012.0453] [PMID: 23477346]
[27]
Tang, J.; Tian, Z.; Liao, X.; Wu, G. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer. Int. J. Biol. Sci., 2021, 17(2), 417-429.
[http://dx.doi.org/10.7150/ijbs.54194] [PMID: 33613102]
[28]
Elson, A. Protein tyrosine phosphatase ε increases the risk of mammary hyperplasia and mammary tumors in transgenic mice. Oncogene, 1999, 18(52), 7535-7542.
[http://dx.doi.org/10.1038/sj.onc.1203098] [PMID: 10602512]
[29]
Luo, K.; Lodish, H.F. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J., 1997, 16(8), 1970-1981.
[http://dx.doi.org/10.1093/emboj/16.8.1970] [PMID: 9155023]
[30]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[31]
Cicchini, C.; Amicone, L.; Alonzi, T.; Marchetti, A.; Mancone, C.; Tripodi, M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int., 2015, 35(2), 302-310.
[http://dx.doi.org/10.1111/liv.12577] [PMID: 24766136]
[32]
Liao, Z.; Chen, L.; Zhang, X.; Zhang, H.; Tan, X.; Dong, K.; Lu, X.; Zhu, H.; Liu, Q.; Zhang, Z.; Ding, Z.; Dong, W.; Zhu, P.; Chu, L.; Liang, H.; Datta, P.K.; Zhang, B.; Chen, X. PTPRε acts as a metastatic promoter in hepatocellular carcinoma by facilitating recruitment of SMAD3 to TGF-β receptor 1. Hepatology, 2020, 72(3), 997-1012.
[http://dx.doi.org/10.1002/hep.31104] [PMID: 31903610]
[33]
Wu, D.; Liu, Z.; Li, J.; Zhang, Q.; Zhong, P.; Teng, T.; Chen, M.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int., 2019, 19(1), 43.
[http://dx.doi.org/10.1186/s12935-019-0762-9] [PMID: 30858760]
[34]
Lim, Y.C.; Cha, Y.Y. Epigallocatechin-3-gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J. Surg. Oncol., 2011, 104(7), 776-780.
[http://dx.doi.org/10.1002/jso.21999] [PMID: 21725973]
[35]
Zheng, X.; Wang, S.; Hong, S.; Liu, J.; Jiang, C. Knockdown of eIF3a attenuated cell growth in K1 human thyroid cancer cells. Genes Genom, 2021, 43(4), 379-388.
[http://dx.doi.org/10.1007/s13258-021-01048-5] [PMID: 33595813]
[36]
Wabakken, T.; Hauge, H.; Finne, E.F.; Wiedlocha, A.; Aasheim, H.C. Expression of human protein tyrosine phosphatase epsilon in leucocytes: A potential ERK pathway-regulating phosphatase. Scand. J. Immunol., 2002, 56(2), 195-203.
[http://dx.doi.org/10.1046/j.1365-3083.2002.01126.x] [PMID: 12121439]
[37]
Gil-Henn, H.; Elson, A. Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J. Biol. Chem., 2003, 278(18), 15579-15586.
[http://dx.doi.org/10.1074/jbc.M210273200] [PMID: 12598528]
[38]
Granot-Attas, S.; Elson, A. Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Exp. Cell Res., 2004, 294(1), 236-243.
[http://dx.doi.org/10.1016/j.yexcr.2003.11.003] [PMID: 14980517]
[39]
Du, Y.; Grandis, J.R. Receptor-type protein tyrosine phosphatases in cancer. Chin. J. Cancer, 2015, 34(2), 61-69.
[http://dx.doi.org/10.5732/cjc.014.10146] [PMID: 25322863]
[40]
Takada, T.; Noguchi, T.; Inagaki, K.; Hosooka, T.; Fukunaga, K.; Yamao, T.; Ogawa, W.; Matozaki, T.; Kasuga, M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J. Biol. Chem., 2002, 277(37), 34359-34366.
[http://dx.doi.org/10.1074/jbc.M206541200] [PMID: 12101188]
[41]
Hou, J.; Xu, J.; Jiang, R.; Wang, Y.; Chen, C.; Deng, L.; Huang, X.; Wang, X.; Sun, B. Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology, 2013, 57(2), 678-688.
[http://dx.doi.org/10.1002/hep.25980] [PMID: 22821478]
[42]
Wang, P.; Hu, Y.; Qu, P.; Zhao, Y.; Liu, J.; Zhao, J.; Kong, B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered, 2022, 13(1), 1931-1941.
[http://dx.doi.org/10.1080/21655979.2021.2022268] [PMID: 35001804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy