Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Synthetic Methodologies and SAR of Quinazoline Derivatives as PI3K Inhibitors

Author(s): Aditya Raj, Adarsh Kumar, Ankit Kumar Singh, Harshwardhan Singh, Suresh Thareja and Pradeep Kumar*

Volume 23, Issue 9, 2023

Published on: 15 February, 2023

Page: [1013 - 1047] Pages: 35

DOI: 10.2174/1871520623666230116163424

Price: $65

Abstract

PI3K is an important anticancer target as it controls cellular functions such as growth, transformation, proliferation, motility and differentiation. Plasma cell cancer (multiple myeloma) occurs more than 10% among all haematological malignancies and accounts for 2% of all cancer-related deaths each year, it is mainly regulated by PI3K/AKT signaling cascade. Quinazoline derivatives have been reported as promising PI3K inhibitors. Lapatinib, afatinib, gefitinib, erlotinib, idelalisib and copanlisib are quinazoline-based, FDA-approved PI3K inhibitors, while compounds like NVPBYL719, GDC-0032, AZD8186, AZD-6482, etc. are under different stages of clinical trials. In light of the above-mentioned facts, in the present study, we have reported different synthetic approaches, mechanisms of anticancer action, and structure-activity relationship analysis of reported quinazoline derivatives as PI3K inhibitors to help researchers working in the field in designing better and isoform-selective PI3K inhibitors.

Next »
Graphical Abstract

[1]
World Health Organization. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Int. Agency Res. Cancer., 2020, 13-15.
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Zhang, Y.; Peng, S.; Lin, S.; Ji, M.; Du, T.; Chen, X.; Xu, H. Discovery of a novel photoswitchable PI3K inhibitor toward optically-controlled anticancer activity. Bioorg. Med. Chem., 2022, 72, 116975.
[http://dx.doi.org/10.1016/j.bmc.2022.116975] [PMID: 36049360]
[4]
Spanò, V.; Barreca, M.; Cilibrasi, V.; Genovese, M.; Renda, M.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Evaluation of fused pyrrolothiazole systems as correctors of mutant CFTR protein. Molecules, 2021, 26(5), 1275.
[http://dx.doi.org/10.3390/molecules26051275] [PMID: 33652850]
[5]
Barreca, M.; Spanò, V.; Raimondi, M.V.; Bivacqua, R.; Giuffrida, S.; Montalbano, A.; Cavalli, A.; Bertoni, F.; Barraja, P. GPCR inhibition in treating lymphoma. ACS Med. Chem. Lett., 2022, 13(3), 358-364.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00600]
[6]
Falasca, M. PI3K/Akt signalling pathway specific inhibitors: A novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des., 2010, 16(12), 1410-1416.
[http://dx.doi.org/10.2174/138161210791033950] [PMID: 20166984]
[7]
Rashid, M.; Karim, S.; Ali, B.; Khan, S.; Ahmad, M.; Husain, A.; Mishra, R. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J. Chin. Pharm. Sci., 2017, 26(9), 621-634.
[http://dx.doi.org/10.5246/jcps.2017.09.070]
[8]
Vanhaesebroeck, B.; Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res., 1999, 253(1), 239-254.
[http://dx.doi.org/10.1006/excr.1999.4701] [PMID: 10579926]
[9]
Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA, 2007, 104(19), 7809-7814.
[http://dx.doi.org/10.1073/pnas.0700373104] [PMID: 17470792]
[10]
Maehama, T.; Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 1998, 273(22), 13375-13378.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[11]
Wu, P.; Su, Y.; Liu, X.; Yang, B.; He, Q.; Hu, Y. Discovery of novel 2-piperidinol-3-(arylsulfonyl)quinoxalines as phosphoinositide 3-kinase α (PI3Kα) inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2837-2844.
[http://dx.doi.org/10.1016/j.bmc.2012.03.026] [PMID: 22480851]
[12]
Ando, Y.; Iwasa, S.; Takahashi, S.; Saka, H.; Kakizume, T.; Natsume, K.; Suenaga, N.; Quadt, C.; Yamada, Y. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci., 2019, 110(3), 1021-1031.
[http://dx.doi.org/10.1111/cas.13923] [PMID: 30588709]
[13]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.012] [PMID: 26807863]
[14]
Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383.
[http://dx.doi.org/10.3109/07853890.2014.912836] [PMID: 24897931]
[15]
Wick, M.J.; Dong, L.Q.; Riojas, R.A.; Ramos, F.J.; Liu, F. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem., 2000, 275(51), 40400-40406.
[http://dx.doi.org/10.1074/jbc.M003937200] [PMID: 11006271]
[16]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials 06 biological sciences 0601 biochemistry and cell biology. Mol. Cancer, 2019, 18, 1-28.
[17]
Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur. J. Med. Chem., 2019, 183, 111718.
[http://dx.doi.org/10.1016/j.ejmech.2019.111718] [PMID: 31581005]
[18]
Gupta, A.K.; Cerniglia, G.J.; Mick, R.; Ahmed, M.S.; Bakanauskas, V.J.; Muschel, R.J.; McKenna, W.G. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int. J. Radiat. Oncol. Biol. Phys., 2003, 56(3), 846-853.
[http://dx.doi.org/10.1016/S0360-3016(03)00214-1] [PMID: 12788194]
[19]
Liu, Y.; Jiang, N.; Wu, J.; Dai, W.; Rosenblum, J.S. Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J. Biol. Chem., 2007, 282(4), 2505-2511.
[http://dx.doi.org/10.1074/jbc.M609603200] [PMID: 17135248]
[20]
Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919.
[http://dx.doi.org/10.1016/S1097-2765(05)00089-4] [PMID: 11090628]
[21]
Liu, N.; Rowley, B.R.; Bull, C.O.; Schneider, C.; Haegebarth, A.; Schatz, C.A.; Fracasso, P.R.; Wilkie, D.P.; Hentemann, M.; Wilhelm, S.M.; Scott, W.J.; Mumberg, D.; Ziegelbauer, K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013, 12(11), 2319-2330.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0993-T] [PMID: 24170767]
[22]
Meng, D.; He, W.; Zhang, Y.; Liang, Z.; Zheng, J.; Zhang, X.; Zheng, X.; Zhan, P.; Chen, H.; Li, W.; Cai, L. Development of PI3K inhibitors: Advances in clinical trials and new strategies. Pharmacol. Res., 2021, 173, 105900.
[http://dx.doi.org/10.1016/j.phrs.2021.105900] [PMID: 34547385]
[23]
Scott, W.J.; Hentemann, M.F.; Rowley, R.B.; Bull, C.O.; Jenkins, S.; Bullion, A.M.; Johnson, J.; Redman, A.; Robbins, A.H.; Esler, W.; Fracasso, R.P.; Garrison, T.; Hamilton, M.; Michels, M.; Wood, J.E.; Wilkie, D.P.; Xiao, H.; Levy, J.; Stasik, E.; Liu, N.; Schaefer, M.; Brands, M.; Lefranc, J. Discovery and SAR of Novel 2,3-Dihydroimidazo[1,2-c]quinazoline PI3K Inhibitors: Identification of Copanlisib (BAY 80-6946). ChemMedChem, 2016, 11(14), 1517-1530.
[http://dx.doi.org/10.1002/cmdc.201600148] [PMID: 27310202]
[24]
Soulières, D.; Faivre, S.; Mesía, R.; Remenár, É.; Li, S.H.; Karpenko, A.; Dechaphunkul, A.; Ochsenreither, S.; Kiss, L.A.; Lin, J.C.; Nagarkar, R.; Tamás, L.; Kim, S.B.; Erfán, J.; Alyasova, A.; Kasper, S.; Barone, C.; Turri, S.; Chakravartty, A.; Chol, M.; Aimone, P.; Hirawat, S.; Licitra, L. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol., 2017, 18(3), 323-335.
[http://dx.doi.org/10.1016/S1470-2045(17)30064-5] [PMID: 28131786]
[25]
de Gooijer, M.C.; Zhang, P.; Buil, L.C.M.; Çitirikkaya, C.H.; Thota, N.; Beijnen, J.H.; van Tellingen, O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci. Rep., 2018, 8(1), 10784.
[http://dx.doi.org/10.1038/s41598-018-29062-w] [PMID: 30018387]
[26]
Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci., 2021, 22(7), 3464.
[http://dx.doi.org/10.3390/ijms22073464] [PMID: 33801659]
[27]
Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. Phosphatidylinositol 3-kinase (PI3K) inhibitors: A recent update on inhibitor design and clinical trials (2016-2020). Expert Opin. Ther. Pat., 2021, 31(10), 877-892.
[http://dx.doi.org/10.1080/13543776.2021.1924150] [PMID: 33970742]
[28]
Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin. Cancer Res., 2017, 23(1), 26-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0134] [PMID: 27126994]
[29]
André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; Inoue, K.; Pápai, Z.; Takahashi, M.; Ghaznawi, F.; Mills, D.; Kaper, M.; Miller, M.; Conte, P.F.; Iwata, H.; Rugo, H.S. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2–negative advanced breast cancer: final overall survival results from SOLAR-1. Ann. Oncol., 2021, 32(2), 208-217.
[http://dx.doi.org/10.1016/j.annonc.2020.11.011] [PMID: 33246021]
[30]
Wu, P.; Su, Y.; Liu, X.; Zhang, L.; Ye, Y.; Xu, J.; Weng, S.; Li, Y.; Liu, T.; Huang, S.; Yang, B.; He, Q.; Hu, Y. Synthesis and biological evaluation of novel 2-arylamino-3-(arylsulfonyl)quinoxalines as PI3Kα inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5540-5548.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.015] [PMID: 21945250]
[31]
Furet, P.; Guagnano, V.; Fairhurst, R.A.; Imbach-Weese, P.; Bruce, I.; Knapp, M.; Fritsch, C.; Blasco, F.; Blanz, J.; Aichholz, R.; Hamon, J.; Fabbro, D.; Caravatti, G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett., 2013, 23(13), 3741-3748.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.007] [PMID: 23726034]
[32]
Juric, D.; de Bono, J.S.; LoRusso, P.M.; Nemunaitis, J.; Heath, E.I.; Kwak, E.L.; Macarulla Mercadé, T.; Geuna, E.; Jose de Miguel-Luken, M.; Patel, C.; Kuida, K.; Sankoh, S.; Westin, E.H.; Zohren, F.; Shou, Y.; Tabernero, J. A first-in-human, Phase I, dose-escalation study of TAK-117. A selective PI3Ka isoform inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res., 2017, 23(17), 5015-5023.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2888] [PMID: 28490463]
[33]
Dent, S.; Cortés, J.; Im, Y.H.; Diéras, V.; Harbeck, N.; Krop, I.E.; Wilson, T.R.; Cui, N.; Schimmoller, F.; Hsu, J.Y.; He, J.; De Laurentiis, M.; Sousa, S.; Drullinsky, P.; Jacot, W. Phase III randomized study of taselisib or placebo with fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann. Oncol., 2021, 32(2), 197-207.
[http://dx.doi.org/10.1016/j.annonc.2020.10.596] [PMID: 33186740]
[34]
Mateo, J.; Ganji, G.; Lemech, C.; Burris, H.A.; Han, S.W.; Swales, K.; Decordova, S.; DeYoung, M.P.; Smith, D.A.; Kalyana-Sundaram, S.; Wu, J.; Motwani, M.; Kumar, R.; Tolson, J.M.; Rha, S.Y.; Chung, H.C.; Eder, J.P.; Sharma, S.; Bang, Y.J.; Infante, J.R.; Yan, L.; de Bono, J.S.; Arkenau, H.T. A first-time-inhuman study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2017, 23(19), 5981-5992.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0725] [PMID: 28645941]
[35]
Shah, A.; Mangaonkar, A. Idelalisib. Ann. Pharmacother., 2015, 49(10), 1162-1170.
[http://dx.doi.org/10.1177/1060028015594813] [PMID: 26185276]
[36]
Somoza, J.R.; Koditek, D.; Villaseñor, A.G.; Novikov, N.; Wong, M.H.; Liclican, A.; Xing, W.; Lagpacan, L.; Wang, R.; Schultz, B.E.; Papalia, G.A.; Samuel, D.; Lad, L.; McGrath, M.E. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ. J. Biol. Chem., 2015, 290(13), 8439-8446.
[http://dx.doi.org/10.1074/jbc.M114.634683] [PMID: 25631052]
[37]
Burris, H.A., III; Flinn, I.W.; Patel, M.R.; Fenske, T.S.; Deng, C.; Brander, D.M.; Gutierrez, M.; Essell, J.H.; Kuhn, J.G.; Miskin, H.P.; Sportelli, P.; Weiss, M.S.; Vakkalanka, S.; Savona, M.R.; O’Connor, O.A. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol., 2018, 19(4), 486-496.
[http://dx.doi.org/10.1016/S1470-2045(18)30082-2] [PMID: 29475723]
[38]
Evans, C.A.; Liu, T.; Lescarbeau, A.; Nair, S.J.; Grenier, L.; Pradeilles, J.A.; Glenadel, Q.; Tibbitts, T.; Rowley, A.M.; DiNitto, J.P.; Brophy, E.E.; O’Hearn, E.L.; Ali, J.A.; Winkler, D.G.; Goldstein, S.I.; O’Hearn, P.; Martin, C.M.; Hoyt, J.G.; Soglia, J.R.; Cheung, C.; Pink, M.M.; Proctor, J.L.; Palombella, V.J.; Tremblay, M.R.; Castro, A.C. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett., 2016, 7(9), 862-867.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00238] [PMID: 27660692]
[39]
Drew, S.L.; Thomas-Tran, R.; Beatty, J.W.; Fournier, J.; Lawson, K.V.; Miles, D.H.; Mata, G.; Sharif, E.U.; Yan, X.; Mailyan, A.K.; Ginn, E.; Chen, J.; Wong, K.; Soni, D.; Dhanota, P.; Chen, P.Y.; Shaqfeh, S.G.; Meleza, C.; Pham, A.T.; Chen, A.; Zhao, X.; Banuelos, J.; Jin, L.; Schindler, U.; Walters, M.J.; Young, S.W.; Walker, N.P.; Leleti, M.R.; Powers, J.P.; Jeffrey, J.L. Discovery of potent and selective PI3Kγ inhibitors. J. Med. Chem., 2020, 63(19), 11235-11257.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01203] [PMID: 32865410]
[40]
Sarker, D.; Ang, J.E.; Baird, R.; Kristeleit, R.; Shah, K.; Moreno, V.; Clarke, P.A.; Raynaud, F.I.; Levy, G.; Ware, J.A.; Mazina, K.; Lin, R.; Wu, J.; Fredrickson, J.; Spoerke, J.M.; Lackner, M.R.; Yan, Y.; Friedman, L.S.; Kaye, S.B.; Derynck, M.K.; Workman, P.; de Bono, J.S. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(1), 77-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0947] [PMID: 25370471]
[41]
Blair, H.A. Duvelisib: First global approval. Drugs, 2018, 78(17), 1847-1853.
[http://dx.doi.org/10.1007/s40265-018-1013-4] [PMID: 30430368]
[42]
Zhang, M.; Jang, H.; Nussinov, R.; Nussinov, R. PI3K inhibitors: Review and new strategies. Chem. Sci., 2020, 11(23), 5855-5865.
[http://dx.doi.org/10.1039/D0SC01676D] [PMID: 32953006]
[43]
Welker, M.E.; Kulik, G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4063-4091.
[http://dx.doi.org/10.1016/j.bmc.2013.04.083] [PMID: 23735831]
[44]
Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
[45]
Heffron, T.P.; Ndubaku, C.O.; Salphati, L.; Alicke, B.; Cheong, J.; Drobnick, J.; Edgar, K.; Gould, S.E.; Lee, L.B.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Plise, E.G.; Sideris, S.; Wallin, J.; Wang, L.; Zhang, X.; Olivero, A.G. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett., 2016, 7(4), 351-356.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00005] [PMID: 27096040]
[46]
Kumar, A.; Singh, A.K.; Thareja, S.; Kumar, P. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents, 2022, 21(2), 23.
[http://dx.doi.org/10.2174/2211352520666220705085733]
[47]
Rahman, M.U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M.S. Quinazolines and anticancer activity: A current perspectives. Synth. Commun., 2017, 47(5), 379-408.
[http://dx.doi.org/10.1080/00397911.2016.1269926]
[48]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[49]
Mohammadkhani, L.; Heravi, M.M. Microwave-assisted synthesis of quinazolines and quinazolinones: An overview. Front Chem., 2020, 8, 580086.
[http://dx.doi.org/10.3389/fchem.2020.580086] [PMID: 33282829]
[50]
Karan, R.; Agarwal, P.; Sinha, M.; Mahato, N. Recent advances on quinazoline derivatives: A potential bioactive scaffold in medicinal chemistry. Chem. Engineering, 2021, 5(4), 73.
[http://dx.doi.org/10.3390/chemengineering5040073]
[51]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 1-27.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[52]
Szumilak, M.; Lichota, A.; Olczak, A.; Szczesio, M.; Stańczak, A. Molecular insight into quinazoline derivatives with cytotoxic activity. J. Mol. Struct., 2019, 1194, 28-34.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.042]
[53]
Rahman, M.U.; Rathore, A.; Siddiqui, A.A.; Parveen, G.; Yar, M.S. Synthesis and characterization of quinazoline derivatives: Search for hybrid molecule as diuretic and antihypertensive agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 733-743.
[http://dx.doi.org/10.3109/14756366.2013.845820] [PMID: 24156743]
[54]
Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.H.; Aljaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.067] [PMID: 20817329]
[55]
Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.072] [PMID: 24813877]
[56]
Xie, D.; Shi, J.; Zhang, A.; Lei, Z.; Zu, G.; Fu, Y.; Gan, X.; Yin, L.; Song, B.; Hu, D. Syntheses, antiviral activities and induced resistance mechanisms of novel quinazoline derivatives containing a dithioacetal moiety. Bioorg. Chem., 2018, 80, 433-443.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.026] [PMID: 29986188]
[57]
Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M.J.; Haider, M.R.; Yar, M.S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun., 2018, 48(10), 1099-1127.
[http://dx.doi.org/10.1080/00397911.2018.1431282]
[58]
Verma, N.; Rai, A.K.; Kaushik, V.; Brünnert, D.; Chahar, K.R.; Pandey, J.; Goyal, P. Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Sci. Rep., 2016, 6(1), 33949.
[http://dx.doi.org/10.1038/srep33949] [PMID: 27653775]
[59]
Tarceva, E.; Cohen, M.H.; Johnson, J.R.; Chen, Y.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. 2005, 10, 461-466.
[60]
Cameron, D.A.; Stein, S. Drug insight: Intracellular inhibitors of HER2-clinical development of lapatinib in breast cancer. Nat. Clin. Pract. Oncol., 2008, 5(9), 512-520.
[http://dx.doi.org/10.1038/ncponc1156] [PMID: 18594499]
[61]
Abbas, S.Y. 4(3H)-quinazolinone derivatives: Syntheses, physical properties, chemical reaction, and biological properties. Quinazolinone Quinazoline Deriv., 2020, 4, 1-22.
[http://dx.doi.org/10.5772/intechopen.90104]
[62]
Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp(3) C-H functionalization. Org. Lett., 2010, 12(12), 2841-2843.
[http://dx.doi.org/10.1021/ol100954x] [PMID: 20481477]
[63]
Hashem, H.E. Synthesis of quinazoline and quinazolinone derivatives. Quinazolinone Quinazoline Deriv., 2020, 4, 1-12.
[64]
Sen, S.; Hati, S. Synthesis of quinazolines and dihydroquinazolines: o-iodoxybenzoic acid mediated tandem reaction of o-aminobenzylamine with aldehydes. Synthesis, 2016, 48(9), 1389-1398.
[http://dx.doi.org/10.1055/s-0035-1560416]
[65]
Karnakar, K.; Shankar, J.; Murthy, S.N.; Ramesh, K.; Nageswar, Y.V.D. An efficient protocol for the synthesis of 2-phenylquinazolines catalyzed by ceric ammonium nitrate (CAN). Synlett, 2011, 1089-1096.
[66]
Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[67]
Tian, X.C.; Huang, X.; Wang, D.; Gao, F. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water. Chem. Pharm. Bull., 2014, 62(8), 824-829.
[http://dx.doi.org/10.1248/cpb.c14-00264] [PMID: 24920051]
[68]
Sharif, M. Quinazolin-4(3H)-ones: A tangible synthesis protocol via an oxidative olefin bond cleavage using metal-catalyst free conditions. Appl. Sci., 2020, 10(8), 2815.
[http://dx.doi.org/10.3390/app10082815]
[69]
Ferrini, S.; Ponticelli, F.; Taddei, M. Convenient synthetic approach to 2,4-disubstituted quinazolines. Org. Lett., 2007, 9(1), 69-72.
[http://dx.doi.org/10.1021/ol062540s] [PMID: 17192087]
[70]
Bansal, R.; Malhotra, A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur. J. Med. Chem., 2021, 211, 113016.
[http://dx.doi.org/10.1016/j.ejmech.2020.113016] [PMID: 33243532]
[71]
Fan, Y.H.; Ding, H.W.; Liu, D.D.; Song, H.R.; Xu, Y.N.; Wang, J. Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Kα inhibition. Bioorg. Med. Chem., 2018, 26(8), 1675-1685.
[http://dx.doi.org/10.1016/j.bmc.2018.02.015] [PMID: 29475582]
[72]
Xi, L.; Zhang, J.Q.; Liu, Z.C.; Zhang, J.H.; Yan, J.F.; Jin, Y.; Lin, J. Novel 5-anilinoquinazoline-8-nitro derivatives as inhibitors of VEGFR-2 tyrosine kinase: Synthesis, biological evaluation and molecular docking. Org. Biomol. Chem., 2013, 11(26), 4367-4378.
[http://dx.doi.org/10.1039/c3ob40368h] [PMID: 23715382]
[73]
Wu, X.; Li, M.; Qu, Y.; Tang, W.; Zheng, Y.; Lian, J.; Ji, M.; Xu, L. Design and synthesis of novel Gefitinib analogues with improved anti-tumor activity. Bioorg. Med. Chem., 2010, 18(11), 3812-3822.
[http://dx.doi.org/10.1016/j.bmc.2010.04.046] [PMID: 20466555]
[74]
Ding, H.W.; Deng, C.L.; Li, D.D.; Liu, D.D.; Chai, S.M.; Wang, W.; Zhang, Y.; Chen, K.; Li, X.; Wang, J.; Song, S.J.; Song, H.R. Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFR-PI3Kα. Eur. J. Med. Chem., 2018, 146, 460-470.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.081] [PMID: 29407971]
[75]
Yadav, R.R.; Guru, S.K.; Joshi, P.; Mahajan, G.; Mintoo, M.J.; Kumar, V.; Bharate, S.S.; Mondhe, D.M.; Vishwakarma, R.A.; Bhushan, S.; Bharate, S.B. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. Eur. J. Med. Chem., 2016, 122, 731-743.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.006] [PMID: 27479483]
[76]
Fan, Y.H.; Li, W.; Liu, D.D.; Bai, M.X.; Song, H.R.; Xu, Y.N.; Lee, S.; Zhou, Z.P.; Wang, J.; Ding, H.W. Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur. J. Med. Chem., 2017, 139, 95-106.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.074] [PMID: 28800461]
[77]
Al-Ashmawy, A.A.K.; Elokely, K.M.; Perez-Leal, O.; Rico, M.; Gordon, J.; Mateo, G.; Omar, A.M.; Abou-Gharbia, M.; Childers, W.E. Jr Discovery and SAR of novel disubstituted quinazolines as dual PI3Kalpha/mTOR inhibitors targeting breast cancer. ACS Med. Chem. Lett., 2020, 11(11), 2156-2164.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00289] [PMID: 33214824]
[78]
Shao, T.; Wang, J.; Chen, J.G.; Wang, X.M.; Li, H.; Li, Y.P.; Li, Y.; Yang, G.D.; Mei, Q.B.; Zhang, S.Q. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Eur. J. Med. Chem., 2014, 75, 96-105.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.053] [PMID: 24530495]
[79]
Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery and optimization of 2-amino-4-methylquinazoline derivatives as highly potent phosphatidylinositol 3-kinase inhibitors for cancer treatment. J. Med. Chem., 2018, 61(14), 6087-6109.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00416] [PMID: 29927604]
[80]
Zeid, I.F.; Mohamed, N.A.; Khalifa, N.M.; Kassem, E.M.; Nossier, E.S.; Salman, A.A.; Mahmoud, K.; Al-Omar, M.A. PI3K inhibitors of novel hydrazide analogues linked 2-pyridinyl quinazolone scaffold as anticancer agents. J. Chem., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/6321573]
[81]
Hu, H.; Dong, Y.; Li, M.; Wang, R.; Zhang, X.; Gong, P.; Zhao, Y. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine and quinazoline derivatives as potent antitumor agents. Bioorg. Chem., 2019, 90, 103086.
[http://dx.doi.org/10.1016/j.bioorg.2019.103086] [PMID: 31280016]
[82]
Zhang, H.; Xin, M.H.; Xie, X.X.; Mao, S.; Zuo, S.J.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety. Bioorg. Med. Chem., 2015, 23(24), 7765-7776.
[http://dx.doi.org/10.1016/j.bmc.2015.11.027] [PMID: 26652969]
[83]
Wang, X.M.; Xin, M.H.; Xu, J.; Kang, B.R.; Li, Y.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo. Eur. J. Med. Chem., 2015, 96, 382-395.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.037] [PMID: 25911625]
[84]
Dong, J,; Huang, J,; Zhou, J,; Tan, Y,; Jin, J,; Tan, X,; Wang, B,; Yu, T,; Wu, C,; Chen, S,; Wang, TL. Discovery of 3-Quinazolin-4(3H)-on-3-yl-2,N-dimethylpropanamides as Orally Active and Selective PI3Kα Inhibitors CS Med. Chem. Lett., 2020, 11, 1463-1469.
[85]
Minhang, X.; Hei, Y.; Hao, Z.; Mao, S. Discovery of 6-benzamide containing 4-phenylquinazoline derivatives as novel PI3K δ inhibitors. Eur. J. Med. Chem., 2017, 14, 167-174.
[86]
Teng, Y.; Li, X.; Ren, S.; Cheng, Y.; Xi, K.; Shen, H.; Ma, W.; Luo, G.; Xiang, H. Discovery of novel quinazoline derivatives as potent PI3Kδ inhibitors with high selectivity. Eur. J. Med. Chem., 2020, 208, 112865.
[http://dx.doi.org/10.1016/j.ejmech.2020.112865] [PMID: 32987316]
[87]
Kim, Y.S.; Cheon, M.G.; Boggu, P.R.; Koh, S.Y.; Park, G.M.; Kim, G.; Park, S.H.; Park, S.L.; Lee, C.W.; Kim, J.W.; Jung, Y.H. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg. Med. Chem., 2021, 45, 116312.
[http://dx.doi.org/10.1016/j.bmc.2021.116312] [PMID: 34332211]
[88]
Feng, Y.; Duan, W.; Fan, S.; Zhang, H.; Zhang, S.Q.; Xin, M. Synthesis and biological evaluation of 4-(piperid-3-yl)amino substituted 6-pyridylquinazolines as potent PI3Kδ inhibitors. Bioorg. Med. Chem., 2019, 27(19), 115035.
[http://dx.doi.org/10.1016/j.bmc.2019.07.051] [PMID: 31434616]
[89]
Wei, M.; Zhang, X.; Wang, X.; Song, Z.; Ding, J. Phosphoinositide 3-kinase delta (PI3K d) inhibitors. Eur. J. Med. Chem., 2017, 125, 1156-1171.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.014] [PMID: 27846451]
[90]
Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. Discovery of novel quinazolinone derivatives as high potent and selective PI3Kδ and PI3Kδ/γ inhibitors. Eur. J. Med. Chem., 2018, 151, 9-17.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.068] [PMID: 29601991]
[91]
Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7(8), 762-767.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00119] [PMID: 27563400]
[92]
Ma, X.; Wei, J.; Wang, C.; Gu, D.; Hu, Y.; Sheng, R. Design, synthesis and biological evaluation of novel benzothiadiazine derivatives as potent PI3Kδ-selective inhibitors for treating B-cell-mediated malignancies. Eur. J. Med. Chem., 2019, 170, 112-125.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.005] [PMID: 30878826]
[93]
Peng, X.X.; Feng, K.R.; Ren, Y.J. Molecular modeling studies of quinazolinone derivatives as novel PI3Kδ selective inhibitors. RSC Advances, 2017, 7(89), 56344-56358.
[http://dx.doi.org/10.1039/C7RA10870B]
[94]
Xin, M.; Hei, Y.Y.; Zhang, H.; Shen, Y.; Zhang, S.Q. Design and synthesis of novel 6-aryl substituted 4-anilinequinazoline derivatives as potential PI3Kδ inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(9), 1972-1977.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.020] [PMID: 28325601]
[95]
Xin, M.; Duan, W.; Feng, Y.; Hei, Y.; Zhang, H.; Shen, Y.; Zhao, H.; Mao, S.; Zhang, S. Bioorganic and medicinal chemistry novel 6-aryl substituted 4-pyrrolidineaminoquinazoline derivatives as potent phosphoinositide 3-kinase delta (PI3K d) inhibitors. Bioorg. Med. Chem., 2018, 26, 2028-2040.
[http://dx.doi.org/10.1016/j.bmc.2018.03.002] [PMID: 29534936]
[96]
Ding, H.W.; Wang, S.; Qin, X.C.; Wang, J.; Song, H.R.; Zhao, Q.C.; Song, S.J. Design, synthesis, and biological evaluation of some novel 4-aminoquinazolines as Pan-PI3K inhibitors. Bioorg. Med. Chem., 2019, 27(13), 2729-2740.
[http://dx.doi.org/10.1016/j.bmc.2019.04.024] [PMID: 31097403]
[97]
Thakur, A.; Tawa, G.J.; Henderson, M.J.; Danchik, C.; Liu, S.; Shah, P.; Wang, A.Q.; Dunn, G.; Kabir, M.; Padilha, E.C.; Xu, X.; Simeonov, A.; Kharbanda, S.; Stone, R.; Grewal, G. Design, synthesis, and biological evaluation of quinazolin-4-one-based hydroxamic acids as dual PI3K/HDAC inhibitors. J. Med. Chem., 2020, 63(8), 4256-4292.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00193] [PMID: 32212730]
[98]
Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00390] [PMID: 31117517]
[99]
Wang, Z.; Liu, L.; Dai, H.; Si, X.; Zhang, L.; Li, E.; Yang, Z.; Chao, G.; Zheng, J.; Ke, Y.; Lihong, S.; Zhang, Q.; Liu, H. Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg. Med. Chem., 2021, 43, 116265.
[http://dx.doi.org/10.1016/j.bmc.2021.116265] [PMID: 34192644]
[100]
Nara, S.; Garlapati, A. Design, synthesis and molecular docking study of hybrids of quinazolin-4 (3H)-one as anticancer agents: Design, synthesis and study of molecular coupling of hybrids of quinazolino. Ars Pharm., 2018, 4, 121-131.
[101]
Zheng, Y.G.; Zhang, W.Q.; Meng, L.; Wu, X.Q.; Zhang, L.; An, L.; Li, C.L.; Gao, C.Y.; Xu, L.; Liu, Y. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur. J. Med. Chem., 2020, 202, 112522.
[http://dx.doi.org/10.1016/j.ejmech.2020.112522] [PMID: 32619886]
[102]
Zhang, K.; Ji, M.; Lin, S.; Peng, S.; Zhang, Z.; Zhang, M.; Zhang, J.; Zhang, Y.; Wu, D.; Tian, H.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of a novel photocaged PI3K inhibitor toward precise cancer treatment. J. Med. Chem., 2021, 64(11), 7331-7340.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02186] [PMID: 33876637]
[103]
Wani, Z.A.; Guru, S.K.; Rao, A.V.S.; Sharma, S.; Mahajan, G.; Behl, A.; Kumar, A.; Sharma, P.R.; Kamal, A.; Bhushan, S.; Mondhe, D.M. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem. Toxicol., 2016, 87, 1-11.
[http://dx.doi.org/10.1016/j.fct.2015.11.016] [PMID: 26615871]
[104]
Srinivas, M.; Singh Pathania, A.; Mahajan, P.; Verma, P.K.; Chobe, S.S.; Malik, F.A.; Nargotra, A.; Vishwakarma, R.A.; Sawant, S.D. Design and synthesis of 1,4-substituted 1H-1,2,3-triazolo-quinazolin-4(3H)-ones by Huisgen 1,3-dipolar cycloaddition with PI3Kγ isoform selective activity. Bioorg. Med. Chem. Lett., 2018, 28(6), 1005-1010.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.032] [PMID: 29486969]
[105]
Hei, Y.Y.; Xin, M.; Zhang, H.; Xie, X.X.; Mao, S.; Zhang, S.Q. Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(18), 4408-4413.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.015] [PMID: 27544401]
[106]
Yang, H.; Li, Q.; Su, M.; Luo, F.; Liu, Y.; Wang, D.; Fan, Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg. Med. Chem., 2021, 46, 116346.
[http://dx.doi.org/10.1016/j.bmc.2021.116346] [PMID: 34403956]
[107]
Wu, Y.; Dai, W.; Chen, X.; Geng, A.; Chen, Y.; Lu, T.; Zhu, Y. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-c]quinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors. RSC Advances, 2017, 7(82), 52180-52186.
[http://dx.doi.org/10.1039/C7RA08835C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy