Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Biological Evaluation of a Class of TEMPOmodified Naphthalimide Derivatives with Good Selectivity for Tumor Cells

Author(s): Qingqing Hao, Yujiao Zhang and Xuliang Jiang*

Volume 21, Issue 4, 2024

Published on: 17 January, 2023

Page: [790 - 798] Pages: 9

DOI: 10.2174/1570180820666230112165606

Price: $65

Abstract

Background: Naphthalimides have been receiving continuous attention for their outstanding performance in treating cancer. However, as a class of cytotoxic anti-tumor agents, their toxic side effects greatly limit their clinical application. Therefore, developing naphthalimide reagents with good selectivity for tumor cells is of great importance.

Methods: A class of TEMPO-modified naphthalimide derivatives substituted with oxygen at the 6- position were designed, synthesized, and evaluated for the anti-tumor activity in vitro against three cancer cell lines (A549, MCF-7, and HeLa) as well as one normal human liver cell line (QSG-7701) by MTT assay. HRMS (or MS) and EPR spectra were used to identify the structures of target compounds. The UV–vis titration absorption spectra were performed to study the interaction between compounds and DNA.

Results: The target compounds NT3, NT9, NT10, NT11, and NT12 exhibited moderate inhibition to all the three tested tumor cell lines, while NT1, NT2, and NT4 showed selectivity against A549, All the target compounds did not show measurable activities in QSG-7701, which imply the target compounds are likely to overcome the nonspecific toxicity against normal cells. UV-vis spectra showed this class of compounds could effectively intercalate into DNA and selectively bind to G-C base pairs.

Conclusion: A novel class of TEMPO-modified naphthalimide derivatives substituted with oxygen at 6- position and the preliminary discussion on their SARs provide promising opportunities to guide further research on naphthalimide derivatives as anti-tumor agents.

Graphical Abstract

[1]
International Agency for Research on Cancer Global Cancer Observatory. Available from: https://gco.iarc.fr/today
[2]
Ingrassia, L.; Lefranc, F.; Kiss, R.; Mijatovic, T. Naphthalimides and azonafides as promising anti-cancer agents. Curr. Med. Chem., 2009, 16(10), 1192-1213.
[http://dx.doi.org/10.2174/092986709787846659] [PMID: 19355879]
[3]
Díaz-Rubio, E.; Martín, M.; López-Vega, J.M.; Casado, A.; Benavides, A. Phase I study of mitonafide with a 3-day administration schedule: early interruption due to severe central nervous system toxicity. Invest. New Drugs, 1994, 12(4), 277-281.
[http://dx.doi.org/10.1007/BF00873041] [PMID: 7775127]
[4]
Linke, K.; Pazdur, R.; Abbruzzese, J.; Ajani, J.; Winn, R.; Bradof, J.; Daugherty, K.; Levin, B. Phase II study of amonafide in advanced pancreatic adenocarcinoma. Invest. New Drugs, 1991, 9(4), 353-356.
[http://dx.doi.org/10.1007/BF00183580] [PMID: 1804812]
[5]
Perez, R.P.; Nash, S.L.; Ozols, R.F.; Comis, R.L.; O’Dwyer, P.J. Phase II study of amonafide in advanced and recurrent sarcoma patients. Invest. New Drugs, 1992, 10(2), 99-101.
[http://dx.doi.org/10.1007/BF00873125] [PMID: 1500272]
[6]
Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159, 393-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.055] [PMID: 30312931]
[7]
Tandon, R.; Luxami, V.; Kaur, H.; Tandon, N.; Paul, K. 1,8-Naphthalimide: a potent DNA intercalator and target for cancer therapy. Chem. Rec., 2017, 17(10), 956-993.
[http://dx.doi.org/10.1002/tcr.201600134] [PMID: 28375569]
[8]
Nekvinda, J. Różycka, D.; Rykowski, S.; Wyszko, E.; Fedoruk-Wyszomirska, A.; Gurda, D.; Orlicka-Płocka, M.; Giel-Pietraszuk, M.; Kiliszek, A.; Rypniewski, W.; Bachorz, R.; Wojcieszak, J.; Grüner, B.; Olejniczak, A.B. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorg. Chem., 2020, 94103432
[http://dx.doi.org/10.1016/j.bioorg.2019.103432] [PMID: 31776032]
[9]
Costales, P.; Ríos-Lombardía, N.; Lorenzo-Herrero, S.; Morís, F.; González-Sabín, J. Novel chiral naphthalimide-cycloalkanediamine conjugates: Design, synthesis and antitumor activity. Bioorg. Chem., 2021, 112104859
[http://dx.doi.org/10.1016/j.bioorg.2021.104859] [PMID: 33836453]
[10]
Rykowski, S. Gurda-Woźna, D.; Orlicka-Płocka, M.; Fedoruk-Wyszomirska, A.; Giel-Pietraszuk, M.; Wyszko, E.; Kowalczyk, A.; Stączek, P.; Bak, A.; Kiliszek, A.; Rypniewski, W.; Olejniczak, A.B. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci., 2021, 22(5), 2772.
[http://dx.doi.org/10.3390/ijms22052772] [PMID: 33803403]
[11]
Singh, I.; Luxami, V.; Choudhury, D.; Paul, K. Synthesis and photobiological applications of naphthalimide–benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition. RSC Advances, 2021, 12(1), 483-497.
[http://dx.doi.org/10.1039/D1RA04148G] [PMID: 35424470]
[12]
Yin, H.; Xu, Y.; Qian, X.; Li, Y.; Liu, J. Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2007, 17(8), 2166-2170.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.015] [PMID: 17331719]
[13]
Wang, Q.; Tan, X.; Liu, Z.; Li, G.; Zhang, R.; Wei, J.; Wang, S.; Li, D.; Wang, B.; Han, J. Design and synthesis of a new series of low toxic naphthalimide platinum (IV) antitumor complexes with dual DNA damage mechanism. Eur. J. Pharm. Sci., 2018, 124, 127-136.
[http://dx.doi.org/10.1016/j.ejps.2018.08.032] [PMID: 30153524]
[14]
Jiang, X.; Zhang, Y.; Wang, S.; Hao, Q. A class of stable nitroxyl radical modified naphthalimides and their applications. CN Patent 111253368 A, 2020.
[15]
Likhtenshtein, G.; Yamauchi, J.; Nakatsuji, S.; Smirnov, A.; Tamura, R. Nitroxides: Applications in Chemistry, Biomedicine, and Materials Sciences; Wiley-VCH: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527621743]
[16]
Sosnovsky, G. A critical evaluation of the present status of toxicity of aminoxyl radicals. J. Pharm. Sci., 1992, 81(6), 496-499.
[http://dx.doi.org/10.1002/jps.2600810603] [PMID: 1522484]
[17]
Gadjeva, V.G. Two spin labeled triazenes: relationship between biochemical and biological activities. Int. J. Pharm., 2002, 247(1-2), 39-45.
[http://dx.doi.org/10.1016/S0378-5173(02)00360-5] [PMID: 12429483]
[18]
Gadjeva, V.; Koldamova, R. Spin-labeled 1-alkyl-1-nitrosourea synergists of antitumor antibiotics. Anticancer Drug Des., 2001, 16(4-5), 247-253.
[PMID: 12049483]
[19]
Simeonova, M.; Ivanova, T.; Raikov, Z.; Konstantinov, H. Tissue distribution of polybutylcyanoacrylate nanoparticles loaded with spin-labelled nitrosourea in Lewis lung carcinoma-bearing mice. Acta Physiol. Pharmacol. Bulg., 1994, 20(3-4), 77-82.
[PMID: 7645407]
[20]
Liu, Y.; Jiang, Z. Studies on nitroxides--I--the synthesis and reactions of piperidine nitroxides. Chem. Res. Chin. Univ., 1980, 1, 71-80.
[21]
Zhang, Y.; Li, Z.; Jiang, X. Synthesis of 2,2,6,6-tetramethyl-4-[(aminoalkyl)amino]-1-oxylpiperidines. Fine Chem. Intermed., 2017, 47, 53-55.
[22]
Connors, A. Binding Constants; Wiley: New York, 1987.
[23]
Hsieh, K.; Kiraly-Olah, I.C.; Jorgensen, E.C.; Lee, T.C. Angiotensin II analogues. 13. Role of the hydroxyl group of position 4 tyrosine in pressor activity. J. Med. Chem., 1979, 22(9), 1051-1055.
[PMID: 490549]
[24]
Bondarev, G.N.; Burzina, T.S.; Krasotskaya, G.I.; Isaeva-lvanova, L.S.; Kleiner, A.R.; Eneiskaya, E.V. Synthesis of 2,2,6,6-tetramethyl -4-[(aminoalkyl)amino)-1-oxylpiperidines. Izv. Akad. Nauk SSSR [Khim], 1985, 8, 1850-1855.
[25]
Filosa, R.; Peduto, A.; Micco, S.D.; Caprariis, P.; Festa, M.; Petrella, A.; Capranico, G.; Bifulco, G. Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. Bioorg. Med. Chem., 2009, 17(1), 13-24.
[http://dx.doi.org/10.1016/j.bmc.2008.11.024] [PMID: 19058969]
[26]
Kamal, A.; Ramu, R.; Tekumalla, V.; Ramesh Khanna, G.B.; Barkume, M.S.; Juvekar, A.S.; Zingde, S.M. Remarkable DNA binding affinity and potential anticancer activity of pyrrolo[2,1-c][1,4]benzodiazepine–naphthalimide conjugates linked through piperazine side-armed alkane spacers. Bioorg. Med. Chem., 2008, 16(15), 7218-7224.
[http://dx.doi.org/10.1016/j.bmc.2008.06.034] [PMID: 18656370]
[27]
Zhang, G.; Guo, J.; Pan, J.; Chen, X.; Wang, J. Spectroscopic studies on the interaction of morin–Eu(III) complex with calf thymus DNA. J. Mol. Struct., 2009, 923(1-3), 114-119.
[http://dx.doi.org/10.1016/j.molstruc.2009.02.011]
[28]
Tian, Z.; Zang, F.; Luo, W.; Zhao, Z.; Wang, Y.; Xu, X.; Wang, C. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA). J. Photochem. Photobiol. B, 2015, 142, 103-109.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.10.013] [PMID: 25528194]

© 2024 Bentham Science Publishers | Privacy Policy