Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Exploring the Role of Nanotherapeutics for Diagnosis and Treatment of Solid Tumor

Author(s): Ravinder Verma, Rokeya Akter, Manish Kumar, Shailendra Bhatt, Abhishek Tiwari, Varsha Tiwari, Priti Tagde, Parijat Pandey, Vineet Mittal, Deepika Purohit, Rakesh Redhu, Md. Habibur Rahman and Deepak Kaushik*

Volume 20, Issue 1, 2024

Published on: 07 February, 2023

Page: [109 - 129] Pages: 21

DOI: 10.2174/1573413719666230110124509

Price: $65

Abstract

Background: Tumors are increasingly heterogeneous throughout the process of their growth, producing a mixed-cell community with a range of molecular features and susceptibility to therapies. Nanotechnology has shown tremendous potential in diagnosing and treating solid tumors.

Objective: Most cancer-related deaths are attributed to the lack of early detection and effective treatment. Its early diagnosis helps overall survival and health-related quality of life in patients identified with cancer. Nanosystems are favorable for endocytic intracellular retention, high drug loading, enhanced therapeutic efficacy, greater drug-circulation time, superior dose scheduling for patient compliance, and site-specific targeting. Integrating nanosystems into biomedical applications will also reintroduce medicines that are no longer used in clinical practice because of certain drawbacks and help the identification of new active medicines with their sub-optimal kinetic profiles. This review provides insights about the targeted cancer treatment based on active targeting (folate receptor-α, heat shock protein, receptor 2 for epidermal human growth factor, and CD44 receptor) and various nano device-based systems.

Methodology: The highly relevant articles were retrieved using various search engines, including Web of Sciences, Science Direct, Scihub, PubMed, Scopus, PubChem, Google Scholar, and others. The keywords and phrases used for the search are “liposomes,” “quantum dots,” “nanoparticles,” “nanocrystals,” “photodynamic therapy,” “passive targeting,” “active targeting,” “nanomaterials,” “nanotechnology,” “cancer,” “nanotheranostics” and several others. In this review, we briefly introduced the concept of the contribution of nanotheranostics to cancer therapy with their recent findings. We also discuss the role of biosensor-based nanosystems in cancer.

Conclusion: This review addresses nanotechnology’s exciting role in identifying, imaging, and managing solid tumors and their immense potential.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta, 2010, 1805(1), 105-117.
[PMID: 19931353]
[3]
Stewart, A.K.; Trudel, S.; Bahlis, N.J.; White, D.; Sabry, W.; Belch, A.; Reiman, T.; Roy, J.; Shustik, C.; Kovacs, M.J.; Rubinger, M.; Cantin, G.; Song, K.; Tompkins, K.A.; Marcellus, D.C.; Lacy, M.Q.; Sussman, J.; Reece, D.; Brundage, M.; Harnett, E.L.; Shepherd, L.; Chapman, J.A.W.; Meyer, R.M. A randomized phase 3 trial of thalidomide and prednisone as maintenance therapy after ASCT in patients with MM with a quality-of-life assessment: The National Cancer Institute of Canada Clinicals Trials Group Myeloma 10 Trial. Blood, 2013, 121(9), 1517-1523.
[http://dx.doi.org/10.1182/blood-2012-09-451872] [PMID: 23297129]
[4]
Barcellos-Hoff, M.H.; Lyden, D.; Wang, T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer, 2013, 13(7), 511-518.
[http://dx.doi.org/10.1038/nrc3536] [PMID: 23760023]
[5]
Verma, R.; Kaushik, A.; Almeer, R.; Rahman, M.H.; Abdel-Daim, M.M.; Kaushik, D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int. J. Nanomedicine, 2021, 16, 905-924.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[6]
Verma, R.; Kaushik, D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv., 2020, 27(1), 756-771.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[7]
El-Sayed, A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 19200-19213.
[http://dx.doi.org/10.1007/s11356-019-06459-2] [PMID: 31529348]
[8]
Salama, L.; Pastor, E.R.; Stone, T.; Mousa, S.A. Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines, 2020, 8(9), 347.
[http://dx.doi.org/10.3390/biomedicines8090347] [PMID: 32932737]
[9]
Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomed. Nanotechnol. Biol. Med., 2008, 4, 273-282.
[10]
Farokhzad, O.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[11]
Singh, V.; Kumar, K.; Purohit, D.; Verma, R.; Pandey, P.; Bhatia, S.; Malik, V.; Mittal, V.; Rahman, M.H.; Albadrani, G.M.; Arafah, M.W.; El-Demerdash, F.M.; Akhtar, M.F.; Saleem, A.; Kamel, M.; Najda, A.; Abdel-Daim, M.M.; Kaushik, D. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed. Pharmacother., 2021, 139, 111584.
[http://dx.doi.org/10.1016/j.biopha.2021.111584] [PMID: 34243623]
[12]
Mun, C.U.; Kim, H.S.; Kong, M.; Lee, K.Y. Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids Surf. B Biointerfaces, 2023, 221, 113004.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113004] [PMID: 36370646]
[13]
Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E.S.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[14]
Chen, S.; Zhang, Q.; Hou, Y.; Zhang, J.; Liang, X.J. Nanomaterials in medicine and pharmaceuticals: Nanoscale materials developed with less toxicity and more efficacy. Eur. J. Nanomed., 2013, 5(2), 61-79.
[http://dx.doi.org/10.1515/ejnm-2013-0003]
[15]
Siafaka, P.I.; Okur, N.Ü.; Karantas, I.D.; Okur, M.E. Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci., 2021, 16(1), 24-46.
[http://dx.doi.org/10.1016/j.ajps.2020.03.003] [PMID: 33613728]
[16]
Chen, K.I.; Li, B.R.; Chen, Y.T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011, 6(2), 131-154.
[http://dx.doi.org/10.1016/j.nantod.2011.02.001]
[17]
Vizirianakis, I.S. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine, 2011, 7(1), 11-17.
[http://dx.doi.org/10.1016/j.nano.2010.11.002] [PMID: 21094279]
[18]
Ji, X.T.; Huang, L.; Huang, H.Q. Construction of nanometer cisplatin core-ferritin (NCC-F) and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin released from the NCC-F. J. Proteomics, 2012, 75(11), 3145-3157.
[http://dx.doi.org/10.1016/j.jprot.2012.03.013] [PMID: 22480910]
[19]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[20]
Gao, J.; Chen, K.; Miao, Z.; Ren, G.; Chen, X.; Gambhir, S.S.; Cheng, Z. Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials, 2011, 32(8), 2141-2148.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.053] [PMID: 21147502]
[21]
Ranganathan, R.; Madanmohan, S.; Kesavan, A.; Baskar, G.; Krishnamoorthy, Y.R.; Santosham, R.; Ponraju, D.; Rayala, S.K.; Venkatraman, G. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomedicine, 2012, 7, 1043-1060.
[PMID: 22403487]
[22]
Chen, H.; Wang, L.; Yeh, J.; Wu, X.; Cao, Z.; Wang, Y.A.; Zhang, M.; Yang, L.; Mao, H. Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PγMPS copolymer coating. Biomaterials, 2010, 31(20), 5397-5407.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.036] [PMID: 20398933]
[23]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[24]
Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-challenge and perspectives. Angew. Chem. Int. Ed., 2009, 48(5), 872-897.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[25]
Fishman, D.A.; Cohen, L.; Blank, S.V.; Shulman, L.; Singh, D.; Bozorgi, K.; Tamura, R.; Timor-Tritsch, I.; Schwartz, P.E. The role of ultrasound evaluation in the detection of early-stage epithelial ovarian cancer. Am. J. Obstet. Gynecol., 2005, 192(4), 1214-1221.
[http://dx.doi.org/10.1016/j.ajog.2005.01.041] [PMID: 15846205]
[26]
Wu, X.; Jiang, H.; Zheng, J.; Wang, X.; Gu, Z.; Chen, C. Highly sensitive recognition of cancer cells by electrochemical biosensor based on the interface of gold nanoparticles/polylactide nanocomposites. J. Electroanal. Chem. (Lausanne), 2011, 656(1-2), 174-178.
[http://dx.doi.org/10.1016/j.jelechem.2010.11.035]
[27]
Chen, X.; Zhang, Y.; Zhang, H.; Zhang, L.; Liu, L.; Cao, Y.; Ran, H.; Tian, J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J. Nanobiotechnology, 2021, 19(1), 82.
[http://dx.doi.org/10.1186/s12951-021-00822-7] [PMID: 33752679]
[28]
Wang, S.; Zhang, L.; Zhao, J.; He, M.; Huang, Y.; Zhao, S. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci. Adv., 2021, 7(12), eabe3588.
[http://dx.doi.org/10.1126/sciadv.abe3588] [PMID: 33741594]
[29]
Wu, Y.X.; Zhang, D.; Hu, X.; Peng, R.; Li, J.; Zhang, X.; Tan, W. Multicolor two-photon nanosystem for multiplexed intracellular imaging and targeted cancer therapy. Angew. Chem. Int. Ed., 2021, 60(22), 12569-12576.
[http://dx.doi.org/10.1002/anie.202103027] [PMID: 33739576]
[30]
Yan, J.; Xu, X.; Zhou, J.; Liu, C.; Zhang, L.; Wang, D.; Yang, F.; Zhang, H. Fabrication of a pH/redox-triggered mesoporous silica-based nanoparticle with microfluidics for anticancer drugs doxorubicin and paclitaxel codelivery. ACS Appl. Bio Mater., 2020, 3(2), 1216-1225.
[http://dx.doi.org/10.1021/acsabm.9b01111] [PMID: 35019322]
[31]
Zhang, D.; Ye, Z.; Liu, H.; Wang, X.; Hua, J.; Ling, Y.; Wei, L.; Xia, Y.; Sun, S.; Xiao, L. Cell membrane coated smart two-dimensional supraparticle for in vivo homotypic cancer targeting and enhanced combinational theranostics. Nanotheranostics, 2021, 5(3), 275-287.
[http://dx.doi.org/10.7150/ntno.57657] [PMID: 33654654]
[32]
Zhang, X.; Wang, W.; Su, L.; Ge, X.; Ye, J.; Zhao, C.; He, Y.; Yang, H.; Song, J.; Duan, H. Plasmonic-fluorescent Janus Ag/Ag2S nanoparticles for in situ H2O2-activated NIR-II fluorescence imaging. Nano Lett., 2021, 21(6), 2625-2633.
[http://dx.doi.org/10.1021/acs.nanolett.1c00197] [PMID: 33683889]
[33]
Song, R.; Ruan, M.; Dai, J.; Xue, W. Biomimetic magnetofluorescent ferritin nanoclusters for magnetic resonance and fluorescence-dual modal imaging and targeted tumor therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(10), 2494-2504.
[http://dx.doi.org/10.1039/D0TB02175J] [PMID: 33656039]
[34]
Steinberg, H.E.; Bowman, N.M.; Diestra, A.; Ferradas, C.; Russo, P.; Clark, D.E.; Zhu, D.; Magni, R.; Malaga, E.; Diaz, M.; Pinedo-Cancino, V.; Ramal Asayag, C.; Calderón, M.; Carruthers, V.B.; Liotta, L.A.; Gilman, R.H.; Luchini, A. Detection of toxoplasmic encephalitis in HIV positive patients in urine with hydrogel nanoparticles. PLoS Negl. Trop. Dis., 2021, 15(3), e0009199.
[http://dx.doi.org/10.1371/journal.pntd.0009199] [PMID: 33651824]
[35]
Tanaka, T.; Sano, K.; Munekane, M.; Yamasaki, T.; Sasaki, H.; Mukai, T. A radiolabeled self-assembled nanoparticle probe for diagnosis of lung-metastatic melanoma. Biol. Pharm. Bull., 2021, 44(3), 410-415.
[http://dx.doi.org/10.1248/bpb.b20-00810] [PMID: 33642549]
[36]
Fu, L.; Yang, S.; Jiang, S.; Zhou, X.; Sha, Z.; He, C. One-step synthesis of multifunctional nanoparticles for CT/PA imaging guided breast cancer photothermal therapy. Colloids Surf. B Biointerfaces, 2021, 201, 111630.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111630] [PMID: 33639508]
[37]
Yuan, Y.; Zhou, R.; Li, T.; Qu, S.; Bai, H.; Liang, J.; Cai, X.; Guo, B. Enriched Au nanoclusters with mesoporous silica nanoparticles for improved fluorescence/computed tomography dual-modal imaging. Cell Prolif., 2021, 54(4), e13008.
[http://dx.doi.org/10.1111/cpr.13008] [PMID: 33634540]
[38]
Zhang, Y.; Chen, X.; Liu, L.; Tian, J.; Hao, L.; Ran, H. Photoacoustic imaging of myocardial infarction region using non-invasive fibrin-targeted nanoparticles in a rat myocardial ischemia-reperfusion model. Int. J. Nanomedicine, 2021, 16, 1331-1344.
[http://dx.doi.org/10.2147/IJN.S293736] [PMID: 33628023]
[39]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[40]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[41]
Urmann, K.; Modrejewski, J.; Scheper, T.; Walter, J-G. Aptamer-modified nanomaterials: Principles and applications. BioNanoMaterials., 2017, 18(20160012), 1-8.
[42]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem., 2016, 60(1), 1-8.
[http://dx.doi.org/10.1042/EBC20150001] [PMID: 27365030]
[43]
Prasad, S. Nanobiosensors: The future for diagnosis of disease? Nanobiosensors in Disease Diagnosis, 2014, 3, 1-10.
[http://dx.doi.org/10.2147/NDD.S39421]
[44]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[45]
de Moraes, A.; Kubota, L. Recent trends in field-effect transistors-based immunosensors. Chemosensors (Basel), 2016, 4(4), 20.
[http://dx.doi.org/10.3390/chemosensors4040020]
[46]
Vernes, J.M.; Meng, Y.G. Detection and quantification of VEGF isoforms by ELISA. Methods Mol. Biol., 2015, 1332, 25-37.
[http://dx.doi.org/10.1007/978-1-4939-2917-7_2] [PMID: 26285743]
[47]
Bando, H.; Brokelmann, M.; Toi, M.; Alitalo, K.; Sleeman, J.P.; Sipos, B.; Gröne, H.J.; Weich, H.A. Immunodetection and quantification of vascular endothelial growth factor receptor-3 in human malignant tumor tissues. Int. J. Cancer, 2004, 111(2), 184-191.
[http://dx.doi.org/10.1002/ijc.20211] [PMID: 15197769]
[48]
Yuan, X.; Yuan, H.; Zhang, N.; Liu, T.; Xu, D. Thyroid carcinoma‐featured telomerase activation and telomere maintenance: Biology and translational/clinical significance. Clin. Transl. Med., 2022, 12(11), e1111.
[http://dx.doi.org/10.1002/ctm2.1111] [PMID: 36394204]
[49]
Han, T-Q.; Zhan, S-D.; Zisuh, A.V. Expression of telomerase & its significance in the diagnosis of pancreatic cancer. Indian J. Med. Res., 2012, 135(1), 26-30.
[http://dx.doi.org/10.4103/0971-5916.93420] [PMID: 22382179]
[50]
Devi, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Kaushik, D.; Verma, R.; Bhatt, S.; Sahoo, B.M.; Bhattacharya, T.; Alshehri, S.; Ghoneim, M.M.; Babalghith, A.O.; Batiha, G.E.S. Quantum dots: An emerging approach for cancer therapy. Front. Mater., 2022, 8, 798440.
[http://dx.doi.org/10.3389/fmats.2021.798440]
[51]
Cai, W.; Hsu, A.R.; Li, Z.B.; Chen, X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res. Lett., 2007, 2(6), 265-281.
[http://dx.doi.org/10.1007/s11671-007-9061-9] [PMID: 21394238]
[52]
Liu, L.; Jin, S.; Hu, Y.; Gu, Z.; Wu, H.C. Application of quantum dots in biological imaging. J. Nanomater., 2011, 2011, 1-13.
[http://dx.doi.org/10.1155/2011/104747]
[53]
Barroso, M.M. Quantum dots in cell biology. J. Histochem. Cytochem., 2011, 59(3), 237-251.
[http://dx.doi.org/10.1369/0022155411398487] [PMID: 21378278]
[54]
Hu, D.; Zhang, P.; Gong, P.; Lian, S.; Lu, Y.; Gao, D.; Cai, L. A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale, 2011, 3(11), 4724-4732.
[http://dx.doi.org/10.1039/c1nr10933b] [PMID: 21989776]
[55]
Tsipotan, A.S.; Gerasimova, M.A.; Polyutov, S.P.; Aleksandrovsky, A.S.; Slabko, V.V. Comparative analysis of methods for enhancement of the photostability of CdTe@TGA QD colloid solutions. J. Phys. Chem. B, 2017, 121(23), 5876-5881.
[http://dx.doi.org/10.1021/acs.jpcb.7b03166] [PMID: 28564541]
[56]
Wang, X.; Yu, J.; Chen, R. Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing. Sci. Rep., 2018, 8(1), 17323.
[http://dx.doi.org/10.1038/s41598-018-35768-8] [PMID: 30470827]
[57]
Wegner, K.D.; Dussert, F.; Truffier-Boutry, D.; Benayad, A.; Beal, D.; Mattera, L.; Ling, W.L.; Carrière, M.; Reiss, P. Influence of the core/shell structure of indium phosphide based quantum dots on their photostability and cytotoxicity. Front Chem., 2019, 7, 466.
[http://dx.doi.org/10.3389/fchem.2019.00466] [PMID: 31316974]
[58]
Hanne, J.; Falk, H.J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S.J.; Hell, S.W. STED nanoscopy with fluorescent quantum dots. Nat. Commun., 2015, 6(1), 7127.
[http://dx.doi.org/10.1038/ncomms8127] [PMID: 25980788]
[59]
Jiang, Z.; Matras-Postolek, K.; Yang, P. Hydrophobic CdSe and CdTe quantum dots: Shell coating, shape control, and self-assembly. RSC Advances, 2016, 6(31), 25656-25661.
[http://dx.doi.org/10.1039/C6RA03408J]
[60]
Garbuzenko, O.B.; Mainelis, G.; Taratula, O.; Minko, T. Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol. Med., 2014, 11(1), 44-55.
[PMID: 24738038]
[61]
Zhao, Y.; Shaffer, T.M.; Das, S.; Pérez-Medina, C.; Mulder, W.J.M.; Grimm, J. Near-infrared quantum dot and 89zr dual-labeled nanoparticles for in vivo cerenkov imaging. bioconjug. Bioconjug. Chem., 2017, 28(2), 600-608.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00687] [PMID: 28026929]
[62]
Hu, R.; Law, W.C.; Lin, G.; Ye, L.; Liu, J.; Liu, J.; Reynolds, J.L.; Yong, K.T. PEGylated phospholipid micelle-encapsulated near-infrared PbS quantum dots for in vitro and in vivo bioimaging. Theranostics, 2012, 2(7), 723-733.
[http://dx.doi.org/10.7150/thno.4275] [PMID: 22896774]
[63]
Fan, H.; Leve, E.W.; Scullin, C.; Gabaldon, J.; Tallant, D.; Bunge, S.; Boyle, T.; Wilson, M.C.; Brinker, C.J. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett., 2005, 5(4), 645-648.
[http://dx.doi.org/10.1021/nl050017l] [PMID: 15826102]
[64]
Huang, Q.; Chen, J.; Zhao, J.; Pan, J.; Lei, W.; Zhang, Z. Enhanced photoluminescence property for quantum dot-gold nanoparticle hybrid. Nanoscale Res. Lett., 2015, 10(1), 400.
[http://dx.doi.org/10.1186/s11671-015-1067-0] [PMID: 26471479]
[65]
Almendral-Parra, M.J.; Alonso-Mateos, A.; Boyero-Benito, J.F.; Sánchez-Paradinas, S.; Rodríguez-Fernández, E. A novel approach to the fabrication of cdse quantum dots in aqueous solution: Procedures for controlling size, fluorescence intensity, and stability over time. J. Nanomater., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/397469]
[66]
Corral, J.; Mok, T.S.; Nakagawa, K.; Rosell, R.; Lee, K.H.; Migliorino, M.R.; Pluzanski, A.; Linke, R.; Devgan, G.; Tan, W.; Quinn, S.; Wang, T.; Wu, Y.L. Effects of dose modifications on the safety and efficacy of dacomitinib for EGFR mutation-positive non-small-cell lung cancer. Future Oncol., 2019, 15(24), 2795-2805.
[http://dx.doi.org/10.2217/fon-2019-0299] [PMID: 31313942]
[67]
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[68]
Tsoi, K.M.; Dai, Q.; Alman, B.A.; Chan, W.C.W. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res., 2013, 46(3), 662-671.
[http://dx.doi.org/10.1021/ar300040z] [PMID: 22853558]
[69]
Lee, H.A.; Leavens, T.L.; Mason, S.E.; Monteiro-Riviere, N.A.; Riviere, J.E. Comparison of quantum dot biodistribution with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett., 2009, 9(2), 794-799.
[http://dx.doi.org/10.1021/nl803481q] [PMID: 19128005]
[70]
Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.; Mach, K.E.; Cheng, Z.; Liao, J.C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep., 2017, 7(1), 9309.
[http://dx.doi.org/10.1038/s41598-017-08591-w] [PMID: 28839158]
[71]
Jin, R.; Yang, X.; Zhao, D.; Hou, X.; Li, C.; Song, X.; Chen, W.; Wang, Q.; Zhao, Y.; Liu, B. An injectable hybrid hydrogel based on a genetically engineered polypeptide for second near-infrared fluorescence/photoacoustic imaging-monitored sustained chemo-photothermal therapy. Nanoscale, 2019, 11(34), 16080-16091.
[http://dx.doi.org/10.1039/C9NR04630E] [PMID: 31432846]
[72]
Qu, M.; Qiu, Y.; Lv, R.; Yue, Y.; Liu, R.; Yang, F.; Wang, D.; Li, Y. Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf., 2019, 173, 54-62.
[http://dx.doi.org/10.1016/j.ecoenv.2019.02.018] [PMID: 30769203]
[73]
Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D.T.L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem. Int. Ed., 2017, 56(36), 10696-10701.
[http://dx.doi.org/10.1002/anie.201703703] [PMID: 28547826]
[74]
Tan, L.; Li, P.; Sun, B.; Chaker, M.; Ma, D. Stabilities related to near-infrared quantum dot-based solar cells: the role of surface engineering. ACS Energy Lett., 2017, 2(7), 1573-1585.
[http://dx.doi.org/10.1021/acsenergylett.7b00194]
[75]
Alam, F.; Yadav, N. Potential applications of quantum dots in mapping sentinel lymph node and detection of micrometastases in breast carcinoma. J. Breast Cancer, 2013, 16(1), 1-11.
[http://dx.doi.org/10.4048/jbc.2013.16.1.1] [PMID: 23593075]
[76]
Zhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today, 2017, 20(7), 360-376.
[http://dx.doi.org/10.1016/j.mattod.2017.02.006]
[77]
Yu, J.; Monaco, S.E.; Onisko, A.; Bhargava, R.; Dabbs, D.J.; Cieply, K.M.; Fine, J.L. A validation study of quantum dot multispectral imaging to evaluate hormone receptor status in ductal carcinoma in situ of the breast. Hum. Pathol., 2013, 44(3), 394-401.
[http://dx.doi.org/10.1016/j.humpath.2012.06.002] [PMID: 23039940]
[78]
Chin, P.T.K.; Buckle, T.; Aguirre de Miguel, A.; Meskers, S.C.J.; Janssen, R.A.J.; van Leeuwen, F.W.B. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging. Biomaterials, 2010, 31(26), 6823-6832.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.030] [PMID: 20619786]
[79]
Huang, C.; Tanaka, T.; Kagami, S.; Ninomiya, Y.; Kakuda, M.; Watanabe, K.; Inoue, S.; Nanba, K.; Igarashi, Y.; Yamamoto, T.; Shibuya, A.; Nakahara, K.; Arakawa, Y.; Yorozu, S. Multispectral imaging of mineral samples by infrared quantum dot focal plane array sensors. Measurement, 2020, 159, 107775.
[http://dx.doi.org/10.1016/j.measurement.2020.107775]
[80]
Ranasinghe, L.; Heyn, C.; Deneke, K.; Zocher, M.; Korneev, R.; Hansen, W. Luminescence from droplet-etched GaAs quantum dots at and close to room temperature. Nanomaterials (Basel), 2021, 11(3), 690.
[http://dx.doi.org/10.3390/nano11030690] [PMID: 33802007]
[81]
Rocas, P.; Fernández, Y.; García-Aranda, N.; Foradada, L.; Calvo, P.; Avilés, P.; Guillén, M.J.; Schwartz, S., Jr; Rocas, J.; Albericio, F.; Abasolo, I. Improved pharmacokinetic profile of lipophilic anti-cancer drugs using ανβ3-targeted polyurethane-polyurea nanoparticles. Nanomedicine, 2018, 14(2), 257-267.
[http://dx.doi.org/10.1016/j.nano.2017.10.009] [PMID: 29127040]
[82]
Wong, K. Lee; Zhang; Liu, X.; Sun, R.W.; Che, C.M.; Wong, K.K. Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int. J. Nanomedicine, 2012, 7, 731-737.
[http://dx.doi.org/10.2147/IJN.S28783] [PMID: 22359452]
[83]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[84]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[85]
Liu, D.; Auguste, D.T. Cancer targeted therapeutics: From molecules to drug delivery vehicles. J. Control. Release, 2015, 219, 632-643.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.041] [PMID: 26342659]
[86]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[87]
Siddiqui, I.A.; Adhami, V.M.; Chamcheu, J.C.; Mukhtar, H. Impact of nanotechnology in cancer: Emphasis on nanochemoprevention. Int. J. Nanomedicine, 2012, 7, 591-605.
[PMID: 22346353]
[88]
Siddiqui, I.A.; Sanna, V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol. Nutr. Food Res., 2016, 60(6), 1330-1341.
[http://dx.doi.org/10.1002/mnfr.201600035] [PMID: 26935239]
[89]
Sareen, S.; Joseph, L.; Mathew, G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig., 2012, 2(1), 12-17.
[http://dx.doi.org/10.4103/2230-973X.96921] [PMID: 23071955]
[90]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[91]
Dizaj, S.M.; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y. Nanosizing of drugs: Effect on dissolution rate. Res. Pharm. Sci., 2015, 10(2), 95-108.
[PMID: 26487886]
[92]
Cheng, H.B.; Zhang, Y.M.; Liu, Y.; Yoon, J. Turn-on supramolecular host-guest nanosystems as theranostics for cancer. Chem, 2019, 5(3), 553-574.
[http://dx.doi.org/10.1016/j.chempr.2018.12.024]
[93]
Gala, U.H.; Miller, D.A.; Williams, R.O., III Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188319.
[http://dx.doi.org/10.1016/j.bbcan.2019.188319] [PMID: 31678141]
[94]
Ely, D.R.; García, E.R.; Thommes, M. Ostwald-Freundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technol., 2014, 257, 120-123.
[http://dx.doi.org/10.1016/j.powtec.2014.01.095]
[95]
Hattori, Y.; Haruna, Y.; Otsuka, M. Dissolution process analysis using model-free Noyes-Whitney integral equation. Colloids Surf. B Biointerfaces, 2013, 102, 227-231.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.017] [PMID: 23010115]
[96]
Bosch, F.; Rosich, L. The contributions of paul ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize. Pharmacology, 2008, 82(3), 171-179.
[http://dx.doi.org/10.1159/000149583] [PMID: 18679046]
[97]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[98]
Zhang, T.; Zhu, G.; Lu, B.; Qian, Z.; Peng, Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med. Res. Rev., 2021, 41(3), 1835-1850.
[http://dx.doi.org/10.1002/med.21767] [PMID: 33289146]
[99]
Peng, Q.; Liu, J.; Zhang, T.; Zhang, T.X.; Zhang, C.L.; Mu, H. Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles. Biomacromolecules, 2019, 20(4), 1789-1797.
[http://dx.doi.org/10.1021/acs.biomac.9b00175] [PMID: 30893550]
[100]
Liu, J.; Peng, Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater., 2017, 55, 13-27.
[http://dx.doi.org/10.1016/j.actbio.2017.03.055] [PMID: 28377307]
[101]
Peng, Q.; Mu, H. The potential of protein-nanomaterial interaction for advanced drug delivery. J. Control. Release, 2016, 225, 121-132.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.041] [PMID: 26812004]
[102]
Li, H.; Wang, Y.; Tang, Q.; Yin, D.; Tang, C.; He, E.; Zou, L.; Peng, Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater., 2021, 129, 57-72.
[http://dx.doi.org/10.1016/j.actbio.2021.05.019] [PMID: 34048973]
[103]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[104]
Siemann, D.W.; Horsman, M.R. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol. Ther., 2015, 153, 107-124.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.006] [PMID: 26073310]
[105]
Ho-Tin-Noé, B.; Demers, M.; Wagner, D.D. How platelets safeguard vascular integrity. J. Thromb. Haemost., 2011, 9(Suppl 1)(Suppl. 1), 56-65.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04317.x] [PMID: 21781242]
[106]
Xu, X.; Wang, B.; Ren, C.; Hu, J.; Greenberg, D.A.; Chen, T.; Xie, L.; Jin, K. Age-related impairment of vascular structure and functions. Aging Dis., 2017, 8(5), 590-610.
[http://dx.doi.org/10.14336/AD.2017.0430] [PMID: 28966804]
[107]
Padera, T.P.; Meijer, E.F.J.; Munn, L.L. The lymphatic system in disease processes and cancer progression. Annu. Rev. Biomed. Eng., 2016, 18(1), 125-158.
[http://dx.doi.org/10.1146/annurev-bioeng-112315-031200] [PMID: 26863922]
[108]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23(1), 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[109]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[110]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Labor. Med., 2017, 1(2), 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[111]
Lee, E.S.; Gao, Z.; Kim, D.; Park, K.; Kwon, I.C.; Bae, Y.H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release, 2008, 129(3), 228-236.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.024] [PMID: 18539355]
[112]
Xiu, Y.; Field, M.S. The roles of mitochondrial folate metabolism in supporting mitochondrial DNA synthesis, oxidative phosphorylation, and cellular function. Curr. Dev. Nutr., 2020, 4(10), nzaa153.
[http://dx.doi.org/10.1093/cdn/nzaa153] [PMID: 33134792]
[113]
Zheng, Y.; Cantley, L.C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med., 2019, 216(2), 253-266.
[http://dx.doi.org/10.1084/jem.20181965] [PMID: 30587505]
[114]
Yang, R.; Kolb, E.A.; Qin, J.; Chou, A.; Sowers, R.; Hoang, B.; Healey, J.H.; Huvos, A.G.; Meyers, P.A.; Gorlick, R. The folate receptor alpha is frequently overexpressed in osteosarcoma samples and plays a role in the uptake of the physiologic substrate 5-methyltetrahydrofolate. Clin. Cancer Res., 2007, 13(9), 2557-2567.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1343] [PMID: 17473184]
[115]
Kelemen, L.E. The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int. J. Cancer, 2006, 119(2), 243-250.
[http://dx.doi.org/10.1002/ijc.21712] [PMID: 16453285]
[116]
Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater. Sci. Eng. C, 2017, 70(Pt 1), 763-771.
[http://dx.doi.org/10.1016/j.msec.2016.09.052] [PMID: 27770953]
[117]
Geszke, M.; Murias, M.; Balan, L.; Medjahdi, G.; Korczynski, J.; Moritz, M.; Lulek, J.; Schneider, R. Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomater., 2011, 7(3), 1327-1338.
[http://dx.doi.org/10.1016/j.actbio.2010.10.012] [PMID: 20965282]
[118]
Setua, S.; Menon, D.; Asok, A.; Nair, S.; Koyakutty, M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials, 2010, 31(4), 714-729.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.090] [PMID: 19822364]
[119]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[120]
Licciardi, M.; Paolino, D.; Celia, C.; Giammona, G.; Cavallaro, G.; Fresta, M. Folate-targeted supramolecular vesicular aggregates based on polyaspartyl-hydrazide copolymers for the selective delivery of antitumoral drugs. Biomaterials, 2010, 31(28), 7340-7354.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.060] [PMID: 20609469]
[121]
Wang, X.; Li, J.; Wang, Y.; Koenig, L.; Gjyrezi, A.; Giannakakou, P.; Shin, E.H.; Tighiouart, M.; Chen, Z.G.; Nie, S.; Shin, D.M. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano, 2011, 5(8), 6184-6194.
[http://dx.doi.org/10.1021/nn200739q] [PMID: 21728341]
[122]
Liao, W.; Du, Y.; Zhang, C.; Pan, F.; Yao, Y.; Zhang, T.; Peng, Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater., 2019, 86, 1-14.
[http://dx.doi.org/10.1016/j.actbio.2018.12.045] [PMID: 30597259]
[123]
Liu, J.; Dong, J.; Zhang, T.; Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release, 2018, 286, 64-73.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.034] [PMID: 30031155]
[124]
Castro, J.E.; Prada, C.E.; Loria, O.; Kamal, A.; Chen, L.; Burrows, F.J.; Kipps, T.J. ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood, 2005, 106(7), 2506-2512.
[http://dx.doi.org/10.1182/blood-2005-03-1099] [PMID: 15972449]
[125]
Guan, L.; Zou, Q.; Liu, Q.; Lin, Y.; Chen, S. HSP90 inhibitor ganetespib [STA-9090] inhibits tumor growth in c-Myc-dependent esophageal squamous cell carcinoma. OncoTargets Ther., 2020, 13, 2997-3011.
[http://dx.doi.org/10.2147/OTT.S245813] [PMID: 32308431]
[126]
Tamura, S.; Marunouchi, T.; Tanonaka, K. Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. J. Mol. Cell. Cardiol., 2019, 127, 134-142.
[http://dx.doi.org/10.1016/j.yjmcc.2018.12.010] [PMID: 30582930]
[127]
Onyüksel, H.; Mohanty, P.; Rubinstein, I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: A novel targeted nanomedicine for breast cancer. Int. J. Pharm., 2009, 365(1-2), 157-161.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.024] [PMID: 18793708]
[128]
Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 [HER2] in cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[129]
Pernas, S.; Tolaney, S.M. HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther. Adv. Med. Oncol., 2019, 11, 1758835919833519.
[http://dx.doi.org/10.1177/1758835919833519] [PMID: 30911337]
[130]
Cobleigh, M.; Yardley, D.A.; Brufsky, A.M.; Rugo, H.S.; Swain, S.M.; Kaufman, P.A.; Tripathy, D.; Hurvitz, S.A.; O’Shaughnessy, J.; Mason, G.; Antao, V.; Li, H.; Chu, L.; Jahanzeb, M. Baseline characteristics, treatment patterns, and outcomes in patients with HER2-positive metastatic breast cancer by hormone receptor status from systhers. Clin. Cancer Res., 2020, 26(5), 1105-1113.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2350] [PMID: 31772121]
[131]
Levit, S.L.; Tang, C. Polymeric nanoparticle delivery of combination therapy with synergistic effects in ovarian cancer. Nanomaterials (Basel), 2021, 11(4), 1048.
[http://dx.doi.org/10.3390/nano11041048] [PMID: 33923947]
[132]
Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between hyaluronan and its receptors [CD44, RHAMM] regulate the activities of inflammation and cancer. Front. Immunol., 2015, 6, 201.
[http://dx.doi.org/10.3389/fimmu.2015.00201] [PMID: 25999946]
[133]
Platt, V.M.; Szoka, F.C. Jr Anticancer therapeutics: Targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol. Pharm., 2008, 5(4), 474-486.
[http://dx.doi.org/10.1021/mp800024g] [PMID: 18547053]
[134]
Ganesh, S.; Iyer, A.K.; Morrissey, D.V.; Amiji, M.M. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013, 34(13), 3489-3502.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.077] [PMID: 23410679]
[135]
Chua, T.C.; Liauw, W.; Robertson, G.; Morris, D.L. Second-line treatment of first relapse recurrent ovarian cancer. Aust. N. Z. J. Obstet. Gynaecol., 2010, 50(5), 465-471.
[http://dx.doi.org/10.1111/j.1479-828X.2010.01209.x] [PMID: 21039382]
[136]
Ushijima, K. Treatment for recurrent ovarian cancer-at first relapse. J. Oncol., 2010, 2010, 1-7.
[http://dx.doi.org/10.1155/2010/497429] [PMID: 20066162]
[137]
Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol., 2018, 81(1), 17-38.
[http://dx.doi.org/10.1007/s00280-017-3501-8] [PMID: 29249039]
[138]
Dong, X.; Mumper, R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond.), 2010, 5(4), 597-615.
[http://dx.doi.org/10.2217/nnm.10.35] [PMID: 20528455]
[139]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[140]
Borges-Walmsley, M.I. McKEEGAN, K.S.; Walmsley, A.R. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J., 2003, 376(2), 313-338.
[http://dx.doi.org/10.1042/bj20020957] [PMID: 13678421]
[141]
Muley, H.; Fadó, R.; Rodríguez-Rodríguez, R.; Casals, N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem. Pharmacol., 2020, 177, 113959.
[http://dx.doi.org/10.1016/j.bcp.2020.113959] [PMID: 32272110]
[142]
Wang, L.; Shi, C.; Wright, F.A.; Guo, D.; Wang, X.; Wang, D.; Wojcikiewicz, R.J.H.; Luo, J. Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Cancer Res., 2017, 77(12), 3293-3305.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3119] [PMID: 28396359]
[143]
Pisano, C.; Cecere, S.C.; Di Napoli, M.; Cavaliere, C.; Tambaro, R.; Facchini, G.; Scaffa, C.; Losito, S.; Pizzolorusso, A.; Pignata, S. Clinical trials with pegylated liposomal Doxorubicin in the treatment of ovarian cancer. J. Drug Deliv., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/898146] [PMID: 23577259]
[144]
Mohell, N.; Alfredsson, J.; Fransson, Å.; Uustalu, M.; Byström, S.; Gullbo, J.; Hallberg, A.; Bykov, V.J.N.; Björklund, U.; Wiman, K.G. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis., 2015, 6(6), e1794.
[http://dx.doi.org/10.1038/cddis.2015.143] [PMID: 26086967]
[145]
Strother, R.; Matei, D. Pegylated liposomal doxorubicin in ovarian cancer. Ther. Clin. Risk Manag., 2009, 5(3), 639-650.
[PMID: 19707541]
[146]
Green, A.E.; Rose, P.G. Pegylated liposomal doxorubicin in ovarian cancer. Int. J. Nanomedicine, 2006, 1(3), 229-239.
[PMID: 17717964]
[147]
Varukattu, N.B.; Vivek, R.; Rejeeth, C.; Thangam, R.; Ponraj, T.; Sharma, A.; Kannan, S. Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: A polymeric smart intracellular delivery system for doxorubicin in breast cancer cells. Arab. J. Chem., 2020, 13(1), 2276-2286.
[http://dx.doi.org/10.1016/j.arabjc.2018.04.012]
[148]
Rong, Y.; Huang, L.; Yi, K.; Chen, H.; Liu, S.; Zhang, W.; Yuan, C.; Song, X.; Wang, F. Co-administration of sulforaphane and doxorubicin attenuates breast cancer growth by preventing the accumulation of myeloid-derived suppressor cells. Cancer Lett., 2020, 493, 189-196.
[http://dx.doi.org/10.1016/j.canlet.2020.08.041] [PMID: 32891712]
[149]
Nitiss, K.C.; Nitiss, J.L. Twisting and ironing: Doxorubicin cardiotoxicity by mitochondrial DNA damage. Clin. Cancer Res., 2014, 20(18), 4737-4739.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0821] [PMID: 24916696]
[150]
Al-malky, H.S.; Al Harthi, S.E.; Osman, A.M.M. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance. J. Oncol. Pharm. Pract., 2020, 26(2), 434-444.
[http://dx.doi.org/10.1177/1078155219877931] [PMID: 31594518]
[151]
Hoeger, C.W.; Turissini, C.; Asnani, A. Doxorubicin cardiotoxicity: Pathophysiology updates. Curr. Treat. Options Cardiovasc. Med., 2020, 22(11), 52.
[http://dx.doi.org/10.1007/s11936-020-00842-w]
[152]
Fojtu, M.; Gumulec, J.; Stracina, T.; Raudenska, M.; Skotakova, A.; Vaculovicova, M.; Adam, V.; Babula, P.; Novakova, M.; Masarik, M. Reduction of doxorubicin-induced cardiotoxicity using nanocarriers: A review. Curr. Drug Metab., 2017, 18(3), 237-263.
[http://dx.doi.org/10.2174/1389200218666170105165444] [PMID: 28059036]
[153]
Kanwal, U.; Irfan Bukhari, N.; Ovais, M.; Abass, N.; Hussain, K.; Raza, A. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target., 2018, 26(4), 296-310.
[http://dx.doi.org/10.1080/1061186X.2017.1380655] [PMID: 28906159]
[154]
Suarasan, S.; Focsan, M.; Potara, M.; Soritau, O.; Florea, A.; Maniu, D.; Astilean, S. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: Formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl. Mater. Interfaces, 2016, 8(35), 22900-22913.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[155]
Young Lee, G.; Park, K.; Nam, J.H.; Kim, S.Y.; Byun, Y. Anti-tumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gelatin-doxorubicin nanoparticles in SCC7 bearing mice. J. Drug Target., 2006, 14(10), 707-716.
[http://dx.doi.org/10.1080/10611860600935701] [PMID: 17162740]
[156]
Deng, L.; Li, L.; Yang, H.; Li, L.; Zhao, F.; Wu, C.; Liu, Y. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells. J. Nanosci. Nanotechnol., 2014, 14(4), 2947-2954.
[http://dx.doi.org/10.1166/jnn.2014.8633] [PMID: 24734715]
[157]
Chai, F.; Sun, L.; He, X.; Li, J.; Liu, Y.; Xiong, F.; Ge, L.; Webster, T.J.; Zheng, C. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int. J. Nanomedicine, 2017, 12, 1791-1802.
[http://dx.doi.org/10.2147/IJN.S130404] [PMID: 28424550]
[158]
Wohlfart, S.; Khalansky, A.S.; Bernreuther, C.; Michaelis, M.; Cinatl, J., Jr; Glatzel, M.; Kreuter, J. Treatment of glioblastoma with poly(isohexyl cyanoacrylate) nanoparticles. Int. J. Pharm., 2011, 415(1-2), 244-251.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.046] [PMID: 21641983]
[159]
Treat, L.H.; McDannold, N.; Zhang, Y.; Vykhodtseva, N.; Hynynen, K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med. Biol., 2012, 38(10), 1716-1725.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.04.015] [PMID: 22818878]
[160]
Lin, Y.L.; Wu, M.T.; Yang, F.Y. Pharmacokinetics of doxorubicin in glioblastoma multiforme following ultrasound-Induced blood-brain barrier disruption as determined by microdialysis. J. Pharm. Biomed. Anal., 2018, 149, 482-487.
[http://dx.doi.org/10.1016/j.jpba.2017.11.047] [PMID: 29175555]
[161]
Macdonald, J.; Denoyer, D.; Henri, J.; Jamieson, A.; Burvenich, I.J.G.; Pouliot, N.; Shigdar, S. Bifunctional aptamer-doxorubicin conjugate crosses the blood-brain barrier and selectively delivers its payload to EpCAM-positive tumor cells. Nucleic Acid Ther., 2020, 30(2), 117-128.
[http://dx.doi.org/10.1089/nat.2019.0807] [PMID: 32027209]
[162]
Bredlau, A.L.; Motamarry, A.; Chen, C.; McCrackin, M.A.; Helke, K.; Armeson, K.E.; Bynum, K.; Broome, A.M.; Haemmerich, D. Localized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive liposomes. Drug Deliv., 2018, 25(1), 973-984.
[http://dx.doi.org/10.1080/10717544.2018.1461280] [PMID: 29688083]
[163]
Zhang, B.; Wan, S.; Peng, X.; Zhao, M.; Li, S.; Pu, Y.; He, B. Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(17), 3939-3948.
[http://dx.doi.org/10.1039/D0TB00327A] [PMID: 32236239]
[164]
Wagner, S.; Rothweiler, F.; Anhorn, M.G.; Sauer, D.; Riemann, I.; Weiss, E.C.; Katsen-Globa, A.; Michaelis, M.; Cinatl, J., Jr; Schwartz, D.; Kreuter, J.; von Briesen, H.; Langer, K. Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials, 2010, 31(8), 2388-2398.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.093] [PMID: 20031203]
[165]
Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr; Kreuter, J.; Langer, K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2007, 341(1-2), 207-214.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.036] [PMID: 17478065]
[166]
Kimura, K.; Yamasaki, K.; Nishi, K.; Taguchi, K.; Otagiri, M. Investigation of anti-tumor effect of doxorubicin-loaded human serum albumin nanoparticles prepared by a desolvation technique. Cancer Chemother. Pharmacol., 2019, 83(6), 1113-1120.
[http://dx.doi.org/10.1007/s00280-019-03832-3] [PMID: 30972458]
[167]
Onafuye, H.; Pieper, S.; Mulac, D.; Jr, J.C.; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol., 2019, 10, 1707-1715.
[http://dx.doi.org/10.3762/bjnano.10.166] [PMID: 31501742]
[168]
Ju, X.; Miao, T.; Chen, H.; Ni, J.; Han, L. Overcoming Mfsd2a-mediated low transcytosis to boost nanoparticle delivery to brain for chemotherapy of brain metastases. Adv. Healthc. Mater., 2021, 10(9), 2001997.
[http://dx.doi.org/10.1002/adhm.202001997] [PMID: 33738958]
[169]
Niu, S.; Zhang, X.; Williams, G.R.; Wu, J.; Gao, F.; Fu, Z.; Chen, X.; Lu, S.; Zhu, L.M. Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater., 2021, 126, 408-420.
[http://dx.doi.org/10.1016/j.actbio.2021.03.024] [PMID: 33731303]
[170]
Song, M.; Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv., 2021, 28(1), 594-606.
[http://dx.doi.org/10.1080/10717544.2021.1898703] [PMID: 33729072]
[171]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[172]
Wang, F.; Porter, M.; Konstantopoulos, A.; Zhang, P.; Cui, H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J. Control. Release, 2017, 267, 100-118.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.026] [PMID: 28958854]
[173]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[174]
Vergara, D.; Bellomo, C.; Zhang, X.; Vergaro, V.; Tinelli, A.; Lorusso, V.; Rinaldi, R.; Lvov, Y.M.; Leporatti, S.; Maffia, M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine, 2012, 8(6), 891-899.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 22100754]
[175]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9(1260), 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[176]
Wang, L.; Liu, C.; Qiao, F.; Li, M.; Xin, H.; Chen, N.; Wu, Y.; Liu, J. Analysis of the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel loaded nanoparticles in glioblastoma cells in vitro. Exp. Ther. Med., 2021, 21(4), 292.
[http://dx.doi.org/10.3892/etm.2021.9723] [PMID: 33717235]
[177]
Varan, G.; Varan, C.; Öztürk, S.C.; Benito, J.M. Esendağlı G.; Bilensoy, E. Therapeutic efficacy and biodistribution of paclitaxel-bound amphiphilic cyclodextrin nanoparticles: analyses in 3D tumor culture and tumor-bearing animals in vivo. Nanomaterials (Basel), 2021, 11(2), 515.
[http://dx.doi.org/10.3390/nano11020515] [PMID: 33670527]
[178]
Khodadadi, E.; Mahjoub, S.; Arabi, M.S.; Najafzadehvarzi, H.; Nasirian, V. Fabrication and evaluation of aptamer-conjugated paclitaxel-loaded magnetic nanoparticles for targeted therapy on breast cancer cells. Mol. Biol. Rep., 2021, 48(3), 2105-2116.
[http://dx.doi.org/10.1007/s11033-021-06199-y] [PMID: 33635469]
[179]
Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the p53 Tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes Cancer, 2011, 2(4), 466-474.
[http://dx.doi.org/10.1177/1947601911408889] [PMID: 21779514]
[180]
Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ., 2019, 26(2), 199-212.
[http://dx.doi.org/10.1038/s41418-018-0246-9] [PMID: 30538286]
[181]
Feng, Y.C.; Liu, X.Y.; Teng, L.; Ji, Q.; Wu, Y.; Li, J.M.; Gao, W.; Zhang, Y.Y.; La, T.; Tabatabaee, H.; Yan, X.G.; Jamaluddin, M.F.B.; Zhang, D.; Guo, S.T.; Scott, R.J.; Liu, T.; Thorne, R.F.; Zhang, X.D.; Jin, L. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat. Commun., 2020, 11(1), 4980.
[http://dx.doi.org/10.1038/s41467-020-18735-8] [PMID: 33020477]
[182]
Ghosh, S.; Salot, S.; Sengupta, S.; Navalkar, A.; Ghosh, D.; Jacob, R.; Das, S.; Kumar, R.; Jha, N.N.; Sahay, S.; Mehra, S.; Mohite, G.M.; Ghosh, S.K.; Kombrabail, M.; Krishnamoorthy, G.; Chaudhari, P.; Maji, S.K. p53 amyloid formation leading to its loss of function: implications in cancer pathogenesis. Cell Death Differ., 2017, 24(10), 1784-1798.
[http://dx.doi.org/10.1038/cdd.2017.105] [PMID: 28644435]
[183]
Kumamoto, K.; Spillare, E.A.; Fujita, K.; Horikawa, I.; Yamashita, T.; Appella, E.; Nagashima, M.; Takenoshita, S.; Yokota, J.; Harris, C.C. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res., 2008, 68(9), 3193-3203.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2780] [PMID: 18451145]
[184]
Voltan, R.; Secchiero, P.; Ruozi, B.; Forni, F.; Agostinis, C.; Caruso, L.; Vandelli, M.A.; Zauli, G. Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts. Clin. Cancer Res., 2013, 19(14), 3871-3880.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0015] [PMID: 23719263]
[185]
Voltan, R.; Secchiero, P.; Ruozi, B.; Caruso, L.; Forni, F.; Palomba, M.; Zauli, G.; Vandelli, M.A. Nanoparticles loaded with Nutlin-3 display cytotoxicity towards p53(wild-type) JVM-2 but not towards p53(mutated) BJAB leukemic cells. Curr. Med. Chem., 2013, 20(21), 2712-2722.
[http://dx.doi.org/10.2174/0929867311320210007] [PMID: 23627936]
[186]
Das, M.; Dilnawaz, F.; Sahoo, S.K. Targeted nutlin-3a loaded nanoparticles inhibiting p53-MDM2 interaction: novel strategy for breast cancer therapy. Nanomedicine (Lond.), 2011, 6(3), 489-507.
[http://dx.doi.org/10.2217/nnm.10.102] [PMID: 21542687]
[187]
Ozawa, Y.; Sugi, N.H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino, H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer, 2001, 37(17), 2275-2282.
[http://dx.doi.org/10.1016/S0959-8049(01)00275-1] [PMID: 11677118]
[188]
Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N.H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem., 1999, 42(19), 3789-3799.
[http://dx.doi.org/10.1021/jm9902638] [PMID: 10508428]
[189]
Zandvliet, A.S.; Copalu, W.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R. Saturable binding of indisulam to plasma proteins and distribution to human erythrocytes. Drug Metab. Dispos., 2006, 34(6), 1041-1046.
[http://dx.doi.org/10.1124/dmd.105.008326] [PMID: 16565173]
[190]
Cesur, H.; Rubinstein, I.; Pai, A.; Önyüksel, H. Self-associated indisulam in phospholipid-based nanomicelles: A potential nanomedicine for cancer. Nanomedicine, 2009, 5(2), 178-183.
[http://dx.doi.org/10.1016/j.nano.2008.09.001] [PMID: 19071064]
[191]
Chen, C.C.; Sureshbabul, M.; Chen, H.W.; Lin, Y.S.; Lee, J.Y.; Hong, Q.S.; Yang, Y.C.; Yu, S.L. Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid.-based Complement. Altern. Med., 2013, 2013, 1-17.
[192]
Jia, W.; Deng, F.; Fu, W.; Hu, J.; Chen, G.; Gao, X.; Tan, X.; Li, G.; Liu, G.; Zhu, S. Curcumin suppresses wilms’ tumor metastasis by inhibiting RECK methylation. Biomed. Pharmacother., 2019, 111, 1204-1212.
[http://dx.doi.org/10.1016/j.biopha.2018.12.111] [PMID: 30841433]
[193]
Laubach, V.; Kaufmann, R.; Bernd, A.; Kippenberger, S.; Zöller, N. Extrinsic or intrinsic apoptosis by curcumin and light: Still a mystery. Int. J. Mol. Sci., 2019, 20(4), 905.
[http://dx.doi.org/10.3390/ijms20040905] [PMID: 30791477]
[194]
Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[195]
Dehghan, M.H.; Mirmiranpour, H.; Faghihi-Kashani, S.; Kabir, K.; Larry, M.; Zayerzadeh, E.; Salehi, S. Inhibitory effect of curcumin on angiogenesis in a streptozotocin-induced diabetic rat model: An aortic ring assay. J. Tradit. Complement. Med., 2016, 6(4), 437-441.
[http://dx.doi.org/10.1016/j.jtcme.2015.12.003] [PMID: 27774432]
[196]
Wang, T.Y.; Chen, J.X. Effects of curcumin on vessel formation insight into the pro-and antiangiogenesis of curcumin. Evidence-based Complement. Altern. Med., 2019, 2019, 1-9.
[197]
Srivastava, R.K.; Chen, Q.; Siddiqui, I.; Sarva, K.; Shankar, S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle, 2007, 6(23), 2953-2961.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[198]
Berrak, Ö.; Akkoç, Y. Arısan, E.D.; Çoker-Gürkan, A.; Obakan-Yerlikaya, P.; Palavan-Ünsal, N. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed. Pharmacother., 2016, 77, 150-160.
[http://dx.doi.org/10.1016/j.biopha.2015.12.007] [PMID: 26796279]
[199]
Zhou, H.; Ning, Y.; Zeng, G.; Zhou, C.; Ding, X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol. Rep., 2021, 45(4), 11.
[http://dx.doi.org/10.3892/or.2021.7962] [PMID: 33649826]
[200]
Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf. B Biointerfaces, 2015, 128, 322-330.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.007] [PMID: 25707750]
[201]
Berginc, K.; Škalko-Basnet, N.; Basnet, P.; Kristl, A. Development and evaluation of an in vitro vaginal model for assessment of drug’s biopharmaceutical properties: curcumin. AAPS PharmSciTech, 2012, 13(4), 1045-1053.
[http://dx.doi.org/10.1208/s12249-012-9837-9] [PMID: 22899381]
[202]
Kabir, M.T.; Rahman, M.H.; Akter, R.; Behl, T.; Kaushik, D.; Mittal, V.; Pandey, P.; Akhtar, M.F.; Saleem, A.; Albadrani, G.M.; Kamel, M.; Khalifa, S.A.M.; El-Seedi, H.R.; Abdel-Daim, M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules, 2021, 11(3), 392.
[http://dx.doi.org/10.3390/biom11030392] [PMID: 33800000]
[203]
Purpura, M.; Lowery, R.P.; Wilson, J.M.; Mannan, H.; Münch, G.; Razmovski-Naumovski, V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur. J. Nutr., 2018, 57(3), 929-938.
[http://dx.doi.org/10.1007/s00394-016-1376-9] [PMID: 28204880]
[204]
Karthika, C.; Hari, B.; Mano, V.; Radhakrishnan, A.; Janani, S.K.; Akter, R.; Kaushik, D.; Rahman, M.H. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp. Gerontol., 2021, 152, 111438.
[http://dx.doi.org/10.1016/j.exger.2021.111438] [PMID: 34098006]
[205]
Li, Y.; Leng, Q.; Pang, X.; Shi, H.; Liu, Y.; Xiao, S.; Zhao, L.; Zhou, P.; Fu, S. Therapeutic effects of EGF-modified curcumin/chitosan nano-spray on wound healing. Regen. Biomater., 2021, 8(2), rbab009.
[http://dx.doi.org/10.1093/rb/rbab009] [PMID: 33738123]
[206]
Huang, Y.; Xie, D.; Gou, S.; Canup, B.S.B.; Zhang, G.; Dai, F.; Li, C.; Xiao, B. Quadruple-responsive nanoparticle-mediated targeted combination chemotherapy for metastatic breast cancer. Nanoscale, 2021, 13(11), 5765-5779.
[http://dx.doi.org/10.1039/D0NR08579K] [PMID: 33704300]
[207]
Möller, K.; Macaulay, B.; Bein, T. Curcumin encapsulated in crosslinked cyclodextrin nanoparticles enables immediate inhibition of cell growth and efficient killing of cancer cells. Nanomaterials (Basel), 2021, 11(2), 489.
[http://dx.doi.org/10.3390/nano11020489] [PMID: 33672006]
[208]
Kumari, M.; Sharma, N.; Manchanda, R.; Gupta, N.; Syed, A.; Bahkali, A.H.; Nimesh, S. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci. Rep., 2021, 11(1), 3824.
[http://dx.doi.org/10.1038/s41598-021-81701-x] [PMID: 33589661]
[209]
Parodi, A.; Rudzinska, M.; Leporatti, S.; Anissimov, Y.; Zamyatnin, A.A., Jr Smart nanotheranostics responsive to pathological stimuli. Front. Bioeng. Biotechnol., 2020, 8(503), 503.
[http://dx.doi.org/10.3389/fbioe.2020.00503] [PMID: 32523946]
[210]
Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics, ˗. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4(6), 660-677.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[211]
Knežević, N.Ž.; Kaluđerović, G.N. Silicon-based nanotheranostics. Nanoscale, 2017, 9(35), 12821-12829.
[http://dx.doi.org/10.1039/C7NR04445C] [PMID: 28853473]
[212]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[213]
Niemirowicz, K.; Prokop, I.; Wilczewska, A.; Wnorowska, U.; Piktel, E. Wątek, M.; Savage, P.; Bucki, R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomedicine, 2015, 10, 3843-3853.
[http://dx.doi.org/10.2147/IJN.S76104] [PMID: 26082634]
[214]
Yigit, M.V.; Moore, A.; Medarova, Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm. Res., 2012, 29(5), 1180-1188.
[http://dx.doi.org/10.1007/s11095-012-0679-7] [PMID: 22274558]
[215]
Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Review Mol. Clin. Oncol., 2017, 7(5), 738-746.
[http://dx.doi.org/10.3892/mco.2017.1399] [PMID: 29075487]
[216]
Sanavio, B.; Librizzi, L.; Pennacchio, P.; Beznoussenko, G.V.; Sousa, F.; Silva, P.J.; Mironov, A.A.; Frassoni, C.; Stellacci, F.; de Curtis, M.; Krol, S. Distribution of superparamagnetic Au/Fe nanoparticles in an isolated guinea pig brain with an intact blood brain barrier. Nanoscale, 2018, 10(47), 22420-22428.
[http://dx.doi.org/10.1039/C8NR07182A] [PMID: 30475372]
[217]
Sun, C.; Du, K.; Fang, C.; Bhattarai, N.; Veiseh, O.; Kievit, F.; Stephen, Z.; Lee, D.; Ellenbogen, R.G.; Ratner, B.; Zhang, M. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano, 2010, 4(4), 2402-2410.
[http://dx.doi.org/10.1021/nn100190v] [PMID: 20232826]
[218]
Xing, J.; Yin, T.; Li, S.; Xu, T.; Ma, A.; Chen, Z.; Luo, Y.; Lai, Z.; Lv, Y.; Pan, H.; Liang, R.; Wu, X.; Zheng, M.; Cai, L. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater., 2021, 31(11), 2008262.
[http://dx.doi.org/10.1002/adfm.202008262]
[219]
Aguilera, G.; Berry, C.C.; West, R.M.; Gonzalez-Monterrubio, E.; Angulo-Molina, A.; Arias-Carrión, Ó.; Méndez-Rojas, M.Á. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood-brain barrier. Nanoscale Adv., 2019, 1(2), 671-685.
[http://dx.doi.org/10.1039/C8NA00010G] [PMID: 36132237]
[220]
Ozyilmaz, E.; Alhiali, A.; Caglar, O.; Yilmaz, M. Preparation of regenerable magnetic nanoparticles for cellulase immobilization: Improvement of enzymatic activity and stability. Biotechnol. Prog., 2021, 37(4), e3145.
[http://dx.doi.org/10.1002/btpr.3145] [PMID: 33720529]
[221]
Santos, M.G.; de Carvalho, D.T.; Caminitti, L.B.; de Lima, B.B.A.; Cavalcanti, M.H.S.; dos Santos, D.F.R.; Virtuoso, L.S.; Hirata, D.B.; Figueiredo, E.C. Use of magnetic Fe3O4 nanoparticles coated with bovine serum albumin for the separation of lysozyme from chicken egg white. Food Chem., 2021, 353, 129442.
[http://dx.doi.org/10.1016/j.foodchem.2021.129442] [PMID: 33714116]
[222]
Fan, S.; Zhang, Y.; Tan, H.; Xue, C.; He, Y.; Wei, X.; Zha, Y.; Niu, J.; Liu, Y.; Cheng, Y.; Cui, D. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale, 2021, 13(10), 5383-5399.
[http://dx.doi.org/10.1039/D0NR08831E] [PMID: 33666213]
[223]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[224]
Yu, X.T.; Sui, S.Y.; He, Y.X.; Yu, C.H.; Peng, Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater. Adv., 2022, 135, 212725.
[http://dx.doi.org/10.1016/j.bioadv.2022.212725] [PMID: 35929205]
[225]
Zhao, R.; Zheng, G.; Fan, L.; Shen, Z.; Jiang, K.; Guo, Y.; Shao, J.W. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy. Acta Biomater., 2018, 70, 197-210.
[http://dx.doi.org/10.1016/j.actbio.2018.01.028] [PMID: 29408311]
[226]
Lu, J.; Zhang, W.; Yuan, L.; Ma, W.; Li, X.; Lu, W.; Zhao, Y.; Chen, G. One-pot synthesis of glycopolymer-porphyrin conjugate as photosensitizer for targeted cancer imaging and photodynamic therapy. Macromol. Biosci., 2014, 14(3), 340-346.
[http://dx.doi.org/10.1002/mabi.201300451] [PMID: 24285577]
[227]
Xu, H.; Ohulchanskyy, T.Y.; Yakovliev, A.; Zinyuk, R.; Song, J.; Liu, L.; Qu, J.; Yuan, Z. Nanoliposomes co-encapsulating CT imaging contrast agent and photosensitizer for enhanced, imaging guided photodynamic therapy of cancer. Theranostics, 2019, 9(5), 1323-1335.
[http://dx.doi.org/10.7150/thno.31079] [PMID: 30867833]
[228]
Zhou, X.; Li, H.; Shi, C.; Xu, F.; Zhang, Z.; Yao, Q.; Ma, H.; Sun, W.; Shao, K.; Du, J.; Long, S.; Fan, J.; Wang, J.; Peng, X. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials, 2020, 253, 120089.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120089] [PMID: 32447103]
[229]
Bhuvaneswari, R.; Yuen, G.Y.; Chee, S.K.; Olivo, M. Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem. Photobiol. Sci., 2007, 6(12), 1275-1283.
[http://dx.doi.org/10.1039/b705763f] [PMID: 18046482]
[230]
Callaghan, S.; Senge, M.O. The good, the bad, and the ugly-controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem. Photobiol. Sci., 2018, 17(11), 1490-1514.
[http://dx.doi.org/10.1039/c8pp00008e] [PMID: 29569665]
[231]
Li, B.; Lin, L.; Lin, H.; Wilson, B.C. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J. Biophotonics, 2016, 9(11-12), 1314-1325.
[http://dx.doi.org/10.1002/jbio.201600055] [PMID: 27136270]
[232]
Zhang, X.; Zhang, Y.; Zhang, C.; Yang, C.; Tian, R.; Sun, T.; Zhang, W.; Chang, J.; Wang, H. An injectable hydrogel co-loading with cyanobacteria and upconversion nanoparticles for enhanced photodynamic tumor therapy. Colloids Surf. B Biointerfaces, 2021, 201, 111640.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111640] [PMID: 33640676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy