Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Bioadhesive Systems Targeting Site-Specific Mucosal Delivery

Author(s): Shanthi Chede and Leela Raghava Jaidev Chakka*

Volume 12, Issue 3, 2022

Published on: 18 January, 2023

Page: [160 - 178] Pages: 19

DOI: 10.2174/2468187313666230106153044

Price: $65

Abstract

One of the major limitations to drug delivery at mucosal administration sites is the limited retention of the dose at the tissue surface. Bioadhesive delivery systems increase the residence time/retention of the dosage form at the application site. To retain the drug at the site of administration for improved absorption and ease of administration, the identification of polymer systems based on site-specific physiological conditions is important. This review outlines diverse kinds of polymer systems and their mechanism of mucoadhesion. This review presents a brief description of bioadhesive strategies for the formulation and development of a buccal and esophageal delivery system based on its site-specific physiological considerations.

[1]
Good RJ. On the definition of adhesion. J Adhes 1976; 8(1): 1-9.
[http://dx.doi.org/10.1080/00218467608075066]
[2]
Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm 1997; 23(5): 489-515.
[http://dx.doi.org/10.3109/03639049709148498]
[3]
Hntsberger JR. Surface energy, wetting and adhesion. J Adhes 1981; 12(1): 3-12.
[http://dx.doi.org/10.1080/00218468108071184]
[4]
Smart J. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005; 57(11): 1556-68.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[5]
Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 2009; 71(3): 505-18.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[6]
Peppas N, Bures P, Foss A, Huang Y, Leobandung W. Molecular aspects of muco and bioadhesion: Tethered structures and sitespecific surfaces. Proceedings in international symposium recent advances in drug delivery system. J Control Release 9: 31-4
[7]
Kamath K, Park K. Mucosal adhesive preparations. Encycl Pharm Technol 1994; 10: 133-63.
[8]
Rathbone MJ, Hadgraft J. Absorption of drugs from the human oral cavity. Int J Pharm 1991; 74(1): 9-24.
[http://dx.doi.org/10.1016/0378-5173(91)90403-B]
[9]
Johnson P, Rainsford KD. The physical properties of mucus: Preliminary observations on the sedimentation behaviour of porcine gastric mucus. Biochim Biophys Acta, Gen Subj 1972; 286(1): 72-8.
[http://dx.doi.org/10.1016/0304-4165(72)90089-X] [PMID: 4659265]
[10]
Chen JL, Cyr GN. Adhesion in biological systems. (1st ed.). Elsevier 1970; pp. 163-81.
[http://dx.doi.org/10.1016/B978-0-12-469050-9.50015-6]
[11]
Kinloch AJ. The science of adhesion. J Mater Sci 1980; 15(9): 2141-66.
[http://dx.doi.org/10.1007/BF00552302]
[12]
Pritchard W. The role of hydrogen bonding in adhesion Aspects Adhes 1971; 6(11)
[13]
Kaelble DH, Moacanin J. A surface energy analysis of bioadhesion. Polymer (Guildf) 1977; 18(5): 475-82.
[http://dx.doi.org/10.1016/0032-3861(77)90164-1]
[14]
Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial surfaces: structure-property relationships. Crit Rev Ther Drug Carrier Syst 1988; 5(1): 21-67.
[PMID: 3293807]
[15]
Smart J. The role of water movement and polymer hydration in mucoadhesion. Drugs Pharm Sci 1999; 19992355: 11-23.
[http://dx.doi.org/10.1201/b14099-3]
[16]
Wu S. Polymer interface and adhesion. (1st ed.). Taylor & Francis 1982; pp. 359-434.
[17]
Duchěne D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm 1988; 14(2-3): 283-318.
[http://dx.doi.org/10.3109/03639048809151972]
[18]
Jiménez-castellanos MR, Zia H, Rhodes CT. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm 1993; 19(1-2): 143-94.
[http://dx.doi.org/10.3109/03639049309038765]
[19]
Robinson JR, Longer MA, Veillard M. Bioadhesive polymers for controlled drug delivery Ann N Y Acad Sci 1987; 507(1 Biological Ap): 307-14.
[http://dx.doi.org/10.1111/j.1749-6632.1987.tb45810.x] [PMID: 3126694]
[20]
Mikos AG, Mathiowitz E, Langer R, Peppas NA. Interaction of polymer microspheres with mucin gels as a means of characterizing polymer retention on mucus. J Colloid Interface Sci 1991; 143(2): 366-73.
[http://dx.doi.org/10.1016/0021-9797(91)90270-I]
[21]
Peppas NA, Thomas JB, McGinty J. Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J Biomater Sci Polym Ed 2009; 20(1): 1-20.
[http://dx.doi.org/10.1163/156856208X393464] [PMID: 19105897]
[22]
Venables JD. Adhesion and durability of metal-polymer bonds. J Mater Sci 1984; 19(8): 2431-53.
[http://dx.doi.org/10.1007/BF00550796]
[23]
Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release 1985; 2: 257-75.
[http://dx.doi.org/10.1016/0168-3659(85)90050-1]
[24]
Ponchel G, Touchard F, Duchêne D, Peppas NA. Bioadhesive analysis of controlled-release systems. I. Fracture and interpenetration analysis in poly(acrylic acid)-containing systems. J Control Release 1987; 5(2): 129-41.
[http://dx.doi.org/10.1016/0168-3659(87)90004-6]
[25]
Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 1996; 17(16): 1553-61.
[http://dx.doi.org/10.1016/0142-9612(95)00307-X] [PMID: 8842358]
[26]
Gurny R, Meyer JM, Peppas NA. Bioadhesive intraoral release systems: design, testing and analysis. Biomaterials 1984; 5(6): 336-40.
[http://dx.doi.org/10.1016/0142-9612(84)90031-0] [PMID: 6525393]
[27]
Smart JD, Kellaway IW, Worthington HEC. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol 2011; 36(5): 295-9.
[http://dx.doi.org/10.1111/j.2042-7158.1984.tb04377.x] [PMID: 6145763]
[28]
Park H. On the mechanism of bioadhesion PhD Thesis 1986.
[29]
Barrer RM, Barrie JA, Wong PSL. The diffusion and solution of gases in highly crosslinked copolymers. Polymer (Guildf) 1968; 9: 609-27.
[http://dx.doi.org/10.1016/0032-3861(68)90084-0]
[30]
McCarron PA, Woolfson AD, Donnelly RF, Andrews GP, Zawislak A, Price JH. Influence of plasticizer type and storage conditions on properties of poly(methyl vinyl ether-co-maleic anhydride) bioadhesive films. J Appl Polym Sci 2004; 91(3): 1576-89.
[http://dx.doi.org/10.1002/app.13228]
[31]
Gudeman LF, Peppas NA. Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid). J Appl Polym Sci 1995; 55(6): 919-28.
[http://dx.doi.org/10.1002/app.1995.070550610]
[32]
Smart JD. An m vitro assessment of some mucosa-adhesive dosage forms. Int J Pharm 1991; 73(1): 69-74.
[http://dx.doi.org/10.1016/0378-5173(91)90101-S]
[33]
Lehr CM, Poelma FGJ, Junginger HE, Tukker JJ. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int J Pharm 1991; 70(3): 235-40.
[http://dx.doi.org/10.1016/0378-5173(91)90287-X]
[34]
Park K, Park H. Bioadhesive drug delivery systems. CRC Press 1990; pp. 43-64.
[35]
Varum FJO, Veiga F, Sousa JS, Basit AW. Mucoadhesive platforms for targeted delivery to the colon. Int J Pharm 2011; 420(1): 11-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.006] [PMID: 21856393]
[36]
Ch’Ng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci 1985; 74(4): 399-405.
[http://dx.doi.org/10.1002/jps.2600740407] [PMID: 3998999]
[37]
Davis SS. The design and evaluation of controlled release systems for the gastrointestinal tract. J Control Release 1985; 2: 27-38.
[http://dx.doi.org/10.1016/0168-3659(85)90030-6]
[38]
Kremser C, Albrecht K, Greindl M, Wolf C, Debbage P, Bernkop-Schnürch A. In vivo determination of the time and location of mucoadhesive drug delivery systems disintegration in the gastrointestinal tract. Magn Reson Imaging 2008; 26(5): 638-43.
[http://dx.doi.org/10.1016/j.mri.2008.01.004] [PMID: 18436409]
[39]
Hägerström H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur J Pharm Sci 2000; 9(3): 301-9.
[http://dx.doi.org/10.1016/S0928-0987(99)00070-6] [PMID: 10594388]
[40]
He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 1998; 166(1): 75-88.
[http://dx.doi.org/10.1016/S0378-5173(98)00027-1]
[41]
Park H, Robinson JR. Physico-chemical properties of water insoluble polymers important to mucin/epithelial adhesion. J Control Release 1985; 2: 47-57.
[http://dx.doi.org/10.1016/0168-3659(85)90032-X]
[42]
Chinna RP, Chaitanya KS, Madhusudan Rao Y. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru 2011; 19(6): 385-403.
[PMID: 23008684]
[43]
Mathiowitz E, Chickering DE III, Lehr CM. Development of bioadhesive buccal patches, in bioadhesive drug delivery systems: Fundamentals, novel approaches, and development. (1st ed.), CRC Press 1999.
[44]
Horstmann M, Müller W, Asmussen B. Principles of skin adhesion and methods for measuring adhesion of transdermal systems in bioadhesive drug delivery systems: Fundamentals, novel approaches, and development 1999; 98
[45]
Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res 1990; 7(5): 491-5.
[http://dx.doi.org/10.1023/A:1015812615635] [PMID: 1694990]
[46]
Teng CLC, Ho NFH. Mechanistic studies in the simultaneous flow and adsorption of polymer-coated latex particles on intestinal mucus I: Methods and physical model development. J Control Release 1987; 6(1): 133-49.
[http://dx.doi.org/10.1016/0168-3659(87)90071-X]
[47]
Wang J, Tauchi Y, Deguchi Y, Morimoto K, Tabata Y, Ikada Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug Deliv 2000; 7(4): 237-43.
[http://dx.doi.org/10.1080/107175400455173] [PMID: 11195431]
[48]
Batchelor HK, Banning D, Dettmar PW, Hampson FC, Jolliffe IG, Craig DQM. An in vitro mucosal model for prediction of the bioadhesion of alginate solutions to the oesophagus. Int J Pharm 2002; 238(1-2): 123-32.
[http://dx.doi.org/10.1016/S0378-5173(02)00062-5] [PMID: 11996816]
[49]
Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci 2000; 89(7): 850-66.
[http://dx.doi.org/10.1002/1520-6017(200007)89:7<850:AID-JPS2>3.0.CO;2-G] [PMID: 10861586]
[50]
Lehr CM. Lectin-mediated drug delivery. J Control Release 2000; 65(1-2): 19-29.
[http://dx.doi.org/10.1016/S0168-3659(99)00228-X] [PMID: 10699266]
[51]
Haltner E, Easson JH, Lehr CM. Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm 1997; 44(1): 3-13.
[http://dx.doi.org/10.1016/S0939-6411(97)00096-9]
[52]
Woodley J, Naisbett B. The potential use of tomato lecin for oral delivery. Int J Pharm 1994; 107: 125-6.
[53]
Bernkop-Schnürch A. The use of multifunctional polymers for non-invasive peptide and protein application. Expert Opin Ther Pat 2000; 10(9): 1357-66.
[http://dx.doi.org/10.1517/13543776.10.9.1357]
[54]
Lueßen HL, Lehr CM, Rentel CO, et al. Bioadhesive polymers for the peroral delivery of peptide drugs. J Control Release 1994; 29(3): 329-38.
[http://dx.doi.org/10.1016/0168-3659(94)90078-7]
[55]
Lueßen HL, Verhoef JC, Borchard G, Lehr CM, de Boer ABG, Junginger HE. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res 1995; 12(9): 1293-8.
[http://dx.doi.org/10.1023/A:1016213405081] [PMID: 8570524]
[56]
Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 2001; 52(2): 117-26.
[http://dx.doi.org/10.1016/S0169-409X(01)00231-9] [PMID: 11718935]
[57]
Portero A, Remuñán-López C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharm Res 2002; 19(2): 169-74.
[http://dx.doi.org/10.1023/A:1014220832384] [PMID: 11883644]
[58]
Madara JL. Loosening tight junctions. Lessons from the intestine. J Clin Invest 1989; 83(4): 1089-94.
[http://dx.doi.org/10.1172/JCI113987] [PMID: 2649511]
[59]
Madara JL. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol Cell Physiol 1987; 253(1): C171-5.
[http://dx.doi.org/10.1152/ajpcell.1987.253.1.C171] [PMID: 3605327]
[60]
Aspden TJ, Illum L, Skaugrud Ø. Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models. Eur J Pharm Sci 1996; 4(1): 23-31.
[http://dx.doi.org/10.1016/0928-0987(95)00026-7]
[61]
Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994; 11(9): 1358-61.
[http://dx.doi.org/10.1023/A:1018967116988] [PMID: 7816770]
[62]
Bernkop-Schnürch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm Res 1999; 16(6): 876-81.
[http://dx.doi.org/10.1023/A:1018830204170] [PMID: 10397608]
[63]
Marschütz MK, Bernkop-Schnürch A. Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci 2002; 15(4): 387-94.
[http://dx.doi.org/10.1016/S0928-0987(02)00025-8] [PMID: 11988400]
[64]
Kast CE, Bernkop-Schnürch A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001; 22(17): 2345-52.
[http://dx.doi.org/10.1016/S0142-9612(00)00421-X] [PMID: 11511031]
[65]
Bernkop-Schnürch A, Kast CE, Richter MF. Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J Control Release 2001; 71(3): 277-85.
[http://dx.doi.org/10.1016/S0168-3659(01)00227-9] [PMID: 11295220]
[66]
Sakloetsakun D, Hombach JMR, Bernkop-Schnürch A. In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 2009; 30(31): 6151-7.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.060] [PMID: 19699516]
[67]
Kafedjiiski K, Hoffer M, Werle M, Bernkop-Schnürch A. Improved synthesis and in vitro characterization of chitosan-thioethylamidine conjugate. Biomaterials 2006; 27(1): 127-35.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.075] [PMID: 16045983]
[68]
Langoth N, Kalbe J, Bernkop-Schnürch A. Development of buccal drug delivery systems based on a thiolated polymer. Int J Pharm 2003; 252(1-2): 141-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00638-5] [PMID: 12550789]
[69]
Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul 2007; 1(1): 65-71.
[http://dx.doi.org/10.2174/187221107779814113] [PMID: 19075875]
[70]
Devasani SR, Dev A, Rathod S, Deshmukh G. An overview of in situ gelling systems. Pharm Biol Eval 2016; 3: 60-9.
[71]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[72]
Islam A, Yasin T, Bano I, Riaz M. Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel. J Appl Polym Sci 2012; 124(5): 4184-92.
[http://dx.doi.org/10.1002/app.35392]
[73]
Li J, Liu H, Liu L, Cai C, Xin H, Liu W. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem Pharm Bull (Tokyo) 2014; 62(10): 1000-8.
[http://dx.doi.org/10.1248/cpb.c14-00451] [PMID: 25099146]
[74]
Al Khateb K, Ozhmukhametova EK, Mussin MN, et al. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 2016; 502(1-2): 70-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.027] [PMID: 26899977]
[75]
Joo MK, Park MH, Choi BG, Jeong B. Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem 2009; 19(33): 5891-905.
[http://dx.doi.org/10.1039/b902208b]
[76]
Samlowski WE, McGregor JR, Jurek M, Baudys M, Zentner GM, Fowers KD. ReGel polymer-based delivery of interleukin-2 as a cancer treatment. J Immunother 2006; 29(5): 524-35.
[http://dx.doi.org/10.1097/01.cji.0000211306.05869.25] [PMID: 16971808]
[77]
Zhao L, Zhu L, Liu F, et al. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int J Pharm 2011; 410(1-2): 83-91.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.034] [PMID: 21421032]
[78]
Ruel-Gariépy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004; 57(1): 53-63.
[http://dx.doi.org/10.1016/S0939-6411(03)00095-X] [PMID: 14729080]
[79]
Upadhayay P, Kumar M, Pathak K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial Infections: Optimization, ocular irritancy and corneal toxicity. Iran J Pharm Res 2016; 15(1): 3-22.
[PMID: 27610144]
[80]
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm 2013; 443(1-2): 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[81]
Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 2006; 315(1-2): 12-7.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.029] [PMID: 16616442]
[82]
Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci 2017; 104: 302-14.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[83]
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58(15): 1655-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[84]
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008; 68(1): 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[85]
Bhatia SR. Surfactants and polymers in drug delivery. J Am Chem Soc 2003; 125(11): 3400.
[http://dx.doi.org/10.1021/ja025301i]
[86]
Esumi K, Ueno M. Structure-performance relationships in surfactants. (2nd ed.). Marcel Dekker 2006; pp. 123-4.
[87]
Cui X, Mao S, Liu M, Yuan H, Du Y. Mechanism of surfactant micelle formation. Langmuir 2008; 24(19): 10771-5.
[http://dx.doi.org/10.1021/la801705y] [PMID: 18729337]
[88]
Song Z, Feng R, Sun M, et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 2011; 354(1): 116-23.
[http://dx.doi.org/10.1016/j.jcis.2010.10.024] [PMID: 21044788]
[89]
Mukerjee P, Mysels K J. Critical micelle concentrations of aqueous surfactant systems National Standard reference data system 1971.
[90]
Alexandridis P, Holzwarth JF. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 1997; 13(23): 6074-82.
[http://dx.doi.org/10.1021/la9703712]
[91]
Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román J. Smart polymers and their applications as biomaterials Topics in Tissue Engineering 2007. University in Oulu: Finland 2007; Vol. 3: pp. 1-37.
[92]
Bodratti A, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater 2018; 9(1): 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[93]
Nambam JS, Philip J. Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO-PPO-PEO triblock copolymer in aqueous solution. J Phys Chem B 2012; 116(5): 1499-507.
[http://dx.doi.org/10.1021/jp208902a] [PMID: 22216946]
[94]
Makhaeva EE, Tenhu H, Khokhlov AR. Conformational changes of poly (vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 1998; 31(18): 6112-8.
[http://dx.doi.org/10.1021/ma980158s]
[95]
Hashemi M, Chasteen TG. Hofmeister effect challenge. Analyt Bioanalyt Chem 2011; 643-4.
[http://dx.doi.org/10.1007/s00216-011-4722-z]
[96]
Kunz W. On the theory of the effects of salts: Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 2004; 9: 19-37.
[http://dx.doi.org/10.1016/j.cocis.2004.05.005]
[97]
Takahashi R, Qiu XP, Xue N, Sato T, Terao K, Winnik FM. Self-association of the thermosensitive block copolymer Poly(2-isopropyl-2-oxazoline)- b -poly(N -isopropylacrylamide) in water-methanol mixtures. Macromolecules 2014; 47(19): 6900-10.
[http://dx.doi.org/10.1021/ma501538t]
[98]
Bahadur P, Pandya K, Almgren M, Li P, Stilbs P. Effect of inorganic salts on the micellar behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution. Colloid Polym Sci 1993; 271(7): 657-67.
[http://dx.doi.org/10.1007/BF00652828]
[99]
Malmsten M, Lindman B. Self-assembly in aqueous block copolymer solutions. Macromolecules 1992; 25(20): 5440-5.
[http://dx.doi.org/10.1021/ma00046a049]
[100]
Su Y, Wang J, Liu H. Melt, hydration, and micellization of the PEO-PPO-PEO block copolymer studied by FTIR spectroscopy. J Colloid Interface Sci 2002; 251(2): 417-23.
[http://dx.doi.org/10.1006/jcis.2002.8435] [PMID: 16290748]
[101]
Pandit N, Kisaka J. Loss of gelation ability of Pluronic® F127 in the presence of some salts. Int J Pharm 1996; 145(1-2): 129-36.
[http://dx.doi.org/10.1016/S0378-5173(96)04748-5]
[102]
You JO, Almeda D, Ye GJC, Auguste DT. Bioresponsive matrices in drug delivery. J Biol Eng 2010; 4(1): 15.
[http://dx.doi.org/10.1186/1754-1611-4-15] [PMID: 21114841]
[103]
Raphael M, Kawaguchi H. Biomedical applications of hydrogels handbook. Springer New York 2010; pp. 107-19.
[104]
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014; 55(4): 475-82.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[105]
Mortazavi SA, Carpenter BG, Smart JD. An investigation of the rheological behaviour of the mucoadhesive/mucosal interface. Int J Pharm 1992; 83(1-3): 221-5.
[http://dx.doi.org/10.1016/0378-5173(82)90025-4]
[106]
Mortazavi SA, Smart JD. Factors influencing gel-strengthening at the mucoadhesive-mucus interface. J Pharm Pharmacol 2011; 46(2): 86-90.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03746.x] [PMID: 8021811]
[107]
Guo BL, Gao QY. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)] semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 2007; 342(16): 2416-22.
[http://dx.doi.org/10.1016/j.carres.2007.07.007] [PMID: 17669378]
[108]
Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release. Int J Pharm 2011; 411(1-2): 69-77.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.042] [PMID: 21453762]
[109]
Morris ER, Nishinari K, Rinaudo M. Gelation of gellan - A review. Food Hydrocoll 2012; 28(2): 373-411.
[http://dx.doi.org/10.1016/j.foodhyd.2012.01.004]
[110]
Galván ZRN, Soares LS, Medeiros EAA, et al. Rheological properties of aqueous dispersions of xanthan gum containing different chloride salts are impacted by both sizes and net electric charges of the cations. Food Biophys 2018; 13(2): 186-97.
[http://dx.doi.org/10.1007/s11483-018-9524-9]
[111]
Schenker HI, Silver LH. Long-term intraocular pressure-lowering efficacy and safety of timolol maleate gel-forming solution 0.5% compared with timoptic XE 0.5% in a 12-month study11All proprietary rights for this study are retained by Alcon Research, Ltd. Am J Ophthalmol 2000; 130(2): 145-50.
[http://dx.doi.org/10.1016/S0002-9394(00)00458-X] [PMID: 11004287]
[112]
Shedden A, Laurence J, Tipping R. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin Ther 2001; 23(3): 440-50.
[http://dx.doi.org/10.1016/S0149-2918(01)80048-5] [PMID: 11318078]
[113]
Wilson CG. Topical drug delivery in the eye. Exp Eye Res 2004; 78(3): 737-43.
[http://dx.doi.org/10.1016/j.exer.2003.10.004] [PMID: 15106953]
[114]
Zignani M, Tabatabay C, Gurny R. Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels. Adv Drug Deliv Rev 1995; 16(1): 51-60.
[http://dx.doi.org/10.1016/0169-409X(95)00015-Y]
[115]
Meng YC, Hong LB, Jin JQ. A study in gelation properties and rheologcial behavir of gellan gum. Appl Mech Mater 2013; 284-287: 20-4.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.284-287.20]
[116]
Dentini M, Coviello T, Burchard W, Crescenzi V. Solution properties of exocellular microbial polysaccharides. 3. Light scattering from gellan and from the exocellular polysaccharide of Rhizobium trifolii (strain TA-1) in the ordered state. Macromolecules 1988; 21(11): 3312-20.
[http://dx.doi.org/10.1021/ma00189a028]
[117]
Cao S, Ren X, Zhang Q, et al. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int J Pharm 2009; 365(1-2): 109-15.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.042] [PMID: 18822361]
[118]
Jansson B, Hägerström H, Fransén N, Edsman K, Björk E. The influence of gellan gum on the transfer of fluorescein dextran across rat nasal epithelium in vivo. Eur J Pharm Biopharm 2005; 59(3): 557-64.
[http://dx.doi.org/10.1016/j.ejpb.2004.10.001] [PMID: 15760737]
[119]
Haug A, Larsen B. Proceedings of the fifth international seaweed symposium, Halifax, August. 25-8, 1965, Elsvier 2014.
[120]
Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett 1973; 32(1): 195-8.
[http://dx.doi.org/10.1016/0014-5793(73)80770-7]
[121]
Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery — A promising option for orally less efficient drugs. J Control Release 2006; 114(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[122]
Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. J Control Release 2009; 139(2): 94-107.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.014] [PMID: 19559740]
[123]
Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011; 153(2): 106-16.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.027] [PMID: 21300115]
[124]
Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 2001; 2001(29): 7-15.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003443] [PMID: 11694559]
[125]
Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery 1996; 74: 1-26.
[126]
Hoogstraate JAJ, Wertz PW, Wertz PW. Drug delivery via the buccal mucosa. Pharm Sci Technol Today 1998; 1(7): 309-16.
[http://dx.doi.org/10.1016/S1461-5347(98)00076-5]
[127]
Squier CA, Hopps RM. A study of the permeability barrier in epidermis and oral epithelium using horseradish peroxidase as a tracer in vitro. Br J Dermatol 1976; 95(2): 123-9.
[http://dx.doi.org/10.1111/j.1365-2133.1976.tb00814.x] [PMID: 952748]
[128]
Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci 1992; 81(1): 1-10.
[http://dx.doi.org/10.1002/jps.2600810102] [PMID: 1619560]
[129]
Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 1973; 43(1-2): 160-77.
[http://dx.doi.org/10.1016/S0022-5320(73)90076-2] [PMID: 4703271]
[130]
Squier CA, Rooney L. The permeability of keratinized and nonkeratinized oral epithelium to lanthanum in vivo. J Ultrastruct Res 1976; 54(2): 286-95.
[http://dx.doi.org/10.1016/S0022-5320(76)80157-8] [PMID: 1249859]
[131]
Squier CA, Hall BK. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J Invest Dermatol 1985; 84(3): 176-9.
[http://dx.doi.org/10.1111/1523-1747.ep12264711] [PMID: 2579163]
[132]
Squier CA, Cox PS, Wertz PW, Downing DT. The lipid composition of porcine epidermis and oral epithelium. Arch Oral Biol 1986; 31(11): 741-7.
[http://dx.doi.org/10.1016/0003-9969(86)90006-3] [PMID: 2445322]
[133]
Squier CA, Cox P, Wertz PW. Lipid content and water permeability of skin and oral mucosa. J Invest Dermatol 1991; 96(1): 123-6.
[http://dx.doi.org/10.1111/1523-1747.ep12515931] [PMID: 1987287]
[134]
Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol 1995; 40(12): 1085-91.
[http://dx.doi.org/10.1016/0003-9969(95)00091-7] [PMID: 8850646]
[135]
Wertz PW, Cox PS, Squier CA, Downing DT. Lipids of epidermis and keratinized and non-keratinized oral epithelia. Comp Biochem Physiol B 1986; 83(3): 529-31.
[http://dx.doi.org/10.1016/0305-0491(86)90291-9] [PMID: 2420526]
[136]
Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1998; 1(1): 15-30.
[PMID: 10942969]
[137]
Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies. Int J Pharm 2003; 250(1): 203-13.
[http://dx.doi.org/10.1016/S0378-5173(02)00545-8] [PMID: 12480286]
[138]
Madhavi BR, Murthy VS, Rani A, Kumar G. Buccal film drug delivery system-An innovative and emerging technology. J Mol Pharm Org Process Res 2013; 1(3): 1-6.
[http://dx.doi.org/10.4172/2329-9053.1000107]
[139]
Aungst BJ. Absorption enhancers: applications and advances. AAPS J 2012; 14(1): 10-8.
[http://dx.doi.org/10.1208/s12248-011-9307-4] [PMID: 22105442]
[140]
Hassan N, Ahad A, Ali M, Ali J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 2010; 7(1): 97-112.
[http://dx.doi.org/10.1517/17425240903338758] [PMID: 20017661]
[141]
Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—How do they really work? J Control Release 2005; 105(1-2): 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2005.01.024] [PMID: 15894393]
[142]
Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 2011; 77(2): 187-99.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.023] [PMID: 21130875]
[143]
Şenel S, Hıncal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release 2001; 72(1-3): 133-44.
[http://dx.doi.org/10.1016/S0168-3659(01)00269-3] [PMID: 11389992]
[144]
Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic® F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm 2001; 212(2): 289-93.
[http://dx.doi.org/10.1016/S0378-5173(00)00615-3] [PMID: 11165086]
[145]
Leonard TW, Lynch J, McKenna MJ, Brayden DJ. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET™. Expert Opin Drug Deliv 2006; 3(5): 685-92.
[http://dx.doi.org/10.1517/17425247.3.5.685] [PMID: 16948563]
[146]
Tuvia S, Pelled D, Marom K, et al. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res 2014; 31(8): 2010-21.
[http://dx.doi.org/10.1007/s11095-014-1303-9] [PMID: 24558008]
[147]
Khedkar A, Iyer H, Anand A, et al. A dose range finding study of novel oral insulin (IN-105) under fed conditions in type 2 diabetes mellitus subjects. Diabetes Obes Metab 2010; 12(8): 659-64.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01213.x] [PMID: 20590742]
[148]
Barry BW. Mode of action of penetration enhancers in human skin. J Control Release 1987; 6(1): 85-97.
[http://dx.doi.org/10.1016/0168-3659(87)90066-6]
[149]
Williams AC, Barry BW. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm Res 1991; 8(1): 17-24.
[http://dx.doi.org/10.1023/A:1015813803205] [PMID: 2014203]
[150]
Panchagnula R, Salve PS, Thomas NS, Jain AK, Ramarao P. Transdermal delivery of naloxone: effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int J Pharm 2001; 219(1-2): 95-105.
[http://dx.doi.org/10.1016/S0378-5173(01)00634-2] [PMID: 11337170]
[151]
Thomas NS, Panchagnula R. Transdermal delivery of zidovudine: effect of vehicles on permeation across rat skin and their mechanism of action. Eur J Pharm Sci 2003; 18(1): 71-9.
[http://dx.doi.org/10.1016/S0928-0987(02)00242-7] [PMID: 12554075]
[152]
Aungst BJ, Blake JA, Hussain MA. Contributions of drug solubilization, partitioning, barrier disruption, and solvent permeation to the enhancement of skin permeation of various compounds with fatty acids and amines. Pharm Res 1990; 7(7): 712-8.
[http://dx.doi.org/10.1023/A:1015859320604] [PMID: 2395798]
[153]
Taguchi K, Fukushima S, Yamaoka Y, Takeuchi Y, Suzuki M. Enhancement of propylene glycol distribution in the skin by high purity cis-unsaturated fatty acids with different alkyl chain lengths having different double bond position. Biol Pharm Bull 1999; 22(4): 407-11.
[http://dx.doi.org/10.1248/bpb.22.407] [PMID: 10328563]
[154]
Zhao L, Yalkowsky SH. Stabilization of eptifibatide by cosolvents. Int J Pharm 2001; 218(1-2): 43-56.
[http://dx.doi.org/10.1016/S0378-5173(01)00618-4] [PMID: 11337148]
[155]
Yalkowsky S, Roseman TJ. Solubilization of drugs by cosolvents. J Pharm Sci 1981; 12: 91-134.
[156]
Millard JW, Alvarez-Núñez FA, Yalkowsky SH. Solubilization by cosolvents. Int J Pharm 2002; 245(1-2): 153-66.
[http://dx.doi.org/10.1016/S0378-5173(02)00334-4] [PMID: 12270252]
[157]
Barrett CW, Hadgraft JW, Caron GA, Sarkany I. The effect of particle size and vehicle on the percutaneous absorption of fluocinolone acetonide. Br J Dermatol 1965; 77(11): 576-8.
[http://dx.doi.org/10.1111/j.1365-2133.1965.tb14578.x] [PMID: 5853251]
[158]
Coldman MF, Kalinovsky T, Poulsen BJ. The in vitro penetration of fluocinonide through human skin from different volumes of DMSO. Br J Dermatol 1971; 85(5): 457-61.
[http://dx.doi.org/10.1111/j.1365-2133.1971.tb14053.x] [PMID: 5132160]
[159]
Duracher L, Blasco L, Hubaud JC, Vian L, Marti-Mestres G. The influence of alcohol, propylene glycol and 1,2-pentanediol on the permeability of hydrophilic model drug through excised pig skin. Int J Pharm 2009; 374(1-2): 39-45.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.021] [PMID: 19446757]
[160]
Watkinson R, Guy R, Hadgraft J, Lane M. Optimisation of cosolvent concentration for topical drug delivery-II: influence of propylene glycol on ibuprofen permeation. J Skin Pharmacol Physiol 2009; 22: 225-30.
[161]
Padula C, Pescina S, Nicoli S, Santi P. New Insights on the mechanism of fatty acids as buccal permeation enhancers. Pharmaceutics 2018; 10(4): 201.
[http://dx.doi.org/10.3390/pharmaceutics10040201] [PMID: 30355980]
[162]
Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech 2017; 18(1): 3-14.
[http://dx.doi.org/10.1208/s12249-016-0525-z] [PMID: 27084567]
[163]
Fonseca-Santos B, Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater Sci Eng C 2018; 86: 129-43.
[http://dx.doi.org/10.1016/j.msec.2017.12.022] [PMID: 29525088]
[164]
Li Q, Castell JA, Castell DO. Manometric determination of esophageal length. Am J Gastroenterol 1994; 89(5): 722-5.
[PMID: 8172145]
[165]
Kahrilas PJ. Functional anatomy and physiology of the esophagus. (2nd ed.). Brown Boston 1995; pp. 1-28.
[166]
Washington & Wilson C Physiological pharmaceutics; Barriers to drug absorption. (1st Edition.). Taylor and Francis 2001; pp. 59-73.
[167]
Kuna S. The pH of gastric juice in the normal resting stomach. Arch Int Pharmacodyn Ther 1964; 152: 79-97.
[PMID: 14248354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy