Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Plant-food-derived Bioactives in Managing Hypertension: From Current Findings to Upcoming Effective Pharmacotherapies

Author(s): Monica Butnariu, Deborah Fratantonio*, Jesús Herrera-Bravo, Sonal Sukreet, Miquel Martorell, Garsiya Ekaterina Robertovna, Francisco Les*, Víctor López, Manoj Kumar, Marius Pentea, Ioan Sarac, Alexandra Becherescu, Natália Cruz-Martins, William N. Setzer, Marcello Iriti*, Hafiz Ansar Rasul Suleria and Javad Sharifi-Rad*

Volume 23, Issue 8, 2023

Published on: 02 February, 2023

Page: [589 - 617] Pages: 29

DOI: 10.2174/1568026623666230106144509

Price: $65

Abstract

A sedentary lifestyle has evoked a high risk of cardiovascular (CV) disease, diabetes, and obesity, all of them with high morbimortality rates and with a common denominator, hypertension. Numerous pharmacological drugs have been used for the treatment of hypertension. However, the side effects associated with the use of existing pharmacological therapies have triggered a demand for plant-based medications. In this connection, the aim of this review was to provide an in-depth analysis of the use of plant-derived bioactives for the effective management of hypertension. Phytoconstituents from leaves, bark, stem, roots, seeds, and fruits of medicinal plants grown in our different regions of the globe have been highly searched. Among them, polyphenols (e.g., flavonoids as quercetin, anthocyanins as cyanidin, tannins as ellagic acid, stilbenes as resveratrol, lignans as honokiol and others as hydroxytyrosol or curcumin), organosulfur compounds (e.g. s-allyl cysteine and allicin), fatty acids (e.g. α-lipoic acid, DHA and oleic acid), alkaloids (e.g. berberine or tetrandrine) and some terpenes have been intensively investigated for the management of hypertension, with effective ability being stated in controlling high blood pressure and related health problems both in vivo and in vitro studies. Some of the activities presented by these bioactive compounds are reducing oxidative stress, renin-angiotensin system control, SIRT1 activation, regulating platelet aggregation and COX activity, anti-atherogenic effects, anti-inflammatory properties, vasorelaxation and other results that translate into the prevention or control of hypertension. The knowledge of these bioactive compounds is important in developing countries where traditional medicine is the majority, but it can also give rise to new approaches in hypertension therapy.

Next »
Graphical Abstract

[1]
Gale Encyclopedia of Medicine. Hypertension. Available from: https://medical-dictionary.thefreedictionary.com/hypertension
[2]
Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol., 2020, 16(4), 223-237.
[http://dx.doi.org/10.1038/s41581-019-0244-2] [PMID: 32024986]
[3]
World Health Organization (WHO). A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. Available from: https://www.who.int/publications/i/item/a-global-brief-on-hypertension-silent-killer-global-public-health-crisis-world-health-day-2013
[4]
Agyemang, C.; Bruijnzeels, M.A.; Owusu-Dabo, E. Factors associated with hypertension awareness, treatment, and control in Ghana, West Africa. J. Hum. Hypertens., 2006, 20(1), 67-71.
[http://dx.doi.org/10.1038/sj.jhh.1001923] [PMID: 16121199]
[5]
Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; Ali, R.; Alvis-Guzman, N.; Azzopardi, P.; Banerjee, A.; Bärnighausen, T.; Basu, A.; Bekele, T.; Bennett, D.A.; Biadgilign, S.; Catalá-López, F.; Feigin, V.L.; Fernandes, J.C.; Fischer, F.; Gebru, A.A.; Gona, P.; Gupta, R.; Hankey, G.J.; Jonas, J.B.; Judd, S.E.; Khang, Y.H.; Khosravi, A.; Kim, Y.J.; Kimokoti, R.W.; Kokubo, Y.; Kolte, D.; Lopez, A.; Lotufo, P.A.; Malekzadeh, R.; Melaku, Y.A.; Mensah, G.A.; Misganaw, A.; Mokdad, A.H.; Moran, A.E.; Nawaz, H.; Neal, B.; Ngalesoni, F.N.; Ohkubo, T.; Pourmalek, F.; Rafay, A.; Rai, R.K.; Rojas-Rueda, D.; Sampson, U.K.; Santos, I.S.; Sawhney, M.; Schutte, A.E.; Sepanlou, S.G.; Shifa, G.T.; Shiue, I.; Tedla, B.A.; Thrift, A.G.; Tonelli, M.; Truelsen, T.; Tsilimparis, N.; Ukwaja, K.N.; Uthman, O.A.; Vasankari, T.; Venketasubramanian, N.; Vlassov, V.V.; Vos, T.; Westerman, R.; Yan, L.L.; Yano, Y.; Yonemoto, N.; Zaki, M.E.S.; Murray, C.J.L. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA, 2017, 317(2), 165-182.
[http://dx.doi.org/10.1001/jama.2016.19043] [PMID: 28097354]
[6]
Godfrey, R.; Julien, M. Urbanisation and health. Clin. Med. (Lond.), 2005, 5(2), 137-141.
[http://dx.doi.org/10.7861/clinmedicine.5-2-137] [PMID: 15847005]
[7]
World Health Organization (WHO). Hypertension. 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension
[8]
Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; Delwiche, K.; Estep, K.; Frostad, J.J.; Kc, A.; Kyu, H.H.; Moradi-Lakeh, M.; Ng, M.; Slepak, E.L.; Thomas, B.A.; Wagner, J.; Aasvang, G.M.; Abbafati, C.; Ozgoren, A.A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, B.; Abraham, J.P.; Abubakar, I.; Abu-Rmeileh, N.M.E.; Aburto, T.C.; Achoki, T.; Adelekan, A.; Adofo, K.; Adou, A.K.; Adsuar, J.C.; Afshin, A.; Agardh, E.E.; Al Khabouri, M.J.; Al Lami, F.H.; Alam, S.S.; Alasfoor, D.; Albittar, M.I.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alfonso-Cristancho, R.; Alhabib, S.; Ali, R.; Ali, M.K.; Alla, F.; Allebeck, P.; Allen, P.J.; Alsharif, U.; Alvarez, E.; Alvis-Guzman, N.; Amankwaa, A.A.; Amare, A.T.; Ameh, E.A.; Ameli, O.; Amini, H.; Ammar, W.; Anderson, B.O.; Antonio, C.A.T.; Anwari, P.; Cunningham, S.A.; Arnlöv, J.; Arsenijevic, V.S.A.; Artaman, A.; Asghar, R.J.; Assadi, R.; Atkins, L.S.; Atkinson, C.; Avila, M.A.; Awuah, B.; Badawi, A.; Bahit, M.C.; Bakfalouni, T.; Balakrishnan, K.; Balalla, S.; Balu, R.K.; Banerjee, A.; Barber, R.M.; Barker-Collo, S.L.; Barquera, S.; Barregard, L.; Barrero, L.H.; Barrientos-Gutierrez, T.; Basto-Abreu, A.C.; Basu, A.; Basu, S.; Basulaiman, M.O.; Ruvalcaba, C.B.; Beardsley, J.; Bedi, N.; Bekele, T.; Bell, M.L.; Benjet, C.; Bennett, D.A.; Benzian, H.; Bernabé, E.; Beyene, T.J.; Bhala, N.; Bhalla, A.; Bhutta, Z.A.; Bikbov, B.; Abdulhak, A.A.B.; Blore, J.D.; Blyth, F.M.; Bohensky, M.A.; Başara, B.B.; Borges, G.; Bornstein, N.M.; Bose, D.; Boufous, S.; Bourne, R.R.; Brainin, M.; Brazinova, A.; Breitborde, N.J.; Brenner, H.; Briggs, A.D.M.; Broday, D.M.; Brooks, P.M.; Bruce, N.G.; Brugha, T.S.; Brunekreef, B.; Buchbinder, R.; Bui, L.N.; Bukhman, G.; Bulloch, A.G.; Burch, M.; Burney, P.G.J.; Campos-Nonato, I.R.; Campuzano, J.C.; Cantoral, A.J.; Caravanos, J.; Cárdenas, R.; Cardis, E.; Carpenter, D.O.; Caso, V.; Castañeda-Orjuela, C.A.; Castro, R.E.; Catalá-López, F.; Cavalleri, F.; Çavlin, A.; Chadha, V.K.; Chang, J.; Charlson, F.J.; Chen, H.; Chen, W.; Chen, Z.; Chiang, P.P.; Chimed-Ochir, O.; Chowdhury, R.; Christophi, C.A.; Chuang, T.W.; Chugh, S.S.; Cirillo, M.; Claßen, T.K.D.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Contreras, A.G.; Cooper, C.; Cooperrider, K.; Cooper, L.T.; Coresh, J.; Courville, K.J.; Criqui, M.H.; Cuevas-Nasu, L.; Damsere-Derry, J.; Danawi, H.; Dandona, L.; Dandona, R.; Dargan, P.I.; Davis, A.; Davitoiu, D.V.; Dayama, A.; de Castro, E.F.; De la Cruz-Góngora, V.; De Leo, D.; de Lima, G.; Degenhardt, L.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribe, K.; Derrett, S.; Jarlais, D.C.D.; Dessalegn, M.; deVeber, G.A.; Devries, K.M.; Dharmaratne, S.D.; Dherani, M.K.; Dicker, D.; Ding, E.L.; Dokova, K.; Dorsey, E.R.; Driscoll, T.R.; Duan, L.; Durrani, A.M.; Ebel, B.E.; Ellenbogen, R.G.; Elshrek, Y.M.; Endres, M.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Esteghamati, A.; Fahimi, S.; Faraon, E.J.A.; Farzadfar, F.; Fay, D.F.J.; Feigin, V.L.; Feigl, A.B.; Fereshtehnejad, S.M.; Ferrari, A.J.; Ferri, C.P.; Flaxman, A.D.; Fleming, T.D.; Foigt, N.; Foreman, K.J.; Paleo, U.F.; Franklin, R.C.; Gabbe, B.; Gaffikin, L.; Gakidou, E.; Gamkrelidze, A.; Gankpé, F.G.; Gansevoort, R.T.; García-Guerra, F.A.; Gasana, E.; Geleijnse, J.M.; Gessner, B.D.; Gething, P.; Gibney, K.B.; Gillum, R.F.; Ginawi, I.A.M.; Giroud, M.; Giussani, G.; Goenka, S.; Goginashvili, K.; Dantes, H.G.; Gona, P.; de Cosio, T.G.; González-Castell, D.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Guerrant, R.L.; Gugnani, H.C.; Guillemin, F.; Gunnell, D.; Gupta, R.; Gupta, R.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Hagan, H.; Hagstromer, M.; Halasa, Y.A.; Hamadeh, R.R.; Hammami, M.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Haregu, T.N.; Haro, J.M.; Havmoeller, R.; Hay, S.I.; Hedayati, M.T.; Heredia-Pi, I.B.; Hernandez, L.; Heuton, K.R.; Heydarpour, P.; Hijar, M.; Hoek, H.W.; Hoffman, H.J.; Hornberger, J.C.; Hosgood, H.D.; Hoy, D.G.; Hsairi, M.; Hu, G.; Hu, H.; Huang, C.; Huang, J.J.; Hubbell, B.J.; Huiart, L.; Husseini, A.; Iannarone, M.L.; Iburg, K.M.; Idrisov, B.T.; Ikeda, N.; Innos, K.; Inoue, M.; Islami, F.; Ismayilova, S.; Jacobsen, K.H.; Jansen, H.A.; Jarvis, D.L.; Jassal, S.K.; Jauregui, A.; Jayaraman, S.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, F.; Jiang, G.; Jiang, Y.; Jonas, J.B.; Juel, K.; Kan, H.; Roseline, S.S.K.; Karam, N.E.; Karch, A.; Karema, C.K.; Karthikeyan, G.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khalifa, S.E.A.H.; Khan, E.A.; Khang, Y.H.; Khatibzadeh, S.; Khonelidze, I.; Kieling, C.; Kim, D.; Kim, S.; Kim, Y.; Kimokoti, R.W.; Kinfu, Y.; Kinge, J.M.; Kissela, B.M.; Kivipelto, M.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kose, M.R.; Kosen, S.; Kraemer, A.; Kravchenko, M.; Krishnaswami, S.; Kromhout, H.; Ku, T.; Defo, B.K.; Bicer, B.K.; Kuipers, E.J.; Kulkarni, C.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lai, T.; Balaji, A.L.; Lalloo, R.; Lallukka, T.; Lam, H.; Lan, Q.; Lansingh, V.C.; Larson, H.J.; Larsson, A.; Laryea, D.O.; Lavados, P.M.; Lawrynowicz, A.E.; Leasher, J.L.; Lee, J.T.; Leigh, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Liang, J.; Liang, X.; Lim, S.S.; Lindsay, M.P.; Lipshultz, S.E.; Liu, S.; Liu, Y.; Lloyd, B.K.; Logroscino, G.; London, S.J.; Lopez, N.; Lortet-Tieulent, J.; Lotufo, P.A.; Lozano, R.; Lunevicius, R.; Ma, J.; Ma, S.; Machado, V.M.P.; MacIntyre, M.F.; Magis-Rodriguez, C.; Mahdi, A.A.; Majdan, M.; Malekzadeh, R.; Mangalam, S.; Mapoma, C.C.; Marape, M.; Marcenes, W.; Margolis, D.J.; Margono, C.; Marks, G.B.; Martin, R.V.; Marzan, M.B.; Mashal, M.T.; Masiye, F.; Mason-Jones, A.J.; Matsushita, K.; Matzopoulos, R.; Mayosi, B.M.; Mazorodze, T.T.; McKay, A.C.; McKee, M.; McLain, A.; Meaney, P.A.; Medina, C.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, W.; Melaku, Y.A.; Meltzer, M.; Memish, Z.A.; Mendoza, W.; Mensah, G.A.; Meretoja, A.; Mhimbira, F.A.; Micha, R.; Miller, T.R.; Mills, E.J.; Misganaw, A.; Mishra, S.; Ibrahim, N.M.; Mohammad, K.A.; Mokdad, A.H.; Mola, G.L.; Monasta, L.; Hernandez, J.C.M.; Montico, M.; Moore, A.R.; Morawska, L.; Mori, R.; Moschandreas, J.; Moturi, W.N.; Mozaffarian, D.; Mueller, U.O.; Mukaigawara, M.; Mullany, E.C.; Murthy, K.S.; Naghavi, M.; Nahas, Z.; Naheed, A.; Naidoo, K.S.; Naldi, L.; Nand, D.; Nangia, V.; Narayan, K.M.V.; Nash, D.; Neal, B.; Nejjari, C.; Neupane, S.P.; Newton, C.R.; Ngalesoni, F.N.; de Dieu Ngirabega, J.; Nguyen, G.; Nguyen, N.T.; Nieuwenhuijsen, M.J.; Nisar, M.I.; Nogueira, J.R.; Nolla, J.M.; Nolte, S.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Oh, I.H.; Ohkubo, T.; Olusanya, B.O.; Omer, S.B.; Opio, J.N.; Orozco, R.; Pagcatipunan, R.S. Jr.; Pain, A.W.; Pandian, J.D.; Panelo, C.I.A.; Papachristou, C.; Park, E.K.; Parry, C.D.; Caicedo, A.J.P.; Patten, S.B.; Paul, V.K.; Pavlin, B.I.; Pearce, N.; Pedraza, L.S.; Pedroza, A.; Stokic, L.P.; Pekericli, A.; Pereira, D.M.; Perez-Padilla, R.; Perez-Ruiz, F.; Perico, N.; Perry, S.A.L.; Pervaiz, A.; Pesudovs, K.; Peterson, C.B.; Petzold, M.; Phillips, M.R.; Phua, H.P.; Plass, D.; Poenaru, D.; Polanczyk, G.V.; Polinder, S.; Pond, C.D.; Pope, C.A.; Pope, D.; Popova, S.; Pourmalek, F.; Powles, J.; Prabhakaran, D.; Prasad, N.M.; Qato, D.M.; Quezada, A.D.; Quistberg, D.A.A.; Racapé, L.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, S.U.; Raju, M.; Rakovac, I.; Rana, S.M.; Rao, M.; Razavi, H.; Reddy, K.S.; Refaat, A.H.; Rehm, J.; Remuzzi, G.; Ribeiro, A.L.; Riccio, P.M.; Richardson, L.; Riederer, A.; Robinson, M.; Roca, A.; Rodriguez, A.; Rojas-Rueda, D.; Romieu, I.; Ronfani, L.; Room, R.; Roy, N.; Ruhago, G.M.; Rushton, L.; Sabin, N.; Sacco, R.L.; Saha, S.; Sahathevan, R.; Sahraian, M.A.; Salomon, J.A.; Salvo, D.; Sampson, U.K.; Sanabria, J.R.; Sanchez, L.M.; Sánchez-Pimienta, T.G.; Sanchez-Riera, L.; Sandar, L.; Santos, I.S.; Sapkota, A.; Satpathy, M.; Saunders, J.E.; Sawhney, M.; Saylan, M.I.; Scarborough, P.; Schmidt, J.C.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Serdar, B.; Servan-Mori, E.E.; Shaddick, G.; Shahraz, S.; Levy, T.S.; Shangguan, S.; She, J.; Sheikhbahaei, S.; Shibuya, K.; Shin, H.H.; Shinohara, Y.; Shiri, R.; Shishani, K.; Shiue, I.; Sigfusdottir, I.D.; Silberberg, D.H.; Simard, E.P.; Sindi, S.; Singh, A.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Sliwa, K.; Soljak, M.; Soneji, S.; Søreide, K.; Soshnikov, S.; Sposato, L.A.; Sreeramareddy, C.T.; Stapelberg, N.J.C.; Stathopoulou, V.; Steckling, N.; Stein, D.J.; Stein, M.B.; Stephens, N.; Stöckl, H.; Straif, K.; Stroumpoulis, K.; Sturua, L.; Sunguya, B.F.; Swaminathan, S.; Swaroop, M.; Sykes, B.L.; Tabb, K.M.; Takahashi, K.; Talongwa, R.T.; Tandon, N.; Tanne, D.; Tanner, M.; Tavakkoli, M.; Te Ao, B.J.; Teixeira, C.M.; Téllez Rojo, M.M.; Terkawi, A.S.; Texcalac-Sangrador, J.L.; Thackway, S.V.; Thomson, B.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tobollik, M.; Tonelli, M.; Topouzis, F.; Towbin, J.A.; Toyoshima, H.; Traebert, J.; Tran, B.X.; Trasande, L.; Trillini, M.; Trujillo, U.; Dimbuene, Z.T.; Tsilimbaris, M.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Uzun, S.B.; van de Vijver, S.; Van Dingenen, R.; van Gool, C.H.; van Os, J.; Varakin, Y.Y.; Vasankari, T.J.; Vasconcelos, A.M.N.; Vavilala, M.S.; Veerman, L.J.; Velasquez-Melendez, G.; Venketasubramanian, N.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wallin, M.T.; Wan, X.; Wang, H.; Wang, J.; Wang, L.; Wang, W.; Wang, Y.; Warouw, T.S.; Watts, C.H.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Wessells, K.R.; Westerman, R.; Whiteford, H.A.; Wilkinson, J.D.; Williams, H.C.; Williams, T.N.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Wong, J.Q.; Woolf, A.D.; Wright, J.L.; Wurtz, B.; Xu, G.; Yan, L.L.; Yang, G.; Yano, Y.; Ye, P.; Yenesew, M.; Yentür, G.K.; Yip, P.; Yonemoto, N.; Yoon, S.J.; Younis, M.Z.; Younoussi, Z.; Yu, C.; Zaki, M.E.; Zhao, Y.; Zheng, Y.; Zhou, M.; Zhu, J.; Zhu, S.; Zou, X.; Zunt, J.R.; Lopez, A.D.; Vos, T.; Murray, C.J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 386(10010), 2287-2323.
[http://dx.doi.org/10.1016/S0140-6736(15)00128-2] [PMID: 26364544]
[9]
Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, M.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abrham, A.R.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Adamu, A.A.; Adane, A.A.; Adebayo, O.M.; Adedoyin, R.A.; Adekanmbi, V.; Ademi, Z.; Adetokunboh, O.O.; Adib, M.G.; Admasie, A.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Agarwal, G.; Aggarwal, A.; Aghayan, S.A.; Agrawal, A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akbari, M.E.; Akinyemiju, T.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Mekhlafi, H.M.; Alahdab, F.; Alam, K.; Alam, S.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Ali, K.; Ali, S.M.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Alsharif, U.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Ammar, W.; Anber, N.H.; Anderson, J.A.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antó, J.M.; Antonio, C.A.T.; Anwari, P.; Appiah, L.T.; Appiah, S.C.Y.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Ataro, Z.; Ausloos, M.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Ayuk, T.B.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Balakrishnan, K.; Bali, A.G.; Ball, K.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Basu, S.; Baune, B.T.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Bekru, E.T.; Belay, E.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Bergeron, G.; Berhane, A.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhalla, A.; Bhattarai, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Biswas, T.; Bjørge, T.; Blacker, B.F.; Bleyer, A.; Borschmann, R.; Bou-Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brauer, M.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Burnett, R.T.; Busse, R.; Butt, Z.A.; Cahill, L.E.; Cahuana-Hurtado, L.; Campos-Nonato, I.R.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castro, F.; Catalá-López, F.; Causey, K.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, H.Y.; Chang, J.C.; Chang, K.L.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chee, M.L.; Cheng, C.Y.; Chew, A.; Chiang, P.P.C.; Chimed-Ochir, O.; Chin, K.L.; Chitheer, A.; Choi, J.Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Chung, S.C.; Cicuttini, F.M.; Cirillo, M.; Cohen, A.J.; Collado-Mateo, D.; Cooper, C.; Cooper, O.R.; Coresh, J.; Cornaby, L.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cundiff, D.K.; Daba, A.K.; Dachew, B.A.; Dadi, A.F.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Darby, S.C.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Dash, A.P.; Davitoiu, D.V.; Davletov, K.; De la Cruz-Góngora, V.; De La Hoz, F.P.; De Leo, D.; De Neve, J.W.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Denova-Gutiérrez, E.; Deribe, K.; Dervenis, N.; Deshpande, A.; Des Jarlais, D.C.; Dessie, G.A.; Deveber, G.A.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Dinberu, M.T.; Ding, E.L.; Diro, H.D.; Djalalinia, S.; Do, H.P.; Dokova, K.; Doku, D.T.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebert, N.; Ebrahimi, H.; Ebrahimpour, S.; Edvardsson, D.; Effiong, A.; Eggen, A.E.; El Bcheraoui, C.; El-Khatib, Z.; Elyazar, I.R.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eskandarieh, S.; Esteghamati, A.; Estep, K.; Fakhim, H.; Faramarzi, M.; Fareed, M.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzaei, M.H.; Fatima, B.; Fay, K.A.; Fazaeli, A.A.; Feigin, V.L.; Feigl, A.B.; Fereshtehnejad, S.M.; Fernandes, E.; Fernandes, J.C.; Ferrara, G.; Ferrari, A.J.; Ferreira, M.L.; Filip, I.; Finger, J.D.; Fischer, F.; Foigt, N.A.; Foreman, K.J.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Gallus, S.; Gamkrelidze, A.; Ganji, M.; Garcia-Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadimi, R.; Ghadiri, K.; Ghasemi Falavarjani, K.; Ghasemi-Kasman, M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Gillum, R.F.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Godwin, W.W.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Goulart, A.C.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, R.; Gupta, R.; Gupta, T.; Gutiérrez, R.A.; Gutiérrez-Torres, D.S.; Haagsma, J.A.; Habtewold, T.D.; Hachinski, V.; Hafezi-Nejad, N.; Hagos, T.B.; Hailegiyorgis, T.T.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, S.I.; Hedayatizadeh-Omran, A.; Heibati, B.; Heidari, B.; Heidari, M.; Hendrie, D.; Henok, A.; Heredia-Pi, I.; Herteliu, C.; Heydarpour, F.; Heydarpour, S.; Hibstu, D.T.; Higazi, T.B.; Hilawe, E.H.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hoy, D.G.; Hsairi, M.; Hsiao, T.; Hu, G.; Hu, H.; Huang, J.J.; Hussen, M.A.; Huynh, C.K.; Iburg, K.M.; Ikeda, N.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, S.M.S.; Islami, F.; Jackson, M.D.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; James, S.L.; Jassal, S.K.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Jonas, J.B.; Jonnagaddala, J.; Jorjoran Shushtari, Z.; Joshi, A.; Jozwiak, J.J.; Jürisson, M.; Kabir, Z.; Kahsay, A.; Kalani, R.; Kanchan, T.; Kant, S.; Kar, C.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kaul, A.; Kawakami, N.; Kazemi, Z.; Karyani, A.K.; Kefale, A.T.; Keiyoro, P.N.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalid, N.; Khalil, I.A.; Khan, G.; Khan, M.S.; Khan, M.A.; Khang, Y.H.; Khater, M.M.; Khazaei, M.; Khazaie, H.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C.I.; Kim, D.; Kim, Y.E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knibbs, L.D.; Knudsen, A.K.S.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kromhout, H.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kuzin, I.; Kyu, H.H.; Lachat, C.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lang, J.J.; Lansingh, V.C.; Larson, S.L.; Latifi, A.; Lazarus, J.V.; Lee, P.H.; Leigh, J.; Leili, M.; Leshargie, C.T.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liang, J.; Liang, X.; Liao, Y.; Liben, M.L.; Lim, L.L.; Linn, S.; Liu, S.; Lodha, R.; Logroscino, G.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lozano, R.; Lucas, T.C.D.; Lunevicius, R.; Ma, S.; Macarayan, E.R.K.; Machado, Í.E.; Madotto, F.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A.L.; Manguerra, H.; Mansournia, M.A.; Mantovani, L.G.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martin, R.V.; Martins, S.C.O.; Martins-Melo, F.R.; März, W.; Marzan, M.B.; Massenburg, B.B.; Mathur, M.R.; Mathur, P.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Meier, T.; Mekonnen, F.A.; Melaku, Y.A.; Melese, A.; Melku, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mensah, G.A.; Mensink, G.B.M.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezgebe, H.B.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miller-Petrie, M.K.; Mini, G.K.; Mirarefin, M.; Mirica, A.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadi, M.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Molokhia, M.; Momeniha, F.; Monasta, L.; Moodley, Y.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mouodi, S.; Mousavi, S.M.; Mozaffarian, D.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Neal, B.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, G.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, M.; Nguyen, N.B.; Nichols, E.; Nie, J.; Ningrum, D.N.A.; Nirayo, Y.L.; Nishi, N.; Nixon, M.R.; Nojomi, M.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Obermeyer, C.M.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Olusanya, J.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Orpana, H.M.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakhare, A.P.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Park, E.K.; Parry, C.D.H.; Parsian, H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paudel, D.; Paulson, K.R.; Paz Ballesteros, W.C.; Pearce, N.; Pereira, A.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Pham, H.Q.; Phillips, M.R.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pischon, T.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Polkinghorne, K.R.; Postma, M.J.; Poulton, R.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prasad, N.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, Z.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rai, R.K.; Rajati, F.; Rajsic, S.; Raju, S.B.; Ram, U.; Ranabhat, C.L.; Ranjan, P.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Rehm, C.D.; Rehm, J.; Reiner, R.C.; Jr; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Reynales-Shigematsu, L.M.; Rezaei, S.; Ribeiro, A.L.P.; Rivera, J.A.; Roba, K.T.; Rodríguez-Ramírez, S.; Roever, L.; Román, Y.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Rothenbacher, D.; Roy, A.; Rubagotti, E.; Rushton, L.; Sabanayagam, C.; Sachdev, P.S.; Saddik, B.; Sadeghi, E.; Saeedi Moghaddam, S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salamati, P.; Saleem, Z.; Salimi, Y.; Salimzadeh, H.; Salomon, J.A.; Salvi, D.D.; Salz, I.; Samy, A.M.; Sanabria, J.; Sanchez-Niño, M.D.; Sánchez-Pimienta, T.G.; Sanders, T.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarmiento-Suárez, R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saylan, M.; Sayyah, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Seedat, S.; Sekerija, M.; Sepanlou, S.G.; Serre, M.L.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shaddick, G.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shamah Levy, T.; Shams-Beyranvand, M.; Shamsi, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharifi, H.; Sharma, J.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shiferaw, M.S.; Shigematsu, M.; Shin, M.J.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Shupler, M.S.; Si, S.; Siabani, S.; Sibai, A.M.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, D.A.S.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Skirbekk, V.; Smith, D.L.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Somayaji, R.; Soofi, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Spinelli, A.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Starodubov, V.I.; Steckling, N.; Stein, D.J.; Stein, M.B.; Stevanovic, G.; Stockfelt, L.; Stokes, M.A.; Sturua, L.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sulo, G.; Sunguya, B.F.; Sur, P.J.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabuchi, T.; Tadakamadla, S.K.; Takahashi, K.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M.H.; Temsah, O.; Terkawi, A.S.; Tessema, B.; Teweldemedhin, M.; Thankappan, K.R.; Theis, A.; Thirunavukkarasu, S.; Thomas, H.J.; Thomas, M.L.; Thomas, N.; Thurston, G.D.; Tilahun, B.; Tillmann, T.; To, Q.G.; Tobollik, M.; Tonelli, M.; Topor-Madry, R.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Truong, N.T.; Tsadik, A.G.; Tudor Car, L.; Tuzcu, E.M.; Tymeson, H.D.; Tyrovolas, S.; Ukwaja, K.N.; Ullah, I.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Van Donkelaar, A.; Varavikova, E.; Varughese, S.; Vasankari, T.J.; Venkateswaran, V.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Walson, J.L.; Wang, Y.; Wang, Y.; Wang, Y.P.; Weiderpass, E.; Weintraub, R.G.; Weldegebreal, F.; Werdecker, A.; Werkneh, A.A.; West, J.J.; Westerman, R.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Wong, T.Y.; Wu, S.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S.J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zavala-Arciniega, L.; Zhang, A.L.; Zhang, H.; Zhang, K.; Zhou, M.; Zimsen, S.R.M.; Zodpey, S.; Murray, C.J.L. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1923-1994.
[http://dx.doi.org/10.1016/S0140-6736(18)32225-6] [PMID: 30496105]
[10]
Danaei, G.; Singh, G.M.; Paciorek, C.J.; Lin, J.K.; Cowan, M.J.; Finucane, M.M.; Farzadfar, F.; Stevens, G.A.; Riley, L.M.; Lu, Y.; Rao, M.; Ezzati, M. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation, 2013, 127(14), 1493-1502, 1502e1-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001470] [PMID: 23481623]
[11]
Zeba, A.; Yaméogo, M.; Tougouma, S.; Kassié, D.; Fournet, F. Can urbanization, social and spatial disparities help to understand the rise of cardiometabolic risk factors in Bobo-Dioulasso? A study in a secondary city of Burkina Faso, West Africa. Int. J. Environ. Res. Public Health, 2017, 14(4), 378.
[http://dx.doi.org/10.3390/ijerph14040378] [PMID: 28375173]
[12]
Ajebli, M.; Eddouks, M. Phytotherapy of hypertension: An updated overview. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 812-839.
[PMID: 31880255]
[13]
Asgary, S.; Sahebkar, A.; Afshani, M.R.; Keshvari, M.; Haghjooyjavanmard, S.; Rafieian-Kopaei, M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother. Res., 2014, 28(2), 193-199.
[http://dx.doi.org/10.1002/ptr.4977] [PMID: 23519910]
[14]
Burta, O.; Tirlea, F.; Burta, O.L.; Qadri, S.M. Phytotherapy in cardiovascular diseases: from ethnomedicine to evidence based medicine. J. Biol. Sci. (Faisalabad, Pak.), 2008, 8(2), 242-247.
[http://dx.doi.org/10.3923/jbs.2008.242.247]
[15]
Chávez-Castillo, M.; Ortega, Á.; Duran, P.; Pirela, D.; Marquina, M.; Cano, C.; Salazar, J.; Gonzalez, M.C.; Bermúdez, V.; Rojas-Quintero, J.; Velasco, M. Phytotherapy for cardiovascular disease: a bench-to-bedside approach. Curr. Pharm. Des., 2020, 26(35), 4410-4429.
[http://dx.doi.org/10.2174/1381612826666200420160422] [PMID: 32310044]
[16]
Meuss, A. 2000.
[17]
Walker, A.F.; Marakis, G.; Morris, A.P.; Robinson, P.A. Promising hypotensive effect of hawthorn extract: A randomized double-blind pilot study of mild, essential hypertension. Phytother. Res., 2002, 16(1), 48-54.
[http://dx.doi.org/10.1002/ptr.947] [PMID: 11807965]
[18]
InformedHealth.org, What is blood pressure and how is it measured? Cologne, Germany: Institute for Quality and Efficiency in Health Care. 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279251/
[19]
Frese, E.M.; Fick, A.; Sadowsky, S.H. Blood pressure measurement guidelines for physical therapists. Cardiopulm. Phys. Ther. J., 2011, 22(2), 5-12.
[http://dx.doi.org/10.1097/01823246-201122020-00002] [PMID: 21637392]
[20]
Twenty-four-hour ambulatory blood pressure monitoring in hypertension: An evidence-based analysis. Ont. Health Technol. Assess. Ser., 2012, 12(15), 1-65.
[PMID: 23074425]
[21]
Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Cowan, M.J.; Paciorek, C.J.; Singh, G.; Hajifathalian, K.; Bennett, J.E.; Taddei, C.; Bilano, V.; Carrillo-Larco, R.M.; Djalalinia, S.; Khatibzadeh, S.; Lugero, C.; Peykari, N.; Zhang, W.Z.; Lu, Y.; Stevens, G.A.; Riley, L.M.; Bovet, P.; Elliott, P.; Gu, D.; Ikeda, N.; Jackson, R.T.; Joffres, M.; Kengne, A.P.; Laatikainen, T.; Lam, T.H.; Laxmaiah, A.; Liu, J.; Miranda, J.J.; Mondo, C.K.; Neuhauser, H.K.; Sundström, J.; Smeeth, L.; Soric, M.; Woodward, M.; Ezzati, M.; Abarca-Gómez, L.; Abdeen, Z.A.; Rahim, H.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Adams, R.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; Agyemang, C.; Ahmadvand, A.; Ahrens, W.; Al Raddadi, R.; Al Woyatan, R.; Ali, M.M.; Alkerwi, A.; Aly, E.; Amouyel, P.; Amuzu, A.; Andersen, L.B.; Anderssen, S.A.; Ängquist, L.; Anjana, R.M.; Ansong, D.; Aounallah-Skhiri, H.; Araújo, J.; Ariansen, I.; Aris, T.; Arlappa, N.; Aryal, K.; Arveiler, D.; Assah, F.K.; Assunção, M.C.F.; Avdicová, M.; Azevedo, A.; Azizi, F.; Babu, B.V.; Bahijri, S.; Balakrishna, N.; Bandosz, P.; Banegas, J.R.; Barbagallo, C.M.; Barceló, A.; Barkat, A.; Barros, A.J.D.; Barros, M.V.; Bata, I.; Batieha, A.M.; Baur, L.A.; Beaglehole, R.; Romdhane, H.B.; Benet, M.; Benson, L.S.; Bernabe-Ortiz, A.; Bernotiene, G.; Bettiol, H.; Bhagyalaxmi, A.; Bharadwaj, S.; Bhargava, S.K.; Bi, Y.; Bikbov, M.; Bjerregaard, P.; Bjertness, E.; Björkelund, C.; Blokstra, A.; Bo, S.; Bobak, M.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bongard, V.; Braeckman, L.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Brenner, H.; Brewster, L.M.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bugge, A.; Burns, C.; Bursztyn, M.; de León, A.C.; Cacciottolo, J.; Cameron, C.; Can, G.; Cândido, A.P.C.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, M.J.; Casanueva, F.F.; Casas, J.P.; Caserta, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chen, C.J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C.Y.; Dekkaki, I.C.; Chetrit, A.; Chiolero, A.; Chiou, S.T.; Chirita-Emandi, A.; Cho, B.; Cho, Y.; Chudek, J.; Cifkova, R.; Claessens, F.; Clays, E.; Concin, H.; Cooper, C.; Cooper, R.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crujeiras, A.B.; Cruz, J.J.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Damasceno, A.; Dankner, R.; Dantoft, T.M.; Dauchet, L.; De Backer, G.; De Bacquer, D.; de Gaetano, G.; De Henauw, S.; De Smedt, D.; Deepa, M.; Dehghan, A.; Delisle, H.; Deschamps, V.; Dhana, K.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dickerson, T.T.; Do, H.T.P.; Dobson, A.J.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Doua, K.; Drygas, W.; Dulskiene, V.; Džakula, A.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Eggertsen, R.; Ekelund, U.; El Ati, J.; Ellert, U.; Elliott, P.; Elosua, R.; Erasmus, R.T.; Erem, C.; Eriksen, L.; de la Peña, J.E.; Evans, A.; Faeh, D.; Fall, C.H.; Farzadfar, F.; Felix-Redondo, F.J.; Ferguson, T.S.; Fernández-Bergés, D.; Ferrante, D.; Ferrari, M.; Ferreccio, C.; Ferrieres, J.; Finn, J.D.; Fischer, K.; Föger, B.; Foo, L.H.; Forslund, A.S.; Forsner, M.; Fortmann, S.P.; Fouad, H.M.; Francis, D.K.; Franco, M.C.; Franco, O.H.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Furusawa, T.; Gaciong, Z.; Gareta, D.; Garnett, S.P.; Gaspoz, J.M.; Gasull, M.; Gates, L.; Gavrila, D.; Geleijnse, J.M.; Ghasemian, A.; Ghimire, A.; Giampaoli, S.; Gianfagna, F.; Giovannelli, J.; Goldsmith, R.A.; Gonçalves, H.; Gross, M.G.; Rivas, J.P.G.; Gottrand, F.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Gregor, R.D.; Grodzicki, T.; Grøntved, A.; Gruden, G.; Grujic, V.; Gu, D.; Guan, O.P.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.; Gupta, P.C.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Hadaegh, F.; Halkjær, J.; Hambleton, I.R.; Hardy, R.; Harikumar, R.; Hata, J.; Hayes, A.J.; He, J.; Hendriks, M.E.; Henriques, A.; Cadena, L.H.; Herrala, S.; Heshmat, R.; Hihtaniemi, I.T.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Hofman, A.; Dinc, G.H.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Hu, Y.; Huerta, J.M.; Husseini, A.S.; Huybrechts, I.; Hwalla, N.; Iacoviello, L.; Iannone, A.G.; Ibrahim, M.M.; Ikram, M.A.; Irazola, V.E.; Islam, M.; Ivkovic, V.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jafar, T.; Jamrozik, K.; Janszky, I.; Jasienska, G.; Jelakovic, B.; Jiang, C.Q.; Joffres, M.; Johansson, M.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kalter-Leibovici, O.; Kamaruddin, N.A.; Kasaeian, A.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.; Keil, U.; Boker, L.K.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kemper, H.C.G.; Kengne, A.P.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khang, Y.H.; Khaw, K.T.; Kiechl, S.; Killewo, J.; Kim, J.; Klumbiene, J.; Kolle, E.; Kolsteren, P.; Korrovits, P.; Koskinen, S.; Kouda, K.; Koziel, S.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kuh, D.; Kujala, U.M.; Kula, K.; Kulaga, Z.; Kumar, R.K.; Kurjata, P.; Kusuma, Y.S.; Kuulasmaa, K.; Kyobutungi, C.; Laatikainen, T.; Lachat, C.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Laugsand, L.E.; Laxmaiah, A.; Bao, K.L.N.; Le, T.D.; Leclercq, C.; Lee, J.; Lee, J.; Lehtimäki, T.; Lekhraj, R.; León-Muñoz, L.M.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W.Y.; Lima-Costa, M.F.; Lin, H.H.; Lin, X.; Linneberg, A.; Lissner, L.; Litwin, M.; Lorbeer, R.; Lotufo, P.A.; Lozano, J.E.; Luksiene, D.; Lundqvist, A.; Lunet, N.; Lytsy, P.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machi, S.; Maggi, S.; Magliano, D.J.; Majer, M.; Makdisse, M.; Malekzadeh, R.; Malhotra, R.; Rao, K.M.; Malyutina, S.; Manios, Y.; Mann, J.I.; Manzato, E.; Margozzini, P.; Marques-Vidal, P.; Marrugat, J.; Martorell, R.; Mathiesen, E.B.; Matijasevich, A.; Matsha, T.E.; Mbanya, J.C.N.; Posso, A.J.M.D.; McFarlane, S.R.; McGarvey, S.T.; McLachlan, S.; McLean, R.M.; McNulty, B.A.; Khir, A.S.M.; Mediene-Benchekor, S.; Medzioniene, J.; Meirhaeghe, A.; Meisinger, C.; Menezes, A.M.B.; Menon, G.R.; Meshram, I.I.; Metspalu, A.; Mi, J.; Mikkel, K.; Miller, J.C.; Miquel, J.F.; Mišigoj-Durakovic, M.; Mohamed, M.K.; Mohammad, K.; Mohammadifard, N.; Mohan, V.; Yusoff, M.F.M.; Møller, N.C.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monyeki, K.D.K.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mota, J.; Motlagh, M.E.; Motta, J.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Musil, V.; Nagel, G.; Naidu, B.M.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Narake, S.; Navarrete-Muñoz, E.M.; Ndiaye, N.C.; Neal, W.A.; Nenko, I.; Nervi, F.; Nguyen, N.D.; Nguyen, Q.N.; Nieto-Martínez, R.E.; Niiranen, T.J.; Ning, G.; Ninomiya, T.; Nishtar, S.; Noale, M.; Noboa, O.A.; Noorbala, A.A.; Noorbala, T.; Noto, D.; Al Nsour, M.; O’Reilly, D.; Oh, K.; Olinto, M.T.A.; Oliveira, I.O.; Omar, M.A.; Onat, A.; Ordunez, P.; Osmond, C.; Ostojic, S.M.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Pajak, A.; Palli, D.; Palmieri, L.; Panda-Jonas, S.; Panza, F.; Papandreou, D.; Parnell, W.R.; Parsaeian, M.; Pecin, I.; Pednekar, M.S.; Peer, N.; Peeters, P.H.; Peixoto, S.V.; Pelletier, C.; Peltonen, M.; Pereira, A.C.; Pérez, R.M.; Peters, A.; Petkeviciene, J.; Pham, S.T.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pitakaka, F.; Plans-Rubió, P.; Polakowska, M.; Polašek, O.; Porta, M.; Portegies, M.L.P.; Pourshams, A.; Pradeepa, R.; Prashant, M.; Price, J.F.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Radic, I.; Radisauskas, R.; Rahman, M.; Raitakari, O.; Raj, M.; Rao, S.R.; Ramachandran, A.; Ramos, E.; Rampal, S.; Reina, D.A.R.; Rasmussen, F.; Redon, J.; Reganit, P.F.M.; Ribeiro, R.; Riboli, E.; Rigo, F.; de Wit, T.F.R.; Ritti-Dias, R.M.; Robinson, S.M.; Robitaille, C.; Rodríguez-Artalejo, F.; Rodriguez-Perez del Cristo, M.; Rodríguez-Villamizar, L.A.; Rojas-Martinez, R.; Rosengren, A.; Rubinstein, A.; Rui, O.; Ruiz-Betancourt, B.S.; Horimoto, A.R.V.R.; Rutkowski, M.; Sabanayagam, C.; Sachdev, H.S.; Saidi, O.; Sakarya, S.; Salanave, B.; Salazar Martinez, E.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sans, S.; Santos, D.; Santos, I.S.; dos Santos, R.N.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Margolis, G.S.; Sarrafzadegan, N.; Saum, K.U.; Savva, S.C.; Scazufca, M.; Schargrodsky, H.; Schneider, I.J.; Schultsz, C.; Schutte, A.E.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Sharma, S.K.; Shaw, J.E.; Shibuya, K.; Shin, D.W.; Shin, Y.; Siantar, R.; Sibai, A.M.; Silva, D.A.S.; Simon, M.; Simons, J.; Simons, L.A.; Sjöström, M.; Skovbjerg, S.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; Smith, M.C.; Snijder, M.B.; So, H.K.; Sobngwi, E.; Söderberg, S.; Solfrizzi, V.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Jérome, C.S.; Soumare, A.; Staessen, J.A.; Starc, G.; Stathopoulou, M.G.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stronks, K.; Strufaldi, M.W.; Sun, C.A.; Sundström, J.; Sung, Y.T.; Suriyawongpaisal, P.; Sy, R.G.; Tai, E.S.; Tammesoo, M.L.; Tamosiunas, A.; Tang, L.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarqui-Mamani, C.B.; Taylor, A.; Theobald, H.; Thijs, L.; Thuesen, B.H.; Tjonneland, A.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Torrent, M.; Traissac, P.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tulloch-Reid, M.K.; Tuomainen, T.P.; Tuomilehto, J.; Turley, M.L.; Tynelius, P.; Tzourio, C.; Ueda, P.; Ugel, E.; Ulmer, H.; Uusitalo, H.M.T.; Valdivia, G.; Valvi, D.; van der Schouw, Y.T.; Van Herck, K.; van Rossem, L.; van Valkengoed, I.G.M.; Vanderschueren, D.; Vanuzzo, D.; Vatten, L.; Vega, T.; Velasquez-Melendez, G.; Veronesi, G.; Verschuren, W.M.M.; Verstraeten, R.; Victora, C.G.; Viet, L.; Viikari-Juntura, E.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vollenweider, P.; Voutilainen, S.; Vrdoljak, A.; Vrijheid, M.; Wade, A.N.; Wagner, A.; Walton, J.; Mohamud, W.N.W.; Wang, M.D.; Wang, Q.; Wang, Y.X.; Wannamethee, S.G.; Wareham, N.; Wedderkopp, N.; Weerasekera, D.; Whincup, P.H.; Widhalm, K.; Widyahening, I.S.; Wiecek, A.; Wijga, A.H.; Wilks, R.J.; Willeit, J.; Willeit, P.; Williams, E.A.; Wilsgaard, T.; Wojtyniak, B.; Wong, T.Y.; Wong-McClure, R.A.; Woo, J.; Woodward, M.; Wu, A.G.; Wu, F.C.; Wu, S.L.; Xu, H.; Yan, W.; Yang, X.; Ye, X.; Yiallouros, P.K.; Yoshihara, A.; Younger-Coleman, N.O.; Yusoff, A.F.; Yusoff, M.F.M.; Zambon, S.; Zdrojewski, T.; Zeng, Y.; Zhao, D.; Zhao, W.; Zheng, Y.; Zhu, D.; Zimmermann, E.; Zuñiga Cisneros, J. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet, 2017, 389(10064), 37-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31919-5] [PMID: 27863813]
[22]
Danaei, G.; Finucane, M.M.; Lin, J.K.; Singh, G.M.; Paciorek, C.J.; Cowan, M.J.; Farzadfar, F.; Stevens, G.A.; Lim, S.S.; Riley, L.M.; Ezzati, M. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet, 2011, 377(9765), 568-577.
[http://dx.doi.org/10.1016/S0140-6736(10)62036-3] [PMID: 21295844]
[23]
Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control. Circulation, 2016, 134(6), 441-450.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018912] [PMID: 27502908]
[24]
Abariga, S.A.; Khachan, H.; Al Kibria, G.M. Prevalence and Determinants of hypertension in India based on the 2017 ACC/AHA Guideline: Evidence from the India National Family Health Survey. Am. J. Hypertens., 2020, 33(3), 252-260.
[http://dx.doi.org/10.1093/ajh/hpz181] [PMID: 31711220]
[25]
Bosu, W.K.; Reilly, S.T.; Aheto, J.M.K.; Zucchelli, E. Hypertension in older adults in Africa: A systematic review and meta-analysis. PLoS One, 2019, 14(4), e0214934.
[http://dx.doi.org/10.1371/journal.pone.0214934] [PMID: 30951534]
[26]
Guo, Q.H.; Zhang, Y.Q.; Wang, J.G. Asian management of hypertension: Current status, home blood pressure, and specific concerns in China. J. Clin. Hypertens. (Greenwich), 2020, 22(3), 475-478.
[http://dx.doi.org/10.1111/jch.13687] [PMID: 31622005]
[27]
Hosseini, M.; Yaseri, M.; Asady, H.; Eleojo Musa, A.; Koohpayehzadeh, J.; Rafei, A.; Etemad, K.; Gouya, M.M.; Asgari, F.; Yousefifard, M. Prevalence of high blood pressure in Iranian adults based on the 2017 ACC/AHA guideline. Med. J. Islam. Repub. Iran, 2019, 33, 26.
[http://dx.doi.org/10.47176/mjiri.33.26] [PMID: 31380316]
[28]
Kwon, S. Pharmaceutical reform and physician strikes in Korea: separation of drug prescribing and dispensing. Soc. Sci. Med., 2003, 57(3), 529-538.
[http://dx.doi.org/10.1016/S0277-9536(02)00378-7] [PMID: 12791494]
[29]
Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global prevalence of hypertension in children. JAMA Pediatr., 2019, 173(12), 1154-1163.
[http://dx.doi.org/10.1001/jamapediatrics.2019.3310] [PMID: 31589252]
[30]
Luma, G.B.; Spiotta, R.T. Hypertension in children and adolescents. Am. Fam. Physician, 2006, 73(9), 1558-1568.
[PMID: 16719248]
[31]
Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; Kazmi, K.; Lanas, F.; Wei, L.; Lopez-Jaramillo, P.; Fanghong, L.; Ismail, N.H.; Puoane, T.; Rosengren, A.; Szuba, A.; Temizhan, A.; Wielgosz, A.; Yusuf, R.; Yusufali, A.; McKee, M.; Liu, L.; Mony, P.; Yusuf, S. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA, 2013, 310(9), 959-968.
[http://dx.doi.org/10.1001/jama.2013.184182] [PMID: 24002282]
[32]
Lloyd-Sherlock, P.; Ebrahim, S.; Grosskurth, H. Is hypertension the new HIV epidemic? Int. J. Epidemiol., 2014, 43(1), 8-10.
[http://dx.doi.org/10.1093/ije/dyu019] [PMID: 24491955]
[33]
Pengpid, S.; Vonglokham, M.; Kounnavong, S.; Sychareun, V.; Peltzer, K. The prevalence, awareness, treatment, and control of hypertension among adults: the first cross-sectional national population-based survey in Laos. Vasc. Health Risk Manag., 2019, 15, 27-33.
[http://dx.doi.org/10.2147/VHRM.S199178] [PMID: 30881005]
[34]
Hussain, M.A.; Al Mamun, A.; Peters, S.A.E.; Woodward, M.; Huxley, R.R. The burden of cardiovascular disease attributable to major modifiable risk factors in Indonesia. J. Epidemiol., 2016, 26(10), 515-521.
[http://dx.doi.org/10.2188/jea.JE20150178] [PMID: 27021286]
[35]
Wang, J.; Zhang, L.; Wang, F.; Liu, L.; Wang, H. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am. J. Hypertens., 2014, 27(11), 1355-1361.
[http://dx.doi.org/10.1093/ajh/hpu053] [PMID: 24698853]
[36]
Joffres, M.; Falaschetti, E.; Gillespie, C.; Robitaille, C.; Loustalot, F.; Poulter, N.; McAlister, F.A.; Johansen, H.; Baclic, O.; Campbell, N. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open, 2013, 3(8), e003423.
[http://dx.doi.org/10.1136/bmjopen-2013-003423] [PMID: 23996822]
[37]
Dong, G.H.; Qian, Z.M.; Xaverius, P.K.; Trevathan, E.; Maalouf, S.; Parker, J.; Yang, L.; Liu, M.M.; Wang, D.; Ren, W.H.; Ma, W.; Wang, J.; Zelicoff, A.; Fu, Q.; Simckes, M. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension, 2013, 61(3), 578-584.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00003] [PMID: 23357184]
[38]
Ezejimofor, M.C.; Uthman, O.A.; Maduka, O.; Ezeabasili, A.C.; Onwuchekwa, A.C.; Ezejimofor, B.C.; Asuquo, E.; Chen, Y.F.; Stranges, S.; Kandala, N.B. The burden of hypertension in an oil- and gas-polluted environment: A comparative cross-sectional study. Am. J. Hypertens., 2016, 29(8), 925-933.
[http://dx.doi.org/10.1093/ajh/hpw009] [PMID: 26884135]
[39]
Mannucci, P.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health, 2017, 14(9), 1048.
[http://dx.doi.org/10.3390/ijerph14091048] [PMID: 28895888]
[40]
Shrestha, A.; Shiqi, M. Occupational noise exposure in relation to hypertension: a cross-sectional study in the steel factory. Occup. Med. Health Aff., 2017, 5(3), 2.
[http://dx.doi.org/10.4172/2329-6879.1000266]
[41]
Noubiap, J.J.N.; Bigna, J.J.R.; Nansseu, J.R.N. Low sodium and high potassium intake for cardiovascular prevention: evidence revisited with emphasis on challenges in sub-Saharan Africa. J. Clin. Hypertens. (Greenwich), 2015, 17(1), 81-83.
[http://dx.doi.org/10.1111/jch.12439] [PMID: 25382734]
[42]
Siervo, M.; Montagnese, C.; Mathers, J.C.; Soroka, K.R.; Stephan, B.C.M.; Wells, J.C.K. Sugar consumption and global prevalence of obesity and hypertension: an ecological analysis. Public Health Nutr., 2014, 17(3), 587-596.
[http://dx.doi.org/10.1017/S1368980013000141] [PMID: 23414749]
[43]
Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr., 2014, 100(1), 65-79.
[http://dx.doi.org/10.3945/ajcn.113.081521] [PMID: 24808490]
[44]
Popkin, B.M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr., 2006, 84(2), 289-298.
[http://dx.doi.org/10.1093/ajcn/84.2.289] [PMID: 16895874]
[45]
Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol., 2019, 15(6), 367-385.
[http://dx.doi.org/10.1038/s41581-019-0145-4] [PMID: 31015582]
[46]
Ediriweera, D.S.; Dilina, N.; Perera, U.; Flores, F.; Samita, S. Risk of low birth weight on adulthood hypertension - evidence from a tertiary care hospital in a South Asian country, Sri Lanka: a retrospective cohort study. BMC Public Health, 2017, 17(1), 358.
[http://dx.doi.org/10.1186/s12889-017-4268-x] [PMID: 28438199]
[47]
Law, C.M.; Egger, P.; Dada, O.; Delgado, H.; Kylberg, E.; Lavin, P.; Tang, G-H.; von Hertzen, H.; Shiell, A.W.; Barker, D.J.P. Body size at birth and blood pressure among children in developing countries. Int. J. Epidemiol., 2001, 30(1), 52-57.
[http://dx.doi.org/10.1093/ije/30.1.52] [PMID: 11171856]
[48]
Lee, A.C.C.; Katz, J.; Blencowe, H.; Cousens, S.; Kozuki, N.; Vogel, J.P.; Adair, L.; Baqui, A.H.; Bhutta, Z.A.; Caulfield, L.E.; Christian, P.; Clarke, S.E.; Ezzati, M.; Fawzi, W.; Gonzalez, R.; Huybregts, L.; Kariuki, S.; Kolsteren, P.; Lusingu, J.; Marchant, T.; Merialdi, M.; Mongkolchati, A.; Mullany, L.C.; Ndirangu, J.; Newell, M.L.; Nien, J.K.; Osrin, D.; Roberfroid, D.; Rosen, H.E.; Sania, A.; Silveira, M.F.; Tielsch, J.; Vaidya, A.; Willey, B.A.; Lawn, J.E.; Black, R.E. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health, 2013, 1(1), e26-e36.
[http://dx.doi.org/10.1016/S2214-109X(13)70006-8] [PMID: 25103583]
[49]
WHO Statistics. East Mediterranean Region World Health Organization (WHO) Report. 2016.
[50]
Hall, M.E.; John, E. Hypertension: A Companion to Braunwald’s Heart Disease E-Book; Elsevier: Amsterdam, 2017, pp. 33-51.
[51]
Puar, T.H.; Mok, Y.; Debajyoti, R.; Khoo, J.; How, C.H.; Ng, A.K. Secondary hypertension in adults. Singapore Med. J., 2016, 57(5), 228-232.
[http://dx.doi.org/10.11622/smedj.2016087] [PMID: 27211205]
[52]
D’Elia, L.; La Fata, E.; Galletti, F.; Scalfi, L.; Strazzullo, P. Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. Eur. J. Nutr., 2019, 58(1), 271-280.
[http://dx.doi.org/10.1007/s00394-017-1591-z] [PMID: 29222637]
[53]
Mehta, V.; Agarwal, S. Does vitamin D deficiency lead to hypertension? Cureus, 2017, 9(2), e1038.
[http://dx.doi.org/10.7759/cureus.1038] [PMID: 28357170]
[54]
Pazoki, R.; Dehghan, A.; Evangelou, E.; Warren, H.; Gao, H.; Caulfield, M.; Elliott, P.; Tzoulaki, I. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation, 2018, 137(7), 653-661.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030898] [PMID: 29254930]
[55]
Pesantes, M.; Diez-Canseco, F.; Bernabé-Ortiz, A.; Ponce-Lucero, V.; Miranda, J. Taste, salt consumption, and local explanations around hypertension in a rural population in Northern Peru. Nutrients, 2017, 9(7), 698.
[http://dx.doi.org/10.3390/nu9070698] [PMID: 28678190]
[56]
Simbolon, D.; Yorita, E.; Talib, R.A. Consequences of overweight and obesity in adolescence against the risk of hypertension in adulthood. Kesmas: National Public Health Journal, 2019, 14(1), p. 8.
[57]
Carretero, O.A.; Oparil, S. Essential Hypertension. Circulation, 2000, 101(3), 329-335.
[http://dx.doi.org/10.1161/01.CIR.101.3.329] [PMID: 10645931]
[58]
Beevers, G.; Lip, G.Y.; O’Brien, E. ABC of hypertension: The pathophysiology of hypertension. BMJ, 2001, 322(7291), 912-916.
[http://dx.doi.org/10.1136/bmj.322.7291.912] [PMID: 11302910]
[59]
Pyun, W.B. Lifestyle modification, the effective but neglected strategy in lowering blood pressure. Korean Circ. J., 2018, 48(7), 652-654.
[http://dx.doi.org/10.4070/kcj.2018.0194] [PMID: 29968438]
[60]
Yang, M.H.; Kang, S.Y.; Lee, J.A.; Kim, Y.S.; Sung, E.J.; Lee, K.Y.; Kim, J.S.; Oh, H.J.; Kang, H.C.; Lee, S.Y. The effect of lifestyle changes on blood pressure control among hypertensive patients. Korean J. Fam. Med., 2017, 38(4), 173-180.
[http://dx.doi.org/10.4082/kjfm.2017.38.4.173] [PMID: 28775806]
[61]
Tamargo, J.; Segura, J.; Ruilope, L.M. Diuretics in the treatment of hypertension. Part 1: thiazide and thiazide-like diuretics. Expert Opin. Pharmacother., 2014, 15(4), 527-547.
[http://dx.doi.org/10.1517/14656566.2014.879118] [PMID: 24444254]
[62]
Greenberg, A. Diuretic complications. Am. J. Med. Sci., 2000, 319(1), 10-24.
[http://dx.doi.org/10.1016/S0002-9629(15)40676-7] [PMID: 10653441]
[63]
Gross, J.B.; Kokko, J.P. Effects of aldosterone and potassium-sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest., 1977, 59(1), 82-89.
[http://dx.doi.org/10.1172/JCI108625] [PMID: 830667]
[64]
Hameed, M.A.; Freedman, J.S.; Watkin, R.; Ganeshan, A.; Dasgupta, I. Renal denervation using carbon dioxide renal angiography in patients with uncontrolled hypertension and moderate to severe chronic kidney disease. Clin. Kidney J., 2017, 10(6), 778-782.
[http://dx.doi.org/10.1093/ckj/sfx066] [PMID: 29225807]
[65]
Roush, G.C.; Sica, D.A. Diuretics for Hypertension: A review and update. Am. J. Hypertens., 2016, 29(10), 1130-1137.
[http://dx.doi.org/10.1093/ajh/hpw030] [PMID: 27048970]
[66]
Wiysonge, C.S.; Bradley, H.A.; Volmink, J.; Mayosi, B.M.; Opie, L.H. Beta‐blockers for hypertension. Cochrane Database of Systematic Reviews, 2017, 2017(1)
[http://dx.doi.org/10.1002/14651858.CD002003.pub5]
[67]
Messerli, F.H.; Bangalore, S.; Bavishi, C.; Rimoldi, S.F. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J. Am. Coll. Cardiol., 2018, 71(13), 1474-1482.
[http://dx.doi.org/10.1016/j.jacc.2018.01.058] [PMID: 29598869]
[68]
Atanasova, D.; Tchekalarova, J.; Ivanova, N.; Nenchovska, Z.; Pavlova, E.; Atanassova, N.; Lazarov, N. Losartan suppresses the kainate-induced changes of angiotensin AT 1 receptor expression in a model of comorbid hypertension and epilepsy. Life Sci., 2018, 193, 40-46.
[http://dx.doi.org/10.1016/j.lfs.2017.12.006] [PMID: 29223539]
[69]
Sorbets, E.; Steg, P.G.; Young, R.; Danchin, N.; Greenlaw, N.; Ford, I.; Tendera, M.; Ferrari, R.; Merkely, B.; Parkhomenko, A.; Reid, C.; Tardif, J.C.; Fox, K.M. β-blockers, calcium antagonists, and mortality in stable coronary artery disease: an international cohort study. Eur. Heart J., 2019, 40(18), 1399-1407.
[http://dx.doi.org/10.1093/eurheartj/ehy811] [PMID: 30590529]
[70]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, 2018, 7(1)
[71]
Nunes, M.G.S.; Bernardino, A.; Martins, R.D. Use of medicinal plants by people with hypertension. Revista da Rede de Enfermagem do Nordeste, 2015, 16(6), 775-781.
[http://dx.doi.org/10.15253/2175-6783.2015000600002]
[72]
Sarkar, A.K. Ethnomedicinal survey report on plants of tribal regions of anuppur. Annals of Clinical Pharmacology & Toxicology, 2019.
[73]
Firenzuoli, F.; Gori, L. Herbal medicine today: clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, 4(Suppl. 1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[74]
de Wet, H.; Ramulondi, M.; Ngcobo, Z.N. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. S. Afr. J. Bot., 2016, 103, 78-88.
[http://dx.doi.org/10.1016/j.sajb.2015.08.011]
[75]
Baharvand-Ahmadi, B.; Bahmani, M.; Eftekhari, Z.; Jelodari, M.; Mirhoseini, M. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran. J. Herb. Med. Pharmacol., 2015, 5(1), 39-44.
[76]
Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol., 2019, 235, 329-360.
[http://dx.doi.org/10.1016/j.jep.2019.02.024] [PMID: 30769039]
[77]
Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; Taheri, Y.; Suleria, H.A.R.; Özçelik, B.; Nur Kasapoğlu, K.; Gültekin-Özgüven, M.; Daşkaya-Dikmen, C.; Cho, W.C.; Martins, N.; Calina, D. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health, 2020, 17(7), 2326.
[http://dx.doi.org/10.3390/ijerph17072326] [PMID: 32235611]
[78]
Xia, X.; Weng, J. Targeting metabolic syndrome: Candidate natural agents. J. Diabetes, 2010, 2(4), 243-249.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00090.x] [PMID: 20923500]
[79]
Chrysant, S.G.; Chrysant, G.S. Herbs used for the treatment of hypertension and their mechanism of action. Curr. Hypertens. Rep., 2017, 19(9), 77.
[http://dx.doi.org/10.1007/s11906-017-0775-5] [PMID: 28921053]
[80]
Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Traditional herbs: a remedy for cardiovascular disorders. Phytomedicine, 2016, 23(11), 1082-1089.
[http://dx.doi.org/10.1016/j.phymed.2015.10.012] [PMID: 26656228]
[81]
Xiang, L.; Li, Y.; Deng, X.; Kosanovic, D.; Schermuly, R.T.; Li, X. Natural plant products in treatment of pulmonary arterial hypertension. Pulm. Circ., 2018, 8(3), 1-20.
[http://dx.doi.org/10.1177/2045894018784033] [PMID: 29869936]
[82]
Somanadhan, B.; Varughese, G.; Palpu, P.; Sreedharan, R.; Gudiksen, L.; Wagner Smitt, U.; Nyman, U. An ethnopharmacological survey for potential angiotensin converting enzyme inhibitors from Indian medicinal plants. J. Ethnopharmacol., 1999, 65(2), 103-112.
[http://dx.doi.org/10.1016/S0378-8741(98)00201-3] [PMID: 10465650]
[83]
Sharma, H.; Chandola, H.M.; Singh, G.; Basisht, G. Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease. Part 2--Ayurveda in primary health care. J. Altern. Complement. Med., 2007, 13(10), 1135-1150.
[http://dx.doi.org/10.1089/acm.2007.7017-B] [PMID: 18166127]
[84]
Meghwani, H.; Prabhakar, P.; Mohammed, S.A.; Seth, S.; Hote, M.P.; Banerjee, S.K.; Arava, S.; Ray, R.; Maulik, S.K. Beneficial effects of aqueous extract of stem bark of Terminalia arjuna (Roxb.), An ayurvedic drug in experimental pulmonary hypertension. J. Ethnopharmacol., 2017, 197, 184-194.
[http://dx.doi.org/10.1016/j.jep.2016.07.029] [PMID: 27401289]
[85]
Sujarwo, W.; Keim, A.P.; Savo, V.; Guarrera, P.M.; Caneva, G. Ethnobotanical study of Loloh: Traditional herbal drinks from Bali (Indonesia). J. Ethnopharmacol., 2015, 169, 34-48.
[http://dx.doi.org/10.1016/j.jep.2015.03.079] [PMID: 25861955]
[86]
Seck, S.M.; Doupa, D.; Dia, D.G.; Diop, E.A.; Ardiet, D.L.; Nogueira, R.C.; Graz, B.; Diouf, B. Clinical efficacy of African traditional medicines in hypertension: A randomized controlled trial with Combretum micranthum and Hibiscus sabdariffa. J. Hum. Hypertens., 2018, 32(1), 75-81.
[http://dx.doi.org/10.1038/s41371-017-0001-6] [PMID: 29311704]
[87]
Ozougwu, J. Nigerian medicinal plants with anti-diabetic and anti-hypertensive properties. Eur. J. Med. Plants, 2017, 21(3), 1-9.
[http://dx.doi.org/10.9734/EJMP/2017/37468]
[88]
Gbolade, A. Ethnobotanical study of plants used in treating hypertension in Edo State of Nigeria. J. Ethnopharmacol., 2012, 144(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.07.018] [PMID: 22975417]
[89]
Saganuwan, A.S. Tropical plants with antihypertensive, antiasthmatic, and antidiabetic value. J. Herbs Spices Med. Plants, 2009, 15(1), 24-44.
[http://dx.doi.org/10.1080/10496470902787477]
[90]
Davids, D.; Gibson, D.; Johnson, Q. Ethnobotanical survey of medicinal plants used to manage High Blood Pressure and Type 2 Diabetes Mellitus in Bitterfontein, Western Cape Province, South Africa. J. Ethnopharmacol., 2016, 194, 755-766.
[http://dx.doi.org/10.1016/j.jep.2016.10.063] [PMID: 27780752]
[91]
Balogun, F.; Ashafa, A. A review of plants used in south african traditional medicine for the management and treatment of hypertension. Planta Med., 2019, 85(4), 312-334.
[http://dx.doi.org/10.1055/a-0801-8771] [PMID: 30477041]
[92]
Moshi, M.J.; Otieno, D.F.; Weisheit, A. Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba District. J. Ethnobiol. Ethnomed., 2012, 8(1), 14.
[http://dx.doi.org/10.1186/1746-4269-8-14] [PMID: 22472473]
[93]
Karou, S.D.; Tchacondo, T.; Djikpo Tchibozo, M.A.; Abdoul-Rahaman, S.; Anani, K.; Koudouvo, K.; Batawila, K.; Agbonon, A.; Simpore, J.; de Souza, C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol., 2011, 49(12), 1286-1297.
[http://dx.doi.org/10.3109/13880209.2011.621959] [PMID: 22077164]
[94]
Karou, S.; Bako, M.; Bawa, M.; de Souza, C.; Tchacondo, T.; Agban, A.; Batawila, K.; Gbeassor, M. Medicinal plants use in central Togo (Africa) with an emphasis on the timing. Pharmacogn. Res., 2012, 4(2), 92-103.
[http://dx.doi.org/10.4103/0974-8490.94724] [PMID: 22518081]
[95]
Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed., 2016, 12(1), 5.
[http://dx.doi.org/10.1186/s13002-015-0077-4] [PMID: 26762159]
[96]
Moore, N.; Hamza, N.; Berke, B.; Umar, A. News from Tartary: an ethnopharmacological approach to drug and therapeutic discovery. Br. J. Clin. Pharmacol., 2017, 83(1), 33-37.
[http://dx.doi.org/10.1111/bcp.13042] [PMID: 27297624]
[97]
Amel, B. Traditional treatment of high blood pressure and diabetes in Souk Ahras District. J. Pharmacogn. Phytother., 2013, 5(1), 12-20.
[98]
Tsabang, N.; Yedjou, C.G.; Tsambang, L.; Tchinda, A.T.; Donfagsiteli, N.; Agbor, G.A.; Tchounwou, P.; Nkongmeneck, B.A. Treatment of diabetes and/or hypertension using medicinal plants in Cameroon. Med. Aromat. Plants, 2015, S2, 3.
[99]
Nolé, T.; Lionel, T.D.W.; Cedrix, T.F.S.; Gabriel, A. Ethnomedical and ethnopharmacological study of plants used for potential treatments of diabetes and arterial hypertension by indigenous people in three phytogeographic regions of Cameroon. Diabetes Case Rep, 2017, 1(110), 2.
[100]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[101]
Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol., 2007, 110(1), 105-117.
[http://dx.doi.org/10.1016/j.jep.2006.09.011] [PMID: 17052873]
[102]
Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol., 1997, 58(1), 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[103]
Ahmad, M.; Khan, M.P.Z.; Mukhtar, A.; Zafar, M.; Sultana, S.; Jahan, S. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. J. Ethnopharmacol., 2016, 184, 154-186.
[http://dx.doi.org/10.1016/j.jep.2016.02.039] [PMID: 26947900]
[104]
Ahmad, L.; Semotiuk, A.; Zafar, M.; Ahmad, M.; Sultana, S.; Liu, Q.R.; Zada, M.P.; Abidin, S.Z.U.; Yaseen, G. Ethnopharmacological documentation of medicinal plants used for hypertension among the local communities of DIR Lower, Pakistan. J. Ethnopharmacol., 2015, 175, 138-146.
[http://dx.doi.org/10.1016/j.jep.2015.09.014] [PMID: 26392329]
[105]
Baharvand-Ahmadi, B.; Bahmani, M.; Tajeddini, P.; Rafieian-Kopaei, M.; Naghdi, N. An ethnobotanical study of medicinal plants administered for the treatment of hypertension. J. Renal Inj. Prev., 2016, 5(3), 123-128.
[http://dx.doi.org/10.15171/jrip.2016.26] [PMID: 27689107]
[106]
Baharvand-Ahmadi, B.; Asadi-Samani, M. A mini-review on the most important effective medicinal plants to treat hypertension in ethnobotanical evidence of Iran. J. Nephropharmacol., 2016, 6(1), 3-8.
[PMID: 28197520]
[107]
Kamrani Rad, S.Z.; Javadi, B.; Hayes, A.W.; Karim, I. G. Potential angiotensin converting enzyme (ACE) inhibitors from Iranian traditional plants described by Avicenna’s Canon of Medicine. Avicenna J. Phytomed., 2019, 9(4), 291-309.
[PMID: 31309069]
[108]
Zarshenas, M.M.; Zargaran, A. A review on the Avicenna’s contribution to the field of cardiology. Int. J. Cardiol., 2015, 182, 237-241.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.145] [PMID: 25577770]
[109]
Petkov, V. Bulgarian traditional medicine: A source of ideas for phytopharmacological investigations. J. Ethnopharmacol., 1986, 15(2), 121-132.
[http://dx.doi.org/10.1016/0378-8741(86)90149-2] [PMID: 3520155]
[110]
Choi, H.L.; Park, K.H.; Park, J.S.; Choi, H.Y.; Kim, H.; Kim, S.M. Relationship between blood toxin level and clinical features in patients with grayanotoxin poisoning – six clinical cases. Clin. Toxicol. (Phila.), 2017, 55(9), 991-995.
[http://dx.doi.org/10.1080/15563650.2017.1331448] [PMID: 28594250]
[111]
Petkov, V. Plants and hypotensive, antiatheromatous and coronarodilatating action. Am. J. Chin. Med., 1979, 7(3), 197-236.
[http://dx.doi.org/10.1142/S0192415X79000180] [PMID: 574353]
[112]
Wang, Y.; Fan, X.; Qu, H.; Gao, X.; Cheng, Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr. Top. Med. Chem., 2012, 12(12), 1356-1362.
[http://dx.doi.org/10.2174/156802612801319034] [PMID: 22690682]
[113]
Cheng, J.T. Review: drug therapy in Chinese traditional medicine. J. Clin. Pharmacol., 2000, 40(5), 445-450.
[http://dx.doi.org/10.1177/00912700022009198] [PMID: 10806595]
[114]
Yu, T.; Guo, K.; Chen, H.; Lan, C.; Wang, J.; Huang, L.; Wang, X.; Zhang, Z.; Gao, S. Effects of traditional Chinese medicine Xin-Ji-Er-Kang formula on 2K1C hypertensive rats: role of oxidative stress and endothelial dysfunction. BMC Complement. Altern. Med., 2013, 13(1), 173.
[http://dx.doi.org/10.1186/1472-6882-13-173] [PMID: 23849603]
[115]
Yuwen, Y.; Liu, Y.; Wang, Y.; Dai, J.; Liu, D.; Wang, Y.; Han, X. The add-on effect of a Chinese herbal formula for patients with resistant hypertension: study protocol for a pilot cohort study. J. Integr. Med., 2015, 13(2), 122-128.
[http://dx.doi.org/10.1016/S2095-4964(15)60162-5] [PMID: 25797643]
[116]
Loh, Y.C.; Tan, C.S.; Ch’ng, Y.S.; Ahmad, M.; Asmawi, M.Z.; Yam, M.F. Vasodilatory effects of combined traditional Chinese medicinal herbs in optimized ratio. J. Med. Food, 2017, 20(3), 265-278.
[http://dx.doi.org/10.1089/jmf.2016.3836] [PMID: 28296594]
[117]
Yang, P.R.; Shih, W.T.; Chu, Y.H.; Chen, P.C.; Wu, C.Y. Frequency and co-prescription pattern of Chinese herbal products for hypertension in Taiwan: a Cohort study. BMC Complement. Altern. Med., 2015, 15(1), 163.
[http://dx.doi.org/10.1186/s12906-015-0690-8] [PMID: 26048045]
[118]
Neamsuvan, O.; Komonhiran, P.; Boonming, K. Medicinal plants used for hypertension treatment by folk healers in Songkhla province, Thailand. J. Ethnopharmacol., 2018, 214, 58-70.
[http://dx.doi.org/10.1016/j.jep.2017.11.032] [PMID: 29229570]
[119]
Khuankaew, S.; Srithi, K.; Tiansawat, P.; Jampeetong, A.; Inta, A.; Wangpakapattanawong, P. Ethnobotanical study of medicinal plants used by Tai Yai in Northern Thailand. J. Ethnopharmacol., 2014, 151(2), 829-838.
[http://dx.doi.org/10.1016/j.jep.2013.11.033] [PMID: 24334162]
[120]
Qin, J.; Wang, L.; Bai, Y.; Li, Y.; Jing, Y.; Han, L.; Wang, J. Enhanced absorption and bioavailability of hydrochlorothiazide by Chinese medicines in the Zhenju antihypertensive compound. J. Pharm. Pharmacol., 2014, 66(6), 855-864.
[http://dx.doi.org/10.1111/jphp.12207] [PMID: 24392686]
[121]
Hung, Y.C.; Tseng, Y.J.; Hu, W.L.; Chen, H.J.; Li, T.C.; Tsai, P.Y.; Chen, H.P.; Huang, M.H.; Su, F.Y. Demographic and prescribing patterns of Chinese herbal products for individualized therapy for ischemic heart disease in Taiwan: population-based study. PLoS One, 2015, 10(8), e0137058.
[http://dx.doi.org/10.1371/journal.pone.0137058] [PMID: 26322893]
[122]
Charoonratana, T.; Puntarat, J.; Vinyoocharoenkul, S.; Sudsai, T.; Bunluepuech, K. Innocuousness of a polyherbal formulation: A case study using a traditional Thai antihypertensive herbal recipe in rodents. Food Chem. Toxicol., 2018, 112, 458-465.
[http://dx.doi.org/10.1016/j.fct.2017.07.052] [PMID: 28757462]
[123]
Wong, N.D.; Ming, S.; Zhou, H.Y.; Black, H.R. A comparison of Chinese traditional and Western medical approaches for the treatment of mild hypertension. Yale J. Biol. Med., 1991, 64(1), 79-87.
[PMID: 1897264]
[124]
Seo, C.S.; Kim, O.S.; Kim, J.H.; Shin, H.K. Simultaneous quantification and antiatherosclerosis effect of the traditional Korean medicine, Hwangryunhaedok-tang. BMC Complement. Altern. Med., 2015, 15(1), 108.
[http://dx.doi.org/10.1186/s12906-015-0632-5] [PMID: 25880755]
[125]
MagosGuerrero, G.; SantiagoMeja, J.; Carrasco, O. Exploratory studies of some Mexican medicinal plants. Cardiovascular effects in rats with and without hypertension. J. Intercult. Ethnopharmacol., 2017, 6(3), 274-279.
[http://dx.doi.org/10.5455/jice.20170706061922] [PMID: 28894625]
[126]
Luna-Vázquez, F.; Ibarra-Alvarado, C.; Camacho-Corona, M.; Rojas-Molina, A.; Rojas-Molina, J.; García, A.; Bah, M. Vasodilator activity of compounds isolated from plants used in Mexican traditional medicine. Molecules, 2018, 23(6), 1474.
[http://dx.doi.org/10.3390/molecules23061474] [PMID: 29912156]
[127]
Graz, B.; Kitalong, C.; Yano, V. Traditional local medicines in the republic of Palau and non-communicable diseases (NCD), signs of effectiveness. J. Ethnopharmacol., 2015, 161, 233-237.
[http://dx.doi.org/10.1016/j.jep.2014.11.047] [PMID: 25529617]
[128]
Münzel, T.; Gori, T.; Bruno, R.M.; Taddei, S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur. Heart J., 2010, 31(22), 2741-2748.
[http://dx.doi.org/10.1093/eurheartj/ehq396] [PMID: 20974801]
[129]
Montezano, A.C.; Touyz, R.M. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Can. J. Cardiol., 2012, 28(3), 288-295.
[http://dx.doi.org/10.1016/j.cjca.2012.01.017] [PMID: 22445098]
[130]
Taddei, S.; Virdis, A.; Ghiadoni, L.; Magagna, A.; Salvetti, A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation, 1998, 97(22), 2222-2229.
[http://dx.doi.org/10.1161/01.CIR.97.22.2222] [PMID: 9631871]
[131]
Rees, A.; Dodd, G.; Spencer, J. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function. Nutrients, 2018, 10(12), 1852.
[http://dx.doi.org/10.3390/nu10121852] [PMID: 30513729]
[132]
Hügel, H.M.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol protection and treatment of hypertension. Phytomedicine, 2016, 23(2), 220-231.
[http://dx.doi.org/10.1016/j.phymed.2015.12.012] [PMID: 26926184]
[133]
Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch. Toxicol., 2014, 88(10), 1803-1853.
[http://dx.doi.org/10.1007/s00204-014-1330-7] [PMID: 25182418]
[134]
Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[135]
Ke Chen, C.; Pace-Asciak, C.R. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen. Pharmacol., 1996, 27(2), 363-366.
[http://dx.doi.org/10.1016/0306-3623(95)02001-2] [PMID: 8919657]
[136]
Galindo, P.; Rodriguez-Gómez, I.; González-Manzano, S.; Dueñas, M.; Jiménez, R.; Menéndez, C.; Vargas, F.; Tamargo, J.; Santos-Buelga, C.; Pérez-Vizcaíno, F.; Duarte, J. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One, 2012, 7(3), e32673.
[http://dx.doi.org/10.1371/journal.pone.0032673] [PMID: 22427863]
[137]
Hung, C.H.; Chan, S.H.; Chu, P.M.; Tsai, K.L. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res., 2015, 59(10), 1905-1917.
[http://dx.doi.org/10.1002/mnfr.201500144] [PMID: 26202455]
[138]
Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules, 2017, 22(2), 209.
[http://dx.doi.org/10.3390/molecules22020209] [PMID: 28146071]
[139]
Tettey, C.O.; Yang, I.J.; Shin, H.M. Vasodilatory effect of kaempferol-7-O-α-L-rhamnopyranoside via NO-cGMP-PKG signaling. Arch. Biochem. Biophys., 2019, 667, 1-5.
[http://dx.doi.org/10.1016/j.abb.2019.04.001] [PMID: 30981710]
[140]
Woodman, O.L.; Meeker, W.F.; Boujaoude, M. Vasorelaxant and antioxidant activity of flavonols and flavones: structure-activity relationships. J. Cardiovasc. Pharmacol., 2005, 46(3), 302-309.
[http://dx.doi.org/10.1097/01.fjc.0000175431.62626.07] [PMID: 16116335]
[141]
Pan, Z.; Feng, T.; Shan, L.; Cai, B.; Chu, W.; Niu, H.; Lu, Y.; Yang, B. Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother. Res., 2008, 22(11), 1428-1433.
[http://dx.doi.org/10.1002/ptr.2364] [PMID: 18972583]
[142]
Qin, X.; Hou, X.; Zhang, M.; Liang, T.; Zhi, J.; Han, L.; Li, Q. Relaxation of rat aorta by farrerol correlates with potency to reduce intracellular calcium of VSMCs. Int. J. Mol. Sci., 2014, 15(4), 6641-6656.
[http://dx.doi.org/10.3390/ijms15046641] [PMID: 24747597]
[143]
Fusi, F.; Trezza, A.; Tramaglino, M.; Sgaragli, G.; Saponara, S.; Spiga, O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol. Res., 2020, 152, 104625.
[http://dx.doi.org/10.1016/j.phrs.2019.104625] [PMID: 31918018]
[144]
Fusi, F.; Cavalli, M.; Mulholland, D.; Crouch, N.; Coombes, P.; Dawson, G.; Bova, S.; Sgaragli, G.; Saponara, S. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. J. Pharmacol. Exp. Ther., 2010, 332(2), 531-540.
[http://dx.doi.org/10.1124/jpet.109.161265] [PMID: 19923439]
[145]
Saponara, S.; Testai, L.; Iozzi, D.; Martinotti, E.; Martelli, A.; Chericoni, S.; Sgaragli, G.; Fusi, F.; Calderone, V. (+/−)‐Naringenin as large conductance Ca2+ ‐activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br. J. Pharmacol., 2006, 149(8), 1013-1021.
[http://dx.doi.org/10.1038/sj.bjp.0706951] [PMID: 17088866]
[146]
Gao, Z.; Lau, C.P.; Wong, T.M.; Li, G.R. Protein tyrosine kinase-dependent modulation of voltage-dependent potassium channels by genistein in rat cardiac ventricular myocytes. Cell. Signal., 2004, 16(3), 333-341.
[http://dx.doi.org/10.1016/j.cellsig.2003.08.003] [PMID: 14687663]
[147]
Actis-Goretta, L.; Ottaviani, J.I.; Keen, C.L.; Fraga, C.G. Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Lett., 2003, 555(3), 597-600.
[http://dx.doi.org/10.1016/S0014-5793(03)01355-3] [PMID: 14675780]
[148]
Irondi, E.; Agboola, S.; Oboh, G.; Boligon, A.; Athayde, M.; Shode, F. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J. Intercult. Ethnopharmacol., 2016, 5(2), 122-130.
[http://dx.doi.org/10.5455/jice.20160321115402] [PMID: 27104032]
[149]
Fusi, F.; Spiga, O.; Trezza, A.; Sgaragli, G.; Saponara, S. The surge of flavonoids as novel, fine regulators of cardiovascular Cav channels. Eur. J. Pharmacol., 2017, 796, 158-174.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.033] [PMID: 28012974]
[150]
Dianita, R.; Jantan, I. Inhibition of human platelet aggregation and low-density lipoprotein oxidation by premna foetida extract and its major compounds. Molecules, 2019, 24(8), 1469.
[http://dx.doi.org/10.3390/molecules24081469] [PMID: 31013947]
[151]
Cásedas, G.; Les, F.; López, V. Anthocyanins: Plant pigments, food ingredients or therapeutic agents for the cns? a mini-review focused on clinical trials. Curr. Pharm. Des., 2020, 26(16), 1790-1798.
[http://dx.doi.org/10.2174/1381612826666200127093701] [PMID: 31985367]
[152]
Ghosh, D.; Konishi, T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr., 2007, 16(2), 200-208.
[PMID: 17468073]
[153]
Takashina, Y.; Manabe, A.; Tabuchi, Y.; Ikari, A. Cyanidin increases the expression of Mg2+ transport carriers mediated by the activation of PPARα in colonic epithelial MCE301 cells. Nutrients, 2019, 11(3), 641.
[http://dx.doi.org/10.3390/nu11030641] [PMID: 30884817]
[154]
Ojeda, D.; Jiménez-Ferrer, E.; Zamilpa, A.; Herrera-Arellano, A.; Tortoriello, J.; Alvarez, L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J. Ethnopharmacol., 2010, 127(1), 7-10.
[http://dx.doi.org/10.1016/j.jep.2009.09.059] [PMID: 19808084]
[155]
Parichatikanond, W.; Pinthong, D.; Mangmool, S. Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med., 2012, 78(15), 1626-1632.
[http://dx.doi.org/10.1055/s-0032-1315198] [PMID: 22872589]
[156]
Xu, J.W.; Ikeda, K.; Yamori, Y. Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension, 2004, 44(2), 217-222.
[http://dx.doi.org/10.1161/01.HYP.0000135868.38343.c6] [PMID: 15226277]
[157]
Kalea, A.Z.; Clark, K.; Schuschke, D.A.; Klimis-Zacas, D.J. Vascular reactivity is affected by dietary consumption of wild blueberries in the Sprague-Dawley rat. J. Med. Food, 2009, 12(1), 21-28.
[http://dx.doi.org/10.1089/jmf.2008.0078] [PMID: 19298192]
[158]
Les, F.; Carpéné, C.; Arbonés-Mainar, J.M.; Decaunes, P.; Valero, M.S.; López, V. Pomegranate juice and its main polyphenols exhibit direct effects on amine oxidases from human adipose tissue and inhibit lipid metabolism in adipocytes. J. Funct. Foods, 2017, 33, 323-331.
[http://dx.doi.org/10.1016/j.jff.2017.04.006]
[159]
Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol., 2018, 220, 67-74.
[http://dx.doi.org/10.1016/j.jep.2018.03.029] [PMID: 29604377]
[160]
Les, F.; Prieto, J.M.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities. Food Funct., 2015, 6(6), 2049-2057.
[http://dx.doi.org/10.1039/C5FO00426H] [PMID: 26030005]
[161]
Mohan, M.; Waghulde, H.; Kasture, S. Effect of pomegranate juice on Angiotensin II-induced hypertension in diabetic wistar rats. Phytother. Res., 2010, 24(Suppl. 2), S196-S203.
[http://dx.doi.org/10.1002/ptr.3090] [PMID: 20020514]
[162]
de Nigris, F.; Williams-Ignarro, S.; Lerman, L.O.; Crimi, E.; Botti, C.; Mansueto, G.; D’Armiento, F.P.; De Rosa, G.; Sica, V.; Ignarro, L.J.; Napoli, C. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc. Natl. Acad. Sci. USA, 2005, 102(13), 4896-4901.
[http://dx.doi.org/10.1073/pnas.0500998102] [PMID: 15781875]
[163]
Ignarro, L.J.; Byrns, R.E.; Sumi, D.; de Nigris, F.; Napoli, C. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide, 2006, 15(2), 93-102.
[http://dx.doi.org/10.1016/j.niox.2006.03.001] [PMID: 16626982]
[164]
Vilahur, G.; Padró, T.; Casaní, L.; Mendieta, G.; López, J.A.; Streitenberger, S.; Badimon, L. Polyphenol-enriched diet prevents coronary endothelial dysfunction by activating the Akt/eNOS pathway. Rev. Esp. Cardiol. (Engl. Ed.), 2015, 68(3), 216-225.
[http://dx.doi.org/10.1016/j.rec.2014.04.021] [PMID: 25444379]
[165]
Shao, J.; Wang, P.; Liu, A.; Du, X.; Bai, J.; Chen, M. Punicalagin prevents hypoxic pulmonary hypertension via anti-oxidant effects in rats. Am. J. Chin. Med., 2016, 44(4), 785-801.
[http://dx.doi.org/10.1142/S0192415X16500439] [PMID: 27222062]
[166]
Mattiello, T.; Trifirò, E.; Jotti, G.S.; Pulcinelli, F.M. Effects of pomegranate juice and extract polyphenols on platelet function. J. Med. Food, 2009, 12(2), 334-339.
[http://dx.doi.org/10.1089/jmf.2007.0640] [PMID: 19459734]
[167]
Schubert, S.Y.; Lansky, E.P.; Neeman, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol., 1999, 66(1), 11-17.
[http://dx.doi.org/10.1016/S0378-8741(98)00222-0] [PMID: 10432202]
[168]
Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest., 2005, 116(1), 4-15.
[http://dx.doi.org/10.1172/JCI27291] [PMID: 16395396]
[169]
Larrosa, M.; García-Conesa, M.T.; Espín, J.C.; Tomás-Barberán, F.A. Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med., 2010, 31(6), 513-539.
[http://dx.doi.org/10.1016/j.mam.2010.09.005] [PMID: 20837052]
[170]
Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M.J.; Selma, M.V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem., 2010, 21(8), 717-725.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.012] [PMID: 19616930]
[171]
Tang, L.; Mo, Y.; Li, Y.; Zhong, Y.; He, S.; Zhang, Y.; Tang, Y.; Fu, S.; Wang, X.; Chen, A. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochem. Biophys. Res. Commun., 2017, 486(3), 774-780.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.119] [PMID: 28343995]
[172]
Kang, I.; Kim, Y.; Tomás-Barberán, F.A.; Espín, J.C.; Chung, S.; Urolithin, A.; Urolithin, A. C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol. Nutr. Food Res., 2016, 60(5), 1129-1138.
[http://dx.doi.org/10.1002/mnfr.201500796] [PMID: 26872561]
[173]
Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of hypertension in the Polish arm of the HAPIEE study. Eur. J. Nutr., 2018, 57(4), 1535-1544.
[http://dx.doi.org/10.1007/s00394-017-1438-7] [PMID: 28474120]
[174]
Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Association between polyphenol intake and hypertension in adults and older adults: A population-based study in Brazil. PLoS One, 2016, 11(10), e0165791.
[http://dx.doi.org/10.1371/journal.pone.0165791] [PMID: 27792767]
[175]
Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; López-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; Fiol, M.; Ros, E.; Serra-Majem, L.; Pintó, X.; Muñoz, M.A.; Gea, A.; Ruiz-Gutiérrez, V.; Estruch, R.; Lamuela-Raventós, R.M.; Investigators, P.S. Polyphenol intake and mortality risk: A re-analysis of the predimed trial. BMC Med., 2014, 12(1), 77-77.
[http://dx.doi.org/10.1186/1741-7015-12-77] [PMID: 24886552]
[176]
Les, F.; Deleruyelle, S.; Cassagnes, L.E.; Boutin, J.A.; Balogh, B.; Arbones-Mainar, J.M.; Biron, S.; Marceau, P.; Richard, D.; Nepveu, F.; Mauriège, P.; Carpéné, C. Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. Chem. Biol. Interact., 2016, 258, 115-125.
[http://dx.doi.org/10.1016/j.cbi.2016.07.014] [PMID: 27475863]
[177]
Carpéné, C.; Les, F.; Cásedas, G.; Peiro, C.; Fontaine, J.; Chaplin, A.; Mercader, J.; López, V. Resveratrol anti-obesity effects: rapid inhibition of adipocyte glucose utilization. Antioxidants, 2019, 8(3), 74.
[http://dx.doi.org/10.3390/antiox8030074] [PMID: 30917543]
[178]
Gordish, K.L.; Beierwaltes, W.H. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am. J. Physiol. Renal Physiol., 2014, 306(5), F542-F550.
[http://dx.doi.org/10.1152/ajprenal.00437.2013] [PMID: 24431202]
[179]
Bonnefont-Rousselot, D. Resveratrol and cardiovascular diseases. Nutrients, 2016, 8(5), 250.
[http://dx.doi.org/10.3390/nu8050250] [PMID: 27144581]
[180]
Wallerath, T.; Deckert, G.; Ternes, T.; Anderson, H.; Li, H.; Witte, K.; Förstermann, U. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation, 2002, 106(13), 1652-1658.
[http://dx.doi.org/10.1161/01.CIR.0000029925.18593.5C] [PMID: 12270858]
[181]
Rivera, L.; Morón, R.; Zarzuelo, A.; Galisteo, M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem. Pharmacol., 2009, 77(6), 1053-1063.
[http://dx.doi.org/10.1016/j.bcp.2008.11.027] [PMID: 19100718]
[182]
Dolinsky, V.W.; Chakrabarti, S.; Pereira, T.J.; Oka, T.; Levasseur, J.; Beker, D.; Zordoky, B.N.; Morton, J.S.; Nagendran, J.; Lopaschuk, G.D.; Davidge, S.T.; Dyck, J.R.B. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(10), 1723-1733.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.018] [PMID: 23707558]
[183]
Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 2011, 6(10), e26391.
[http://dx.doi.org/10.1371/journal.pone.0026391] [PMID: 22028869]
[184]
Chan, V.; Fenning, A.; Iyer, A.; Hoey, A.; Brown, L. Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats. Curr. Pharm. Biotechnol., 2011, 12(3), 429-436.
[http://dx.doi.org/10.2174/138920111794480552] [PMID: 20874677]
[185]
Thandapilly, S.J.; Louis, X.L.; Behbahani, J.; Movahed, A.; Yu, L.; Fandrich, R.; Zhang, S.; Kardami, E.; Anderson, H.D.; Netticadan, T. Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. Hypertens. Res., 2013, 36(10), 866-872.
[http://dx.doi.org/10.1038/hr.2013.55] [PMID: 23784505]
[186]
Dillenburg, D.R.; Mostarda, C.; Moraes-Silva, I.C.; Ferreira, D.; Bós, D.S.G.; Duarte, A.A.M.; Irigoyen, M.C.; Rigatto, K. Resveratrol and grape juice differentially ameliorate cardiovascular autonomic modulation in L-NAME-treated rats. Auton. Neurosci., 2013, 179(1-2), 9-13.
[http://dx.doi.org/10.1016/j.autneu.2013.06.002] [PMID: 23810687]
[187]
Zordoky, B.N.M.; Robertson, I.M.; Dyck, J.R.B. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1155-1177.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.016] [PMID: 25451966]
[188]
Arunachalam, G.; Yao, H.; Sundar, I.K.; Caito, S.; Rahman, I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem. Biophys. Res. Commun., 2010, 393(1), 66-72.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.080] [PMID: 20102704]
[189]
Soylemez, S.; Sepici, A.; Akar, F. Resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats. Cardiovasc. Drugs Ther., 2009, 23(6), 449-458.
[http://dx.doi.org/10.1007/s10557-009-6198-z] [PMID: 19809869]
[190]
Cao, X.; Luo, T.; Luo, X.; Tang, Z. Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice. Hypertens. Res., 2014, 37(9), 803-810.
[http://dx.doi.org/10.1038/hr.2014.90] [PMID: 24965170]
[191]
Li, H.; Xia, N.; Förstermann, U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide, 2012, 26(2), 102-110.
[http://dx.doi.org/10.1016/j.niox.2011.12.006] [PMID: 22245452]
[192]
Saibandith, B.; Spencer, J.; Rowland, I.; Commane, D. Olive polyphenols and the metabolic syndrome. Molecules, 2017, 22(7), 1082.
[http://dx.doi.org/10.3390/molecules22071082] [PMID: 28661446]
[193]
Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients, 2019, 11(8), 1776.
[http://dx.doi.org/10.3390/nu11081776] [PMID: 31374907]
[194]
Dell’Agli, M.; Fagnani, R.; Mitro, N.; Scurati, S.; Masciadri, M.; Mussoni, L.; Galli, G.V.; Bosisio, E.; Crestani, M.; De Fabiani, E.; Tremoli, E.; Caruso, D. Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J. Agric. Food Chem., 2006, 54(9), 3259-3264.
[http://dx.doi.org/10.1021/jf0529161] [PMID: 16637682]
[195]
Franconi, F.; Coinu, R.; Carta, S.; Urgeghe, P.P.; Ieri, F.; Mulinacci, N.; Romani, A. Antioxidant effect of two virgin olive oils depends on the concentration and composition of minor polar compounds. J. Agric. Food Chem., 2006, 54(8), 3121-3125.
[http://dx.doi.org/10.1021/jf053003+] [PMID: 16608240]
[196]
Manna, C.; D’Angelo, S.; Migliardi, V.; Loffredi, E.; Mazzoni, O.; Morrica, P.; Galletti, P.; Zappia, V. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J. Agric. Food Chem., 2002, 50(22), 6521-6526.
[http://dx.doi.org/10.1021/jf020565+] [PMID: 12381144]
[197]
Parkinson, L.; Keast, R. Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease. Int. J. Mol. Sci., 2014, 15(7), 12323-12334.
[http://dx.doi.org/10.3390/ijms150712323] [PMID: 25019344]
[198]
Zhang, G.S.; Wang, R.J.; Zhang, H.N.; Zhang, G.P.; Luo, M.S.; Luo, J.D. Effects of chronic treatment with honokiol in spontaneously hypertensive rats. Biol. Pharm. Bull., 2010, 33(3), 427-431.
[http://dx.doi.org/10.1248/bpb.33.427] [PMID: 20190404]
[199]
Wang, X.; Xiao, D.; Ma, C.; Zhang, L.; Duan, Q.; Zheng, X.; Mao, M.; Zhu, D.; Li, Q. The effect of honokiol on pulmonary artery endothelium cell autophagy mediated by cyclophilin A in hypoxic pulmonary arterial hypertension. J. Pharmacol. Sci., 2019, 139(3), 158-165.
[http://dx.doi.org/10.1016/j.jphs.2019.01.005] [PMID: 30770282]
[200]
Pillai, V.B.; Samant, S.; Sundaresan, N.R.; Raghuraman, H.; Kim, G.; Bonner, M.Y.; Arbiser, J.L.; Walker, D.I.; Jones, D.P.; Gius, D.; Gupta, M.P. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun., 2015, 6(1), 6656.
[http://dx.doi.org/10.1038/ncomms7656] [PMID: 25871545]
[201]
Li, N.; Zhang, J.; Yan, X.; Zhang, C.; Liu, H.; Shan, X.; Li, J.; Yang, Y.; Huang, C.; Zhang, P.; Zhang, Y.; Bu, P. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget, 2017, 8(24), 39592-39604.
[http://dx.doi.org/10.18632/oncotarget.17165] [PMID: 28465484]
[202]
Karimian, M.S.; Pirro, M.; Johnston, T.P.; Majeed, M.; Sahebkar, A. Curcumin and endothelial function: evidence and mechanisms of protective effects. Curr. Pharm. Des., 2017, 23(17), 2462-2473.
[PMID: 28228072]
[203]
Wongeakin, N.; Bhattarakosol, P.; Patumraj, S. Molecular mechanisms of curcumin on diabetes-induced endothelial dysfunctions: Txnip, ICAM-1, and NOX2 expressions. BioMed Res. Int., 2014, 2014, 161346.
[http://dx.doi.org/10.1155/2014/161346] [PMID: 25054130]
[204]
Gupta, B.; Ghosh, B. Curcuma longa inhibits TNF-α induced expression of adhesion molecules on human umbilical vein endothelial cells. Int. J. Immunopharmacol., 1999, 21(11), 745-757.
[http://dx.doi.org/10.1016/S0192-0561(99)00050-8] [PMID: 10576620]
[205]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[206]
Binion, D.G.; Otterson, M.F.; Rafiee, P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut, 2008, 57(11), 1509-1517.
[http://dx.doi.org/10.1136/gut.2008.152496] [PMID: 18596194]
[207]
Chen, S.; Shen, X.; Cheng, S.; Li, P.; Du, J.; Chang, Y.; Meng, H. Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS One, 2013, 8(11), e79730.
[http://dx.doi.org/10.1371/journal.pone.0079730] [PMID: 24232741]
[208]
Maldonado, P.D.; Barrera, D.; Rivero, I.; Mata, R.; Medina-Campos, O.N.; Hernández-Pando, R.; Pedraza-Chaverrí, J. Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage. Free Radic. Biol. Med., 2003, 35(3), 317-324.
[http://dx.doi.org/10.1016/S0891-5849(03)00312-5] [PMID: 12885594]
[209]
Cruz, C.; Correa-Rotter, R.; Sánchez-González, D.J.; Hernández-Pando, R.; Maldonado, P.D.; Martínez-Martínez, C.M.; Medina-Campos, O.N.; Tapia, E.; Aguilar, D.; Chirino, Y.I.; Pedraza-Chaverri, J. Renoprotective and antihypertensive effects of S -allylcysteine in 5/6 nephrectomized rats. Am. J. Physiol. Renal Physiol., 2007, 293(5), F1691-F1698.
[http://dx.doi.org/10.1152/ajprenal.00235.2007] [PMID: 17686953]
[210]
Liu, C.; Cao, F.; Tang, Q.Z.; Yan, L.; Dong, Y.G.; Zhu, L.H.; Wang, L.; Bian, Z.Y.; Li, H. Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. J. Nutr. Biochem., 2010, 21(12), 1238-1250.
[http://dx.doi.org/10.1016/j.jnutbio.2009.11.001] [PMID: 20185286]
[211]
Al-Qattan, K.K.; Thomson, M.; Al-Mutawa’a, S.; Al-Hajeri, D.; Drobiova, H.; Ali, M. Nitric oxide mediates the blood-pressure lowering effect of garlic in the rat two-kidney, one-clip model of hypertension. J. Nutr., 2006, 136(3)(Suppl.), 774S-776S.
[http://dx.doi.org/10.1093/jn/136.3.774S] [PMID: 16484561]
[212]
Morihara, N.; Ide, N.; Sumioka, I.; Kyo, E. Aged garlic extract inhibits peroxynitrite-induced hemolysis. Redox Rep., 2005, 10(3), 159-165.
[http://dx.doi.org/10.1179/135100005X57364] [PMID: 16156955]
[213]
Yu, J.; Feng, L.; Hu, Y.; Zhou, Y. Effects of SAC on oxidative stress and NO availability in placenta: Potential benefits to preeclampsia. Placenta, 2012, 33(6), 487-494.
[http://dx.doi.org/10.1016/j.placenta.2012.02.015] [PMID: 22405339]
[214]
Kim, K.M.; Chun, S.B.; Koo, M.S.; Choi, W.J.; Kim, T.W.; Kwon, Y.G.; Chung, H.T.; Billiar, T.R.; Kim, Y.M. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic. Biol. Med., 2001, 30(7), 747-756.
[http://dx.doi.org/10.1016/S0891-5849(01)00460-9] [PMID: 11275474]
[215]
Ku, D.D.; Abdel-Razek, T.T.; Dai, J.; Kim-Park, S.; Fallon, M.B.; Abrams, G.A. Garlic and its active metabolite allicin produce endothelium- and nitric oxide-dependent relaxation in rat pulmonary arteries. Clin. Exp. Pharmacol. Physiol., 2002, 29(1-2), 84-91.
[http://dx.doi.org/10.1046/j.1440-1681.2002.03596.x] [PMID: 11906464]
[216]
Ide, N.; Lau, B.H.S. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J. Nutr., 2001, 131(3), 1020S-1026S.
[http://dx.doi.org/10.1093/jn/131.3.1020S] [PMID: 11238809]
[217]
Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 2010, 17(13), 1016-1026.
[http://dx.doi.org/10.1016/j.phymed.2010.07.012] [PMID: 20739164]
[218]
Sharifi, A.M.; Darabi, R.; Akbarloo, N. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J. Ethnopharmacol., 2003, 86(2-3), 219-224.
[http://dx.doi.org/10.1016/S0378-8741(03)00080-1] [PMID: 12738090]
[219]
Rahman, I.; Biswas, S.K.; Kirkham, P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol., 2006, 72(11), 1439-1452.
[http://dx.doi.org/10.1016/j.bcp.2006.07.004] [PMID: 16920072]
[220]
Banerjee, S.K.; Maulik, S.K. Effect of garlic on cardiovascular disorders: a review. Nutr. J., 2002, 1(1), 4.
[http://dx.doi.org/10.1186/1475-2891-1-4] [PMID: 12537594]
[221]
Rahman, K.; Lowe, G.M. Garlic and cardiovascular disease: a critical review. J. Nutr., 2006, 136(Suppl. 3), 736S-740S.
[http://dx.doi.org/10.1093/jn/136.3.736S] [PMID: 16484553]
[222]
Krumm, P.; Giraldez, T.; de la Rosa, D.A.; Clauss, W.G.; Fronius, M.; Althaus, M. Thiol-reactive compounds from garlic inhibit the epithelial sodium channel (ENaC). Bioorg. Med. Chem., 2012, 20(13), 3979-3984.
[http://dx.doi.org/10.1016/j.bmc.2012.05.021] [PMID: 22668601]
[223]
Al-Qattan, K.K.; Khan, I.; Alnaqeeb, M.A.; Ali, M. Mechanism of garlic (Allium sativum) induced reduction of hypertension in 2K-1C rats: a possible mediation of Na/H exchanger isoform-1. Prostaglandins Leukot. Essent. Fatty Acids, 2003, 69(4), 217-222.
[http://dx.doi.org/10.1016/S0952-3278(03)00087-5] [PMID: 12907130]
[224]
Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.M.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 17977-17982.
[http://dx.doi.org/10.1073/pnas.0705710104] [PMID: 17951430]
[225]
Chuah, S.C.; Moore, P.K.; Zhu, Y.Z. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(5), H2693-H2701.
[http://dx.doi.org/10.1152/ajpheart.00853.2007] [PMID: 17766469]
[226]
Castro, C.; Lorenzo, A.G.; González, A.; Cruzado, M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: Involvement of cell-cycle inhibitor p27 Kip1 and mitogen-activated protein kinase. Mol. Nutr. Food Res., 2010, 54(6), 781-787.
[http://dx.doi.org/10.1002/mnfr.200900108] [PMID: 19904760]
[227]
Ferri, N.; Yokoyama, K.; Sadilek, M.; Paoletti, R.; Apitz-Castro, R.; Gelb, M.H.; Corsini, A. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation. Br. J. Pharmacol., 2003, 138(5), 811-818.
[http://dx.doi.org/10.1038/sj.bjp.0705126] [PMID: 12642382]
[228]
Yeh, Y.Y.; Liu, L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J. Nutr., 2001, 131(3), 989S-993S.
[http://dx.doi.org/10.1093/jn/131.3.989S] [PMID: 11238803]
[229]
Sendl, A.; Elbl, G.; Steinke, B.; Redl, K.; Breu, W.; Wagner, H. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med., 1992, 58(1), 1-7.
[http://dx.doi.org/10.1055/s-2006-961378] [PMID: 1620734]
[230]
Ergür, B.U.; Çilaker Mıcılı, S.; Yilmaz, O.; Akokay, P. The effects of α-lipoic acid on aortic injury and hypertension in the rat remnant kidney (5/6 nephrectomy) model. Anatol. J. Cardiol., 2015, 15(16), 443-449.
[http://dx.doi.org/10.5152/akd.2014.5483] [PMID: 25430409]
[231]
El Midaoui, A.; Fantus, I.G.; Ait Boughrous, A.; Couture, R. Beneficial effects of alpha-lipoic acid on hypertension, visceral obesity, UCP-1 expression and oxidative stress in zucker diabetic fatty rats. Antioxidants, 2019, 8(12), 648.
[http://dx.doi.org/10.3390/antiox8120648] [PMID: 31888243]
[232]
de Queiroz, T.M. Xia, H.; Filipeanu, C.M.; Braga, V.A.; Lazartigues, E. α-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(5), H926-H934.
[http://dx.doi.org/10.1152/ajpheart.00259.2015] [PMID: 26254330]
[233]
Huang, Y.P.; Jin, H.Y.; Yu, H.P. Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension. Int. J. Mol. Med., 2017, 39(2), 430-436.
[http://dx.doi.org/10.3892/ijmm.2016.2846] [PMID: 28035366]
[234]
Su, Q.; Liu, J.J.; Cui, W.; Shi, X.L.; Guo, J.; Li, H.B.; Huo, C.J.; Miao, Y.W.; Zhang, M.; Yang, Q.; Kang, Y.M. Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension. Toxicol. Lett., 2016, 241, 152-158.
[http://dx.doi.org/10.1016/j.toxlet.2015.10.019] [PMID: 26518973]
[235]
Ong, S.L.H.; Vohra, H.; Zhang, Y.; Sutton, M.; Whitworth, J.A. The effect of alpha-lipoic acid on mitochondrial superoxide and glucocorticoid-induced hypertension. Oxid. Med. Cell. Longev., 2013, 2013, 517045.
[http://dx.doi.org/10.1155/2013/517045] [PMID: 23533693]
[236]
Dudek, M.; Razny, K.; Bilska-Wilkosz, A.; Iciek, M.; Sapa, J.; Wlodek, L.; Filipek, B. Hypotensive effect of alpha-lipoic acid after a single administration in rats. Anatol. J. Cardiol., 2016, 16(5), 306-309.
[PMID: 26488376]
[237]
Das, U.N. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-β to prevent human essential hypertension. Eur. J. Clin. Nutr., 2004, 58(2), 195-203.
[http://dx.doi.org/10.1038/sj.ejcn.1601766] [PMID: 14749737]
[238]
Das, U.N. Nutritional factors in the pathobiology of human essential hypertension. Nutrition, 2001, 17(4), 337-346.
[http://dx.doi.org/10.1016/S0899-9007(00)00586-4] [PMID: 11369175]
[239]
Jung, S.B.; Kwon, S.K.; Kwon, M.; Nagar, H.; Jeon, B.H.; Irani, K.; Yoon, S.H.; Kim, C.S. Docosahexaenoic acid improves vascular function via up-regulation of SIRT1 expression in endothelial cells. Biochem. Biophys. Res. Commun., 2013, 437(1), 114-119.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.049] [PMID: 23806688]
[240]
Fischer, R.; Dechend, R.; Qadri, F.; Markovic, M.; Feldt, S.; Herse, F.; Park, J.K.; Gapelyuk, A.; Schwarz, I.; Zacharzowsky, U.B.; Plehm, R.; Safak, E.; Heuser, A.; Schirdewan, A.; Luft, F.C.; Schunck, W.H.; Muller, D.N. Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension, 2008, 51(2), 540-546.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103143] [PMID: 18158339]
[241]
Kumar, K.V.; Das, U.N. Effect of cis-unsaturated fatty acids, prostaglandins, and free radicals on angiotensin-converting enzyme activity in vitro. Exp. Biol. Med. (Maywood), 1997, 214(4), 374-379.
[http://dx.doi.org/10.3181/00379727-214-44106] [PMID: 9111529]
[242]
Mozaffarian, D. Fish, n-3 fatty acids, and cardiovascular haemodynamics. J. Cardiovasc. Med. (Hagerstown), 2007, 8(Suppl. 1), S23-S26.
[http://dx.doi.org/10.2459/01.JCM.0000289279.95427.e2] [PMID: 17876193]
[243]
Cabo, J.; Alonso, R.; Mata, P. Omega-3 fatty acids and blood pressure. Br. J. Nutr., 2012, 107(S2), 195-200.
[http://dx.doi.org/10.1017/S0007114512001584]
[244]
Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease. Prostaglandins Leukot. Essent. Fatty Acids, 2008, 79(3-5), 109-115.
[http://dx.doi.org/10.1016/j.plefa.2008.09.009] [PMID: 18951002]
[245]
Das, U.N. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot. Essent. Fatty Acids, 2000, 63(6), 351-362.
[http://dx.doi.org/10.1054/plef.2000.0226] [PMID: 11133172]
[246]
Alonso, Á.; Ruiz-Gutierrez, V.; Martínez-González, M.Á. Monounsaturated fatty acids, olive oil and blood pressure: epidemiological, clinical and experimental evidence. Public Health Nutr., 2006, 9(2), 251-257.
[http://dx.doi.org/10.1079/PHN2005836] [PMID: 16571180]
[247]
Zhang, J.; Villacorta, L.; Chang, L.; Fan, Z.; Hamblin, M.; Zhu, T.; Chen, C.S.; Cole, M.P.; Schopfer, F.J.; Deng, C.X.; Garcia-Barrio, M.T.; Feng, Y.H.; Freeman, B.A.; Chen, Y.E. Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ. Res., 2010, 107(4), 540-548.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.218404] [PMID: 20558825]
[248]
Lu, G.; Meier, K.E.; Jaffa, A.A.; Rosenzweig, S.A.; Egan, B.M. Oleic acid and angiotensin II induce a synergistic mitogenic response in vascular smooth muscle cells. Hypertension, 1998, 31(4), 978-985.
[http://dx.doi.org/10.1161/01.HYP.31.4.978] [PMID: 9535424]
[249]
Scheffler, A.; Rauwald, H.W.; Kampa, B.; Mann, U.; Mohr, F.W.; Dhein, S. Olea europaea leaf extract exerts L-type Ca2+ channel antagonistic effects. J. Ethnopharmacol., 2008, 120(2), 233-240.
[http://dx.doi.org/10.1016/j.jep.2008.08.018] [PMID: 18790040]
[250]
Wong, K. Mechanism of the aortic relaxation induced by low concentrations of berberine. Planta Med., 1998, 64(8), 756-757.
[http://dx.doi.org/10.1055/s-2006-957575] [PMID: 9933995]
[251]
Liu, L.; Liu, J.; Huang, Z.; Yu, X.; Zhang, X.; Dou, D.; Huang, Y. Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats. Biochem. Biophys. Res. Commun., 2015, 458(4), 796-801.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.028] [PMID: 25686503]
[252]
Ko, W.H.; Yao, X.Q.; Lau, C.W.; Law, W.I.; Chen, Z.Y.; Kwok, W.; Ho, K.; Huang, Y. Vasorelaxant and antiproliferative effects of berberine. Eur. J. Pharmacol., 2000, 399(2-3), 187-196.
[http://dx.doi.org/10.1016/S0014-2999(00)00339-3] [PMID: 10884519]
[253]
Kang, D.G.; Sohn, E.J.; Kwon, E.K.; Han, J.H.; Oh, H.; Lee, H.S. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascul. Pharmacol., 2002, 39(6), 281-286.
[http://dx.doi.org/10.1016/S1537-1891(03)00005-3] [PMID: 14567065]
[254]
Chiou, W.F.; Chen, J.; Chen, C.F. Relaxation of corpus cavernosum and raised intracavernous pressure by berberine in rabbit. Br. J. Pharmacol., 1998, 125(8), 1677-1684.
[http://dx.doi.org/10.1038/sj.bjp.0702249] [PMID: 9886759]
[255]
Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Šmejkal, K.; Malaník, M.; Sychrová, A.; Barreca, D.; Ziberna, L.; Mahomoodally, M.F.; Zengin, G.; Xu, S.; Nabavi, S.M.; Shen, A.Z. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics, 2019, 9(7), 1923-1951.
[http://dx.doi.org/10.7150/thno.30787] [PMID: 31037148]
[256]
Zhang, X.D.; Ren, H.M.; Liu, L. Effects of different dose berberine on hemodynamic parameters and [Ca2+]i of cardiac myocytes of diastolic heart failure rat model. Zhongguo Zhongyao Zazhi, 2008, 33(7), 818-821.
[PMID: 18589791]
[257]
Tian, H.; Kang, Y.M.; Gao, H.L.; Shi, X.L.; Fu, L.Y.; Li, Y.; Jia, X.Y.; Liu, K.L.; Qi, J.; Li, H.B.; Chen, Y.M.; Chen, W.S.; Cui, W.; Zhu, G.Q.; Yu, X.J. Chronic infusion of berberine into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. Phytomedicine, 2019, 52, 216-224.
[http://dx.doi.org/10.1016/j.phymed.2018.09.206] [PMID: 30599901]
[258]
Song, D.; Jiang, X.; Liu, Y.; Sun, Y.; Cao, S.; Zhang, Z. Asiaticoside attenuates cell growth inhibition and apoptosis induced by Aβ1-42 via inhibiting the TLR4/NF-κB signaling pathway in human brain microvascular endothelial cells. Front. Pharmacol., 2018, 9, 28.
[http://dx.doi.org/10.3389/fphar.2018.00028] [PMID: 29441018]
[259]
Wu, Y-H.; Chuang, S-Y.; Hong, W-C.; Lai, Y-J.; Chang, G-J.; Pang, J-H.S. Berberine reduces leukocyte adhesion to LPS-stimulated endothelial cells and VCAM-1 expression both in vivo and in vitro. Int. J. Immunopathol. Pharmacol., 2012, 25(3), 741-750.
[http://dx.doi.org/10.1177/039463201202500320] [PMID: 23058024]
[260]
Martinez, J.L.; Benites, J.; Gomez, H.; Vargas-Rueda, S.; Vinet, R.; Jaimes, L.; Laurido, C. Effects of two bisbenzylisoquinoline alkaloids, antioquine and tetrandrine, compared to verapamil in rat thoracic aorta. An. Acad. Bras. Cienc., 2018, 90(2), 1459-1463.
[http://dx.doi.org/10.1590/0001-3765201820170608] [PMID: 29898104]
[261]
Wong, K. Differential effect of tetrandrine on aortic relaxation and chronotropic activity in rat isolated aorta and atria. Planta Med., 1998, 64(7), 663-665.
[http://dx.doi.org/10.1055/s-2006-957546] [PMID: 9810276]
[262]
Wang, G.; Lemos, J. Tetrandrine: A new ligand to block voltage-dependent Ca2+ and Ca2+-activated K+ channels. Life Sci., 1994, 56(5), 295-306.
[http://dx.doi.org/10.1016/0024-3205(94)00952-X] [PMID: 7837929]
[263]
Yu, L.; Li, Q.; Yu, B.; Yang, Y.; Jin, Z.; Duan, W.; Zhao, G.; Zhai, M.; Liu, L.; Yi, D.; Chen, M.; Yu, S. Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: Role of silent information regulator 1. Oxid. Med. Cell. Longev., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/1689602] [PMID: 26788242]
[264]
Wang, L.; Wu, W. Angiotensin-converting enzyme inhibiting ability of ethanol extracts, steviol glycosides and protein hydrolysates from stevia leaves. Food Funct., 2019, 10(12), 7967-7972.
[http://dx.doi.org/10.1039/C9FO02127B] [PMID: 31750488]
[265]
Ferri, L.A.F.; Alves-Do-Prado, W.; Yamada, S.S.; Gazola, S.; Batista, M.R.; Bazotte, R.B. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother. Res., 2006, 20(9), 732-736.
[http://dx.doi.org/10.1002/ptr.1944] [PMID: 16775813]
[266]
Hsieh, M.H.; Chan, P.; Sue, Y.M.; Liu, J.C.; Liang, T.H.; Huang, T.Y.; Tomlinson, B.; Chow, M.S.S.; Kao, P.F.; Chen, Y.J. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: A two-year, randomized, placebo-controlled study. Clin. Ther., 2003, 25(11), 2797-2808.
[http://dx.doi.org/10.1016/S0149-2918(03)80334-X] [PMID: 14693305]
[267]
Chan, P.; Tomlinson, B.; Chen, Y.J.; Liu, J.C.; Hsieh, M.H.; Cheng, J.T. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br. J. Clin. Pharmacol., 2000, 50(3), 215-220.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00260.x] [PMID: 10971305]
[268]
Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther., 2009, 121(1), 41-54.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.007] [PMID: 19000919]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy