Abstract
The remarkable improvements in organic synthesis facilitated by zirconium dioxide- based nanoparticles are updated and summarized in this review. The ZrO2 acts as a versatile heterogeneous nanocatalyst and is used in various elementary organic reactions and many multicomponent reactions. The employment of these catalysts in organic synthesis leading to bio-active scaffolds provides the opportunity to carry out the reactions using facile synthetic protocol under mild environments that furnish the equivalent products in high yields and shorter reaction times. According to reports in the literature, ZrO2-based catalysts were removed from the reaction mixture and recycled many times.
Graphical Abstract
[http://dx.doi.org/10.1039/C9GC00270G]
[http://dx.doi.org/10.1016/j.crgsc.2021.100118];
b) Chopra, P.K.P.G.; Lambat, T.L.; Mahmood, S.H.; Chaudhary, R.G.; Banerjee, S. Sulfamic acid as versatile green catalyst used for synthetic organic chemistry: A comprehensive update. ChemistrySelect, 2021, 6(27), 6867-6889.
[http://dx.doi.org/10.1002/slct.202101635];
c) Lambat, T.L. Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields. J. Chinese Adv. Mater. Soc., 2018, 6(2), 134-144.
[http://dx.doi.org/10.1080/22243682.2018.1426040];
d) Lambat, T.L. Scolecite as novel heterogeneous catalyst for an efficient microwave assisted synthesis of 7-aryl-6H-benzo [H][1, 3] dioxolo [4, 5-b] xanthene-5, 6 (7H)-dione analogues via multi-component reaction. Int. J. Appl. Biol. Pharm. Technol., 2017, 8, 11-18.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[http://dx.doi.org/10.1016/j.ccr.2020.213407]
[http://dx.doi.org/10.5958/0974-4150.2020.00014.0]
[http://dx.doi.org/10.37934/jrnn.3.1.125]
[http://dx.doi.org/10.3390/jcs5080219]
[http://dx.doi.org/10.1039/D1RA01913A] [PMID: 35478649]
[http://dx.doi.org/10.1016/j.apsusc.2021.149122]
[http://dx.doi.org/10.1007/978-3-030-58513-6]
[http://dx.doi.org/10.2139/ssrn.3859149]
[http://dx.doi.org/10.1016/B978-0-12-821938-6.00013-X]
[http://dx.doi.org/10.1002/anie.202008729] [PMID: 32668079]
[http://dx.doi.org/10.1039/D0CS00130A] [PMID: 32459227]
[http://dx.doi.org/10.1016/j.carbpol.2020.117103] [PMID: 33142641]
[http://dx.doi.org/10.1016/j.msec.2020.111646]
[http://dx.doi.org/10.1039/D1TC01477C]
[http://dx.doi.org/10.1016/j.cej.2021.131767];
b) Ghiaci, M.; Kalbasi, R.J.; Mollahasani, M.; Aghaei, H. Vapor phase acylation of phenol with ethyl acetate over H3PO4/TiO2-ZrO2. Appl. Catal. A Gen., 2007, 320, 35-42.
[http://dx.doi.org/10.1016/j.apcata.2006.12.013];
c) Ghiaci, M.; Kalbasi, R.J.; Aghaei, H. Highly selective vapor phase Fries rearrangement of phenyl acetate to 2-hydroxyacetophenone using H3PO4/ZrO2–TiO2. Catal. Commun., 2007, 8(11), 1843-1850.
[http://dx.doi.org/10.1016/j.catcom.2007.02.026];
d) Ghiaci, M.; Aghaei, H.; Abbaspur, A. Size-controlled synthesis of ZrO2–TiO2 nanoparticles prepared via reverse micelle method. Mater. Res. Bull., 2008, 43(5), 1255-1262.
[http://dx.doi.org/10.1016/j.materresbull.2007.05.022];
e) Ghiaci, M.; Esfahani, R.N.; Aghaei, H. Efficient dehydration of cinnamaldoxime to cinnamonitrile over H3PO4/Al-MCM-41. Catal. Commun., 2009, 10(6), 777-780.
[http://dx.doi.org/10.1016/j.catcom.2008.11.036];
f) Ghiaci, M.; Aghaei, H.; Oroojeni, M.; Aghabarari, B.; Rives, V.; Vicente, M.A.; Sobrados, I.; Sanz, J. Synthesis of paracetamol by liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H3PO4/Al-MCM-41. Catal. Commun., 2009, 10(11), 1486-1492.
[http://dx.doi.org/10.1016/j.catcom.2009.03.025]
[http://dx.doi.org/10.2174/157341371804220429123725]
[http://dx.doi.org/10.3389/fchem.2019.00948] [PMID: 32117861]
[http://dx.doi.org/10.1002/smll.201904964] [PMID: 31867858]
[http://dx.doi.org/10.1016/j.watres.2020.116693] [PMID: 33302040]
[http://dx.doi.org/10.3390/nano9020197] [PMID: 30717455]
[http://dx.doi.org/10.1134/S2070050419010045]
[http://dx.doi.org/10.1021/acs.iecr.9b03598]
[http://dx.doi.org/10.1016/j.pmatsci.2019.100574]
[http://dx.doi.org/10.1016/j.jece.2020.103726]
[http://dx.doi.org/10.1016/j.jmst.2020.09.042]
[http://dx.doi.org/10.1007/s10853-020-04415-x]
[http://dx.doi.org/10.1021/acs.chemrev.9b00417] [PMID: 32363864]
[http://dx.doi.org/10.1016/j.jece.2020.104175]
[http://dx.doi.org/10.1002/aenm.202002402]
[http://dx.doi.org/10.1002/adfm.201910274]
[http://dx.doi.org/10.1021/acs.accounts.0c00417] [PMID: 32869969]
[http://dx.doi.org/10.1016/B978-0-323-88535-5.00002-0]
[http://dx.doi.org/10.1039/C8CS00671G] [PMID: 31112142];
b) Aghaei, H.; Ghiaci, M. Use of H3PO4/ZrO2–TiO2–surfactant mixed oxide for catalytic vapor-phase dehydration of 1-octanol. React. Kinet. Mech. Catal., 2020, 131(1), 233-246.
[http://dx.doi.org/10.1007/s11144-020-01854-0];
c) Ghiaci, M.; Sedaghat, M.E.; Aghaei, H.; Gil, A. Synthesis of CdS- and ZnS-modified bentonite nanoparticles and their applications to the degradation of eosin B. J. Chem. Technol. Biotechnol., 2009, 84(12), 1908-1915.
[http://dx.doi.org/10.1002/jctb.2264];
d) Zarei, A.; Khazdooz, L.; Hajipour, A.R.; Aghaei, H. Fast, efficient and convenient method for the preparation of arylazo sulfides using aryl diazonium silica sulfates under mild and solvent-free conditions. Dyes Pigments, 2011, 91(1), 44-48.
[http://dx.doi.org/10.1016/j.dyepig.2011.02.010];
e) Mehrali-Afjani, M.; Nezamzadeh-Ejhieh, A.; Aghaei, H. A brief study on the kinetic aspect of the photodegradation and mineralization of BiOI-Ag3PO4 towards sodium diclofenac. Chem. Phys. Lett., 2020, 759, 137873.
[http://dx.doi.org/10.1016/j.cplett.2020.137873];
f) Zarei, A.; Hajipour, A.; Khazdooz, L.; Aghaei, H. Fast, efficient, and convenient method for the preparation of arylazo aryl sulfones using stable aryldiazonium silica sulfates under mild conditions. Synlett, 2010, 2010(8), 1201-1204.
[http://dx.doi.org/10.1055/s-0029-1219811]
[http://dx.doi.org/10.1021/acsnano.0c09744] [PMID: 33660508]
[http://dx.doi.org/10.1021/acsnano.1c04142] [PMID: 34436866]
[http://dx.doi.org/10.3390/su13073669]
[http://dx.doi.org/10.1002/adem.202000529]
[http://dx.doi.org/10.1016/j.matpr.2017.07.253]
[http://dx.doi.org/10.1002/cssc.201000210] [PMID: 21226215]
[http://dx.doi.org/10.1016/j.jwpe.2018.10.001]
[http://dx.doi.org/10.1016/j.jtice.2018.06.030]
[http://dx.doi.org/10.1007/978-3-030-76806-5]
[http://dx.doi.org/10.1021/acsanm.9b01982]
[http://dx.doi.org/10.2514/6.2018-5030]
[http://dx.doi.org/10.1016/j.infrared.2019.103016]
[http://dx.doi.org/10.1007/s11581-021-04243-2]
[http://dx.doi.org/10.1007/s11664-020-08055-4]
[http://dx.doi.org/10.1023/A:1021099308957]
[http://dx.doi.org/10.1016/j.cbi.2021.109618] [PMID: 34364836]
[http://dx.doi.org/10.1016/j.crgsc.2021.100175]
[http://dx.doi.org/10.1021/acsomega.0c03562];
b) Lambat, T.L.; Deo, S.S. Synthesis of novel benzofluorenone derivatives and their HIV reverse transcriptase inhibitory activity. J Chin. Adv. Mater. Soc., 2017, 5(1), 20-32.
[http://dx.doi.org/10.1080/22243682.2016.1251334]
[http://dx.doi.org/10.1039/C4RA16211K]
[http://dx.doi.org/10.1080/00397911.2019.1686526]
[http://dx.doi.org/10.2174/2213346106666191019144116]
[http://dx.doi.org/10.1002/tcr.202000167] [PMID: 33599390]
[http://dx.doi.org/10.1021/acs.orglett.0c01927] [PMID: 32610908]
[http://dx.doi.org/10.1007/s13738-020-01921-2]
[http://dx.doi.org/10.1016/j.ejmech.2020.113102] [PMID: 33421712]
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[http://dx.doi.org/10.1016/j.saa.2020.118963] [PMID: 33017789]
[http://dx.doi.org/10.1016/j.bioorg.2020.104046] [PMID: 32688115]
[http://dx.doi.org/10.1016/j.molstruc.2020.129735]
[http://dx.doi.org/10.1021/acsomega.8b02361] [PMID: 31458364]
[http://dx.doi.org/10.1016/j.ejmech.2018.11.008] [PMID: 30469040]
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[http://dx.doi.org/10.1002/jhet.3341]
[http://dx.doi.org/10.3390/molecules23081981] [PMID: 30096835]
[http://dx.doi.org/10.1021/cr900008m] [PMID: 19408954]
[http://dx.doi.org/10.1002/pc.26060]
[http://dx.doi.org/10.1016/j.matchemphys.2020.122999]
[http://dx.doi.org/10.3390/en13030521]
[http://dx.doi.org/10.1007/s11051-019-4643-x]
[http://dx.doi.org/10.1002/slct.201900384]
[http://dx.doi.org/10.1016/j.apcata.2011.07.024]
[http://dx.doi.org/10.1021/acs.langmuir.7b01294] [PMID: 28974090]
[http://dx.doi.org/10.3390/catal10101174]
[http://dx.doi.org/10.1016/j.electacta.2014.08.007]
[http://dx.doi.org/10.1016/j.matpr.2021.05.172]
[http://dx.doi.org/10.1016/j.jmbbm.2020.104012] [PMID: 32949867]
[http://dx.doi.org/10.1016/j.apsusc.2008.11.059]
[http://dx.doi.org/10.1016/j.protcy.2016.03.035]
[http://dx.doi.org/10.1016/j.catcom.2006.03.008]
[http://dx.doi.org/10.1039/c1cy00259g]
[http://dx.doi.org/10.1002/aoc.2846]
[http://dx.doi.org/10.1002/cjoc.201180325]
[http://dx.doi.org/10.5560/znb.2013-2192]
[http://dx.doi.org/10.1039/C3NJ00655G]
[http://dx.doi.org/10.1039/C5RA16259A]
[http://dx.doi.org/10.1039/C4GC02420F]
[http://dx.doi.org/10.1039/C6RA00870D]
[http://dx.doi.org/10.1039/C6RA24367C]
[http://dx.doi.org/10.1080/00304948.2016.1127099]
[http://dx.doi.org/10.1080/00397911.2017.1336244]
[http://dx.doi.org/10.1016/j.vacuum.2018.08.018]
[http://dx.doi.org/10.5772/intechopen.82720]
[http://dx.doi.org/10.3390/molecules26144219] [PMID: 34299494]
[http://dx.doi.org/10.1016/j.molcata.2005.08.054]
[http://dx.doi.org/10.1016/j.molcata.2007.06.003]
[http://dx.doi.org/10.3390/molecules13040977] [PMID: 18463599]
[http://dx.doi.org/10.1016/j.molcata.2009.10.019]
[http://dx.doi.org/10.1007/s10971-011-2624-3]
[http://dx.doi.org/10.1007/s10971-011-2671-9]
[http://dx.doi.org/10.1002/cjoc.201100143]
[http://dx.doi.org/10.1016/j.apcatb.2016.03.037]
[http://dx.doi.org/10.1134/S1070363217080333]
[http://dx.doi.org/10.1002/aoc.4147]
[http://dx.doi.org/10.1007/s11051-019-4643-x]
[http://dx.doi.org/10.1002/slct.201702422]
[http://dx.doi.org/10.1039/C5NJ00314H]
[http://dx.doi.org/10.1039/C5RA13173A]
[http://dx.doi.org/10.1039/C5NJ02430G]
[http://dx.doi.org/10.1246/cl.160793]
[http://dx.doi.org/10.2298/JSC141023031H]
[http://dx.doi.org/10.1039/c2dt30343d] [PMID: 22576811]
[http://dx.doi.org/10.1021/acsomega.9b02608] [PMID: 31867512]
[http://dx.doi.org/10.1016/j.molcata.2011.02.017]
[http://dx.doi.org/10.2174/157017812802850159]
[http://dx.doi.org/10.1016/j.jiec.2013.01.018]
[http://dx.doi.org/10.1039/C3CY00572K]
[http://dx.doi.org/10.1039/C5RA07081C]
[http://dx.doi.org/10.1016/j.cdc.2019.100230]
[http://dx.doi.org/10.1186/s11671-016-1525-3] [PMID: 27460593]
[http://dx.doi.org/10.1007/s13738-015-0794-6]
[http://dx.doi.org/10.1021/acs.iecr.7b02579]
[http://dx.doi.org/10.2174/2211544706666171010155918]
[http://dx.doi.org/10.1002/cctc.201701658]
[http://dx.doi.org/10.1016/j.cattod.2017.05.038]
[http://dx.doi.org/10.1016/j.arabjc.2014.12.011]
[http://dx.doi.org/10.1039/C4RA09970B]
[http://dx.doi.org/10.1016/j.mssp.2015.01.010]