Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Oxygen and Nitrogen Containing Heterocycles using Zirconium Dioxide/Mixed Oxide Nanoparticles as Reusable Green Catalysts: A Comprehensive Update

Author(s): Pankaj V. Ledade, Trimurti L. Lambat*, Jitendra K. Gunjate, Sami H. Mahmood, Sajal Das, Ahmed A. Abdala, Ratiram G. Chaudhary and Subhash Banerjee

Volume 27, Issue 3, 2023

Published on: 16 February, 2023

Page: [223 - 241] Pages: 19

DOI: 10.2174/1385272827666230106112146

Price: $65

Abstract

The remarkable improvements in organic synthesis facilitated by zirconium dioxide- based nanoparticles are updated and summarized in this review. The ZrO2 acts as a versatile heterogeneous nanocatalyst and is used in various elementary organic reactions and many multicomponent reactions. The employment of these catalysts in organic synthesis leading to bio-active scaffolds provides the opportunity to carry out the reactions using facile synthetic protocol under mild environments that furnish the equivalent products in high yields and shorter reaction times. According to reports in the literature, ZrO2-based catalysts were removed from the reaction mixture and recycled many times.

« Previous
Graphical Abstract

[1]
Kimber, R.L.; Parmeggiani, F.; Joshi, N.; Rakowski, A.M.; Haigh, S.J.; Turner, N.J.; Lloyd, J.R. Synthesis of copper catalysts for click chemistry from distillery wastewater using magnetically recoverable bionanoparticles. Green Chem., 2019, 21(15), 4020-4024.
[http://dx.doi.org/10.1039/C9GC00270G]
[2]
a) Lambat, T.L.; Mahmood, S.H.; Taher, D.; Banerjee, S. Sulfamic acid catalyzed oxonium-ene reactions under ball milling conditions: Straightforward access to highly functionalized Oxabicyclo[3.2.1]octenes. Curr. Res. Green Sustain. Chem., 2021, 4, 100118.
[http://dx.doi.org/10.1016/j.crgsc.2021.100118];
b) Chopra, P.K.P.G.; Lambat, T.L.; Mahmood, S.H.; Chaudhary, R.G.; Banerjee, S. Sulfamic acid as versatile green catalyst used for synthetic organic chemistry: A comprehensive update. ChemistrySelect, 2021, 6(27), 6867-6889.
[http://dx.doi.org/10.1002/slct.202101635];
c) Lambat, T.L. Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields. J. Chinese Adv. Mater. Soc., 2018, 6(2), 134-144.
[http://dx.doi.org/10.1080/22243682.2018.1426040];
d) Lambat, T.L. Scolecite as novel heterogeneous catalyst for an efficient microwave assisted synthesis of 7-aryl-6H-benzo [H][1, 3] dioxolo [4, 5-b] xanthene-5, 6 (7H)-dione analogues via multi-component reaction. Int. J. Appl. Biol. Pharm. Technol., 2017, 8, 11-18.
[3]
Mondal, A.; Aziz, S.T.; Potbhare, A.K.; Mondal, S.; Lambat, T.L.; Chaudhary, R.G.; Abdala, A.A. Applications of metal/metal oxides nanoparticles in organic transformations. Mater. Res., 2020, 83, 134-156.
[4]
Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 2015, 44(16), 5778-5792.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[5]
Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.H. Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev., 2020, 420, 213407.
[http://dx.doi.org/10.1016/j.ccr.2020.213407]
[6]
Bouafia, A.; Laouini, S.E.; Ouahrani, M.R. A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity. Asian J. Res. Chem, 2020, 13(1), 65-70.
[http://dx.doi.org/10.5958/0974-4150.2020.00014.0]
[7]
Hemra Hamrayev, H. Kamyar Shameli; Mostafa Yusefi; Serdar Korpayev, Green route for the fabrication of ZnO nanoparticles and potential functionalization with chitosan using cross-linkers: A review. J. Res. Nanosci. Nanotechnol., 2021, 3(1), 1-25.
[http://dx.doi.org/10.37934/jrnn.3.1.125]
[8]
Kumar, B. Green synthesis of gold, silver, and iron nanoparticles for the degradation of organic pollutants in wastewater. J. Composit. Sci., 2021, 5(8), 219.
[http://dx.doi.org/10.3390/jcs5080219]
[9]
Ghamari kargar, P.; Bagherzade, G. The anchoring of a Cu(II)–salophen complex on magnetic mesoporous cellulose nanofibers: Green synthesis and an investigation of its catalytic role in tetrazole reactions through a facile one-pot route. RSC Advances, 2021, 11(31), 19203-19220.
[http://dx.doi.org/10.1039/D1RA01913A] [PMID: 35478649]
[10]
Gautam, P.K.; Shivalkar, S.; Samanta, S.K. Environmentally benign synthesis of nanocatalysts: Recent advancements and applications. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications; Springer: Amsterdam, 2021; pp. 1163-1181.
[11]
Deb, A.K.; Biswas, B.; Goswami, N.; Hilder, E.F.; Naidu, R.; Rahman, M.M. Synthesis of environmentally benign ultra-small copper nanoclusters-halloysite composites and their catalytic performance on contrasting azo dyes. Appl. Surf. Sci., 2021, 546, 149122.
[http://dx.doi.org/10.1016/j.apsusc.2021.149122]
[12]
Ahluwalia, V.K. Green chemistry: Environmentally benign reactions; Springer Nature, 2021.
[http://dx.doi.org/10.1007/978-3-030-58513-6]
[13]
Aligol, D.A.; Sepahvand, H. Environmentally benign oxidation of primary and secondary alcohols catalyzed by stabilized gold nanoparticles on A-hydroxy amide-functionalized graphene oxide. SSRN, 2021, 3859149.
[http://dx.doi.org/10.2139/ssrn.3859149]
[14]
Chaturvedi, S.; Dave, P.N. Nanocatalyst: As green catalyst. In: Handbook of Greener Synthesis of Nanomaterials and Compounds; Elsevier, 2021; pp. 445-458.
[http://dx.doi.org/10.1016/B978-0-12-821938-6.00013-X]
[15]
Balali, M.; Bagherzadeh, M.; Nejat, R.; Keypour, H. Palladium supported on schiff base functionalized magnetite nanoparticles as an efficient catalyst for coupling reactions. Inorg. Chem. Res, 2021, 82-93.
[16]
Song, X.; Li, N.; Guo, Y.; Bai, Y.; Wu, T.; Yu, T. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. For. Res., 2021, 1(1), 1-10.
[17]
Almeida, L.D.; Wang, H.; Junge, K.; Cui, X.; Beller, M. Recent advances in catalytic hydrosilylations: Developments beyond traditional platinum catalysts. Angew. Chem. Int. Ed., 2021, 60(2), 550-565.
[http://dx.doi.org/10.1002/anie.202008729] [PMID: 32668079]
[18]
Mondelli, C. Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev., 2020, 49(12), 3764-3782.
[http://dx.doi.org/10.1039/D0CS00130A] [PMID: 32459227]
[19]
Li, M.; Sun, J.; Zhang, W.; Zhao, Y.; Zhang, S.; Zhang, S. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym., 2021, 251, 117103.
[http://dx.doi.org/10.1016/j.carbpol.2020.117103] [PMID: 33142641]
[20]
Morawski, F.M.; Xavier, B.B.; Virgili, A.H.; Caetano, K.S.; de Menezes, E.W.; Benvenutti, E.V.; Costa, T.M.H.; Arenas, L.T. A novel electrochemical platform based on mesoporous silica/titania and gold nanoparticles for simultaneous determination of norepinephrine and dopamine. Mater. Sci. Eng. C, 2021, 120, 111646.
[http://dx.doi.org/10.1016/j.msec.2020.111646]
[21]
Jia, Y.; Yang, C.; Chen, X.; Xue, W.; Hutchins-Crawford, H.J.; Yu, Q.; Topham, P.D.; Wang, L. A review on electrospun magnetic nanomaterials: Methods, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(29), 9042-9082.
[http://dx.doi.org/10.1039/D1TC01477C]
[22]
a) Regalado Vera, C.Y.; Manavi, N.; Zhou, Z.; Wang, L.C.; Diao, W.; Karakalos, S.; Liu, B.; Stowers, K.J.; Zhou, M.; Luo, H.; Ding, D. Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation. Chem. Eng. J., 2021, 426, 131767.
[http://dx.doi.org/10.1016/j.cej.2021.131767];
b) Ghiaci, M.; Kalbasi, R.J.; Mollahasani, M.; Aghaei, H. Vapor phase acylation of phenol with ethyl acetate over H3PO4/TiO2-ZrO2. Appl. Catal. A Gen., 2007, 320, 35-42.
[http://dx.doi.org/10.1016/j.apcata.2006.12.013];
c) Ghiaci, M.; Kalbasi, R.J.; Aghaei, H. Highly selective vapor phase Fries rearrangement of phenyl acetate to 2-hydroxyacetophenone using H3PO4/ZrO2–TiO2. Catal. Commun., 2007, 8(11), 1843-1850.
[http://dx.doi.org/10.1016/j.catcom.2007.02.026];
d) Ghiaci, M.; Aghaei, H.; Abbaspur, A. Size-controlled synthesis of ZrO2–TiO2 nanoparticles prepared via reverse micelle method. Mater. Res. Bull., 2008, 43(5), 1255-1262.
[http://dx.doi.org/10.1016/j.materresbull.2007.05.022];
e) Ghiaci, M.; Esfahani, R.N.; Aghaei, H. Efficient dehydration of cinnamaldoxime to cinnamonitrile over H3PO4/Al-MCM-41. Catal. Commun., 2009, 10(6), 777-780.
[http://dx.doi.org/10.1016/j.catcom.2008.11.036];
f) Ghiaci, M.; Aghaei, H.; Oroojeni, M.; Aghabarari, B.; Rives, V.; Vicente, M.A.; Sobrados, I.; Sanz, J. Synthesis of paracetamol by liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H3PO4/Al-MCM-41. Catal. Commun., 2009, 10(11), 1486-1492.
[http://dx.doi.org/10.1016/j.catcom.2009.03.025]
[23]
Banerjee, S. Functionalized hybrid nanomaterials for biomedical and analytical applications. Curr. Nanosci., 2022, 18(4), 409-409.
[http://dx.doi.org/10.2174/157341371804220429123725]
[24]
Li, X.; Zhang, L.; Wang, S.; Wu, Y. Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts. Front Chem., 2020, 7, 948.
[http://dx.doi.org/10.3389/fchem.2019.00948] [PMID: 32117861]
[25]
Chen, Z.; Liu, Y.; Liu, C.; Zhang, J.; Chen, Y.; Hu, W.; Deng, Y. Engineering the metal/oxide interface of Pd nanowire@ CuOx electrocatalysts for efficient alcohol oxidation reaction. Small, 2020, 16(4), 1904964.
[http://dx.doi.org/10.1002/smll.201904964] [PMID: 31867858]
[26]
Leonel, A.G.; Mansur, A.A.P.; Mansur, H.S. Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: A review. Water Res., 2021, 190, 116693.
[http://dx.doi.org/10.1016/j.watres.2020.116693] [PMID: 33302040]
[27]
Yang, M.; Shen, G.; Liu, M.; Chen, Y.; Wang, Z.; Wang, Q. Preparation of Ce–Mn composite oxides with enhanced catalytic activity for removal of benzene through oxalate method. Nanomaterials (Basel), 2019, 9(2), 197.
[http://dx.doi.org/10.3390/nano9020197] [PMID: 30717455]
[28]
Hamed Bateni, H. Chad Able, Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A review. Catal. Ind., 2019, 11(1), 7-33.
[http://dx.doi.org/10.1134/S2070050419010045]
[29]
Liu, C.; Zhang, J.; Liu, H.; Qiu, J.; Zhang, X. Heterogeneous ligand-free rhodium oxide catalyst embedded within zeolitic microchannel to enhance regioselectivity in hydroformylation. Ind. Eng. Chem. Res., 2019, 58(47), 21285-21295.
[http://dx.doi.org/10.1021/acs.iecr.9b03598]
[30]
Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci., 2019, 106, 100574.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100574]
[31]
Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J. Environ. Chem. Eng., 2020, 8(3), 103726.
[http://dx.doi.org/10.1016/j.jece.2020.103726]
[32]
Lv, Y.; Han, C.; Zhu, Y.; Zhang, T.; Yao, S.; He, Z.; Dai, L.; Wang, L. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives. J. Mater. Sci. Technol., 2021, 75, 96-109.
[http://dx.doi.org/10.1016/j.jmst.2020.09.042]
[33]
Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci., 2020, 55(15), 6195-6241.
[http://dx.doi.org/10.1007/s10853-020-04415-x]
[34]
Rahmati, M.; Safdari, M.S.; Fletcher, T.H.; Argyle, M.D.; Bartholomew, C.H. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer–Tropsch synthesis. Chem. Rev., 2020, 120(10), 4455-4533.
[http://dx.doi.org/10.1021/acs.chemrev.9b00417] [PMID: 32363864]
[35]
wassel, A.R.; El-Naggar, M.E.; Shoueir, K. Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. J. Environ. Chem. Eng., 2020, 8(5), 104175.
[http://dx.doi.org/10.1016/j.jece.2020.104175]
[36]
Bhattacharya, C.; Saji, S.E.; Mohan, A.; Madav, V.; Jia, G.; Yin, Z. Sustainable nanoplasmon‐enhanced photoredox reactions: Synthesis, characterization, and applications. Adv. Energy Mater., 2020, 10(40), 2002402.
[http://dx.doi.org/10.1002/aenm.202002402]
[37]
Wu, Z.P.; Lu, X.F.; Zang, S.Q.; Lou, X.W.D. Non‐noble‐metal‐based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater., 2020, 30(15), 1910274.
[http://dx.doi.org/10.1002/adfm.201910274]
[38]
Hong, F.L.; Ye, L.W. Transition metal-catalyzed tandem reactions of ynamides for divergent N-heterocycle synthesis. Acc. Chem. Res., 2020, 53(9), 2003-2019.
[http://dx.doi.org/10.1021/acs.accounts.0c00417] [PMID: 32869969]
[39]
Mondal, S.; Nagmote, M.S.; Kombe, S.V.; Dutta, B.K.; Lambat, T.L.; Chouke, P.B.; Mondal, A. Ecofriendly microorganism assisted fabrication of metal nanoparticles and their applications. In: Biogenic Sustainable Nanotechnology; Elsevier: Amsterdam, 2022; pp. 77-105.
[http://dx.doi.org/10.1016/B978-0-323-88535-5.00002-0]
[40]
a) Shi, Q.; Zhu, C.; Du, D.; Lin, Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev., 2019, 48(12), 3181-3192.
[http://dx.doi.org/10.1039/C8CS00671G] [PMID: 31112142];
b) Aghaei, H.; Ghiaci, M. Use of H3PO4/ZrO2–TiO2–surfactant mixed oxide for catalytic vapor-phase dehydration of 1-octanol. React. Kinet. Mech. Catal., 2020, 131(1), 233-246.
[http://dx.doi.org/10.1007/s11144-020-01854-0];
c) Ghiaci, M.; Sedaghat, M.E.; Aghaei, H.; Gil, A. Synthesis of CdS- and ZnS-modified bentonite nanoparticles and their applications to the degradation of eosin B. J. Chem. Technol. Biotechnol., 2009, 84(12), 1908-1915.
[http://dx.doi.org/10.1002/jctb.2264];
d) Zarei, A.; Khazdooz, L.; Hajipour, A.R.; Aghaei, H. Fast, efficient and convenient method for the preparation of arylazo sulfides using aryl diazonium silica sulfates under mild and solvent-free conditions. Dyes Pigments, 2011, 91(1), 44-48.
[http://dx.doi.org/10.1016/j.dyepig.2011.02.010];
e) Mehrali-Afjani, M.; Nezamzadeh-Ejhieh, A.; Aghaei, H. A brief study on the kinetic aspect of the photodegradation and mineralization of BiOI-Ag3PO4 towards sodium diclofenac. Chem. Phys. Lett., 2020, 759, 137873.
[http://dx.doi.org/10.1016/j.cplett.2020.137873];
f) Zarei, A.; Hajipour, A.; Khazdooz, L.; Aghaei, H. Fast, efficient, and convenient method for the preparation of arylazo aryl sulfones using stable aryldiazonium silica sulfates under mild conditions. Synlett, 2010, 2010(8), 1201-1204.
[http://dx.doi.org/10.1055/s-0029-1219811]
[41]
Mustieles Marin, I.; Asensio, J.M.; Chaudret, B. Bimetallic nanoparticles associating noble metals and first-row transition metals in catalysis. ACS Nano, 2021, 15(3), 3550-3556.
[http://dx.doi.org/10.1021/acsnano.0c09744] [PMID: 33660508]
[42]
Neal, C.J.; Fox, C.R.; Sakthivel, T.S.; Kumar, U.; Fu, Y.; Drake, C.; Parks, G.D.; Seal, S. Metal-mediated nanoscale cerium oxide inactivates human coronavirus and rhinovirus by surface disruption. ACS Nano, 2021, 15(9), 14544-14556.
[http://dx.doi.org/10.1021/acsnano.1c04142] [PMID: 34436866]
[43]
Surra, E.; Correia, M.; Figueiredo, S.; Silva, J.G.; Vieira, J.; Jorge, S.; Pazos, M.; Sanromán, M.Á.; Lapa, N.; Delerue-Matos, C. Life cycle and economic analyses of the removal of pesticides and pharmaceuticals from municipal wastewater by anodic oxidation. Sustainability (Basel), 2021, 13(7), 3669.
[http://dx.doi.org/10.3390/su13073669]
[44]
Guillon, O.; Dash, A.; Lenser, C.; Uhlenbruck, S.; Mauer, G. Tuning the microstructure and thickness of ceramic layers with advanced coating technologies using zirconia as an example. Adv. Eng. Mater., 2020, 22(11), 2000529.
[http://dx.doi.org/10.1002/adem.202000529]
[45]
Karthikayan, S.; Ganesan, S.; Vasanthakumar, P.; Sankaranarayanan, G.; Dinakar, M. Innovative research trends in the application of thermal barrier metal coating in internal combustion engines. Mater. Today Proc., 2017, 4(8), 9004-9012.
[http://dx.doi.org/10.1016/j.matpr.2017.07.253]
[46]
Wang, Z.; Lu, Q.; Zhu, X.F.; Zhang, Y. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. ChemSusChem, 2011, 4(1), 79-84.
[http://dx.doi.org/10.1002/cssc.201000210] [PMID: 21226215]
[47]
Sable, S.S.; Panchangam, S.C.; Lo, S.L. Abatement of clofibric acid by Fenton-like process using iron oxide supported sulfonated-ZrO2: Efficient heterogeneous catalysts. J. Water Process Eng., 2018, 26, 92-99.
[http://dx.doi.org/10.1016/j.jwpe.2018.10.001]
[48]
Sable, S.S.; Shah, K.J.; Chiang, P.C.; Lo, S.L. Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by Advanced Oxidation Processes (AOPs). J. Taiwan Inst. Chem. Eng., 2018, 91, 434-440.
[http://dx.doi.org/10.1016/j.jtice.2018.06.030]
[49]
David, M.; Lyth, S.M.; Lindner, R.; Harrington, G.F. Future-proofing fuel cells: Critical raw material governance in sustainable energy; Springer Nature, 2021.
[http://dx.doi.org/10.1007/978-3-030-76806-5]
[50]
Del Tedesco, A.; Piotto, V.; Sponchia, G.; Hossain, K.; Litti, L.; Peddis, D.; Scarso, A.; Meneghetti, M.; Benedetti, A.; Riello, P. Zirconia-based magnetoplasmonic nanocomposites: A new nanotool for magnetic-guided separations with sers identification. ACS Appl. Nano Mater., 2020, 3(2), 1232-1241.
[http://dx.doi.org/10.1021/acsanm.9b01982]
[51]
Susner, M.A.; Haugan, T.J. A review of the state-of-the-art superconductor technology for high power applications. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2018, pp. 1-17.
[http://dx.doi.org/10.2514/6.2018-5030]
[52]
Geng, C.; Zong, H.; Li, M.; Liu, H.; Wu, J.; Yang, J.; Cao, G.; Kang, C. Influence of the thickness of ZrO2 buffer layer on the electrical and optical properties of VO2 films. Infrared Phys. Technol., 2019, 102, 103016.
[http://dx.doi.org/10.1016/j.infrared.2019.103016]
[53]
Tsuji, Y. Study on thin film fabrication process and electrode reaction analysis for high efficiency solid oxide fuel cell. Doctoral dissertation, Kyoto University,, 2020.
[54]
G, M.S.; Adarakatti, P.S.; Udayakumar, V. Engineering of CuO/ZrO2 nanocomposite-based electrochemical sensor for the selective detection of hydrogen peroxide. Ionics, 2021, 27(12), 5309-5322.
[http://dx.doi.org/10.1007/s11581-021-04243-2]
[55]
Kandpal, K.; Gupta, N.; Singh, J.; Shekhar, C. On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric. J. Electron. Mater., 2020, 49(5), 3156-3164.
[http://dx.doi.org/10.1007/s11664-020-08055-4]
[56]
Bocanegra-Bernal, M.H.; de la Torre, S.D. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J. Mater. Sci., 2002, 37(23), 4947-4971.
[http://dx.doi.org/10.1023/A:1021099308957]
[57]
Lazić V.; Pirković A.; Sredojević D.; Marković J.; Papan, J.; Ahrenkiel, S.P.; Janković-Častvan, I.; Dekanski, D.; Jovanović-Krivokuća, M.; Nedeljković J.M. Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells. Chem. Biol. Interact., 2021, 347, 109618.
[http://dx.doi.org/10.1016/j.cbi.2021.109618] [PMID: 34364836]
[58]
Patel, G.; Dewangan, D.K.; Bhakat, N.; & Banerjee, S. Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review. Curr. Res. Green Sustain. Chem., 2021, 4, 100175.
[http://dx.doi.org/10.1016/j.crgsc.2021.100175]
[59]
a) Patel, A.R.; Patel, G.; Maity, G.; Patel, S.P.; Bhattacharya, S.; Putta, A.; Banerjee, S. Direct oxidative azo coupling of anilines using a self-assembled flower-like CuCo2O4 material as a catalyst under aerobic conditions. ACS omega, 2020, 5(47), 30416-30424.
[http://dx.doi.org/10.1021/acsomega.0c03562];
b) Lambat, T.L.; Deo, S.S. Synthesis of novel benzofluorenone derivatives and their HIV reverse transcriptase inhibitory activity. J Chin. Adv. Mater. Soc., 2017, 5(1), 20-32.
[http://dx.doi.org/10.1080/22243682.2016.1251334]
[60]
Bajpai, S.; Singh, S.; Srivastava, V. Nano zirconia catalysed one-pot synthesis of some novel substituted imidazoles under solvent-free conditions. RSC Advances, 2015, 5(36), 28163-28170.
[http://dx.doi.org/10.1039/C4RA16211K]
[61]
Ambati, S.R.; Patel, J.L.; Gudala, S.; Chandrakar, K.; Penta, S.; Mahapatra, S.P.; & Banerjee, S. Synthesis of novel coumarinyl-pyrido [2, 3-d] pyrimidine-2, 4-diones using task-specific magnetic ionic liquid,[AcMIm] FeCl4 as catalyst. Synth. Commun., 2020, 50(1), 104-111.
[http://dx.doi.org/10.1080/00397911.2019.1686526]
[62]
Deepthi, A.; Thomas, V.; Sathi, V. Green Protocols for the Synthesis of 3, 3′-spirooxindoles–2016-mid 2019. Curr. Green Chem., 2019, 6(3), 210-225.
[http://dx.doi.org/10.2174/2213346106666191019144116]
[63]
Brandão, P.; Marques, C.S.; Carreiro, E.P.; Pineiro, M.; Burke, A.J. Engaging isatins in multicomponent reactions (MCRs)–easy access to structural diversity. Chem. Rec., 2021, 21(4), 924-1037.
[http://dx.doi.org/10.1002/tcr.202000167] [PMID: 33599390]
[64]
Wang, L.C.; Du, S.; Chen, Z.; Wu, X.F. FeCl3-Mediated Synthesis of 2-(Trifluoromethyl)quinazolin-4(3H)-ones from Isatins and Trifluoroacetimidoyl Chlorides. Org. Lett., 2020, 22(14), 5567-5571.
[http://dx.doi.org/10.1021/acs.orglett.0c01927] [PMID: 32610908]
[65]
Youseftabar-Miri, L.; Hosseinjani-Pirdehi, H.; Akrami, A.; Hallajian, S. Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers. J. Indian Chem. Soc., 2020, 17(9), 2179-2231.
[http://dx.doi.org/10.1007/s13738-020-01921-2]
[66]
Brandão, P.; Marques, C.; Burke, A.J.; Pineiro, M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur. J. Med. Chem., 2021, 211, 113102.
[http://dx.doi.org/10.1016/j.ejmech.2020.113102] [PMID: 33421712]
[67]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[68]
Haribabu, J.; Alajrawy, O.I.; Jeyalakshmi, K.; Balachandran, C.; Krishnan, D.A.; Bhuvanesh, N.; Aoki, S.; Natarajan, K.; Karvembu, R. N-substitution in isatin thiosemicarbazones decides nuclearity of Cu(II) complexes – Spectroscopic, molecular docking and cytotoxic studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 118963.
[http://dx.doi.org/10.1016/j.saa.2020.118963] [PMID: 33017789]
[69]
Rajesh Kumar, M.; Violet Dhayabaran, V.; Sudhapriya, N.; Manikandan, A.; Gideon, D.A.; Annapoorani, S. p-TSA.H2O mediated one-pot, multi-component synthesis of isatin derived imidazoles as dual-purpose drugs against inflammation and cancer. Bioorg. Chem., 2020, 102, 104046.
[http://dx.doi.org/10.1016/j.bioorg.2020.104046] [PMID: 32688115]
[70]
Abdizadeh, R.; Ghatreh-Samani, K.; Hadizadeh, F.; Abdizadeh, T. Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches. J. Mol. Struct., 2021, 1229, 129735.
[http://dx.doi.org/10.1016/j.molstruc.2020.129735]
[71]
Mudithanapelli, C.; Vasam, C.S.; Vadde, R.; Kim, M. Highly efficient and practical N-heterocyclic carbene organocatalyzed chemoselective N1/C3-functionalization of isatins with green chemistry principles. ACS Omega, 2018, 3(12), 17646-17655.
[http://dx.doi.org/10.1021/acsomega.8b02361] [PMID: 31458364]
[72]
Thakur, R.K.; Joshi, P.; Upadhyaya, K.; Singh, K.; Sharma, G.; Shukla, S.K.; Tripathi, R.; Tripathi, R.P. Synthesis of isatin based N1-alkylated 3-β-C-glycoconjugated-oxopropylidene oxindoles as potent antiplasmodial agents. Eur. J. Med. Chem., 2019, 162, 448-454.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.008] [PMID: 30469040]
[73]
Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[74]
Wang, R.; Yin, X.; Zhang, Y.; Zhang, T.; Shi, W. Design, synthesis, and in vitro anti‐tumor activities of 1,2,3‐triazole‐tetraethylene glycol tethered heteronuclear bis‐schiff base derivatives of isatin. J. Heterocycl. Chem., 2018, 55(12), 3001-3005.
[http://dx.doi.org/10.1002/jhet.3341]
[75]
Tiwari, S.; Sharif, N.; Gajare, R.; Vazquez, J.; Sangshetti, J.; Damale, M.; Nikalje, A. New 2-oxoindolin phosphonates as novel agents to treat cancer: A green synthesis and molecular modeling. Molecules, 2018, 23(8), 1981.
[http://dx.doi.org/10.3390/molecules23081981] [PMID: 30096835]
[76]
Reddy, B.M.; Patil, M.K. Organic syntheses and transformations catalyzed by sulfated zirconia. Chem. Rev., 2009, 109(6), 2185-2208.
[http://dx.doi.org/10.1021/cr900008m] [PMID: 19408954]
[77]
El-Kemary, B.M.; El-Borady, O.M.; Abdel Gaber, S.A.; Beltagy, T.M. Role of NANO‐ZIRCONIA in the mechanical properties improvement of resin cement used for tooth fragment reattachment. Polym. Compos., 2021, 42(7), 3307-3319.
[http://dx.doi.org/10.1002/pc.26060]
[78]
Ahmed, W.; Iqbal, J.; Aisida, S.O.; Badshah, A.; Ahmad, I.; Alamgir, K.; Gul, I.H. Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanoparticles with visible light driven photocatalytic activity. Mater. Chem. Phys., 2020, 251, 122999.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122999]
[79]
Olaniyan, B.; Saha, B. Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization. Energies, 2020, 13(3), 521.
[http://dx.doi.org/10.3390/en13030521]
[80]
Nasseri, M.A.; Kazemnejadi, M.; Mahmoudi, B.; Assadzadeh, F.; Alavi, S.A.; Allahresani, A. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles. J. Nanopart. Res., 2019, 21(10), 214.
[http://dx.doi.org/10.1007/s11051-019-4643-x]
[81]
Patel, A.R.; Asatkar, A.; Patel, G.; & Banerjee, S. Synthesis of rice husk derived activated mesoporous carbon immobilized palladium hybrid nano‐catalyst for ligand‐free mizoroki‐heck/suzuki/sonogashira cross‐coupling reactions. ChemistrySelect, 2019, 4(19), 5577-5584.ss.
[http://dx.doi.org/10.1002/slct.201900384]
[82]
Dabbagh, H.A.; Zamani, M. Catalytic conversion of alcohols over alumina–zirconia mixed oxides: Reactivity and selectivity. Appl. Catal. A Gen., 2011, 404(1-2), 141-148.
[http://dx.doi.org/10.1016/j.apcata.2011.07.024]
[83]
Reta, J.L.; García, R.; Sandoval, G.; Rivera, J.L.; Hernández, J.M.; de Oca, A.M. Preparation of zirconium oxides modified with borate ions tested in catalytic dehydration of ethanol. Rev. Mex. Fis., 2009, 55(1), 98-101.
[84]
Akune, T.; Morita, Y.; Shirakawa, S.; Katagiri, K.; Inumaru, K. ZrO2 nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: Catalytic activity and elucidation of active sites. Langmuir, 2018, 34(1), 23-29.
[http://dx.doi.org/10.1021/acs.langmuir.7b01294] [PMID: 28974090]
[85]
Cannilla, C. Editorial special issue “Heterogeneous catalytic materials: Synthesis, characterization and applications for energetic purposes”. Catalysts, 2020, 10(10), 1174.
[http://dx.doi.org/10.3390/catal10101174]
[86]
Teymourian, H.; Salimi, A.; Firoozi, S.; Korani, A.; Soltanian, S. One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochim. Acta, 2014, 143, 196-206.
[http://dx.doi.org/10.1016/j.electacta.2014.08.007]
[87]
Reddy Yadav, L.S.; Ramakrishnappa, T.; Pereira, J.R.; Venkatesh, R.; Nagaraju, G. Electrical property of zirconium oxide nanoparticle synthesized by hydrothermal method. Mater. Today Proc., 2022, 49, 686-689.
[http://dx.doi.org/10.1016/j.matpr.2021.05.172]
[88]
Batool, T.; Bukhari, B.S.; Riaz, S.; Batoo, K.M.; Raslan, E.H.; Hadi, M.; Naseem, S. Microwave assisted sol-gel synthesis of bioactive zirconia nanoparticles – Correlation of strength and structure. J. Mech. Behav. Biomed. Mater., 2020, 112, 104012.
[http://dx.doi.org/10.1016/j.jmbbm.2020.104012] [PMID: 32949867]
[89]
Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Ramírez-Meneses, E.; Vargas-García, J.R. MOCVD of zirconium oxide thin films: Synthesis and characterization. Appl. Surf. Sci., 2009, 255(9), 4792-4795.
[http://dx.doi.org/10.1016/j.apsusc.2008.11.059]
[90]
Patel, U.S.; Patel, K.H.; Chauhan, K.V.; Chawla, A.K.; Rawal, S.K. Investigation of various properties for zirconium oxide films synthesized by sputtering. Proc. Technol., 2016, 23, 336-343.
[http://dx.doi.org/10.1016/j.protcy.2016.03.035]
[91]
Gawande, M.B.; Jayaram, R.V. A novel catalyst for the Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate under solvent free conditions. Catal. Commun., 2006, 7(12), 931-935.
[http://dx.doi.org/10.1016/j.catcom.2006.03.008]
[92]
Nagrik, D.M.; Ambhore, D.M.; Gawande, M.B. One-pot preparation of β–amino carbonyl compounds by Mannich reaction using MgO/ZrO2 as effective and reusable catalyst. Int. J. Chem., 2010, 2(2), 98-101.
[93]
Gawande, M.B.; Branco, P.S.; Parghi, K.; Shrikhande, J.J.; Pandey, R.K.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D.; Jayaram, R.V. Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol., 2011, 1(9), 1653-1664.
[http://dx.doi.org/10.1039/c1cy00259g]
[94]
Gawande, M.B.; Shelke, S.N.; Branco, P.S.; Rathi, A.; Pandey, R.K. Mixed metal MgO-ZrO2 nanoparticle-catalyzed O-tert-Boc protection of alcohols and phenols under solvent-free conditions. Appl. Organomet. Chem., 2012, 26(8), 395-400.
[http://dx.doi.org/10.1002/aoc.2846]
[95]
Bhojegowd, M.R.M.; Siddaramanna, A.; Siddappa, A.B.; Thimmanna, C.G.; Pasha, M.A. Combustion derived nanocrystalline-ZrO2 and its catalytic activity for biginelli condensation under microwave irradiation. Chin. J. Chem., 2011, 29(9), 1863-1868.
[http://dx.doi.org/10.1002/cjoc.201180325]
[96]
Farhadi, A.; Takassi, M.A.; Hejazi, L. Study of the synthesis of some biginelli-type products catalyzed by Nano-ZrO2. Z. Naturforsch. B. J. Chem. Sci., 2013, 68(1), 51-56.
[http://dx.doi.org/10.5560/znb.2013-2192]
[97]
Jafarpour, M.; Rezapour, E.; Ghahramaninezhad, M.; Rezaeifard, A. A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1,2-diamines with 1,2-dicarbonyl compounds. New J. Chem., 2014, 38(2), 676-682.
[http://dx.doi.org/10.1039/C3NJ00655G]
[98]
Bodhak, C.; Kundu, A.; Pramanik, A. ZrO2 nanoparticles as a reusable solid dual acid–base catalyst for facile one-pot synthesis of multi-functionalized spirooxindole derivatives under solvent free condition. RSC advances, 2015, 5(104), 85202-85213.
[http://dx.doi.org/10.1039/C5RA16259A]
[99]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO 2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(5), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[100]
Debnath, K.; Mukherjee, S.; Bodhak, C.; Pramanik, A. Facile one-pot three-component synthesis of diverse 2, 3-disubstituted isoindolin-1-ones using ZrO2 nanoparticles as a reusable dual acid–base solid support under solvent-free conditions. RSC advances, 2016, 6(25), 21127-21138.
[http://dx.doi.org/10.1039/C6RA00870D]
[101]
Saha, A.; Payra, S.; Banerjee, S. In-water facile synthesis of poly-substituted 6-arylamino pyridines and 2-pyrrolidone derivatives using tetragonal nano-ZrO2 as reusable catalyst. RSC Advances, 2016, 6(104), 101953-101959.
[http://dx.doi.org/10.1039/C6RA24367C]
[102]
Zonouzi, A.; Afjei, S.J.; Rahmani, A.; Ng, S.W. Novel synthesis of some 2-aminochromene derivatives using nano-sized zirconium oxide as catalyst. Org. Prep. Proced. Int., 2016, 48(1), 45-54.
[http://dx.doi.org/10.1080/00304948.2016.1127099]
[103]
Bajpai, S.; Singh, S.; Srivastava, V. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry. Synth. Commun., 2017, 47(16), 1514-1525.
[http://dx.doi.org/10.1080/00397911.2017.1336244]
[104]
Bansal, P.; Kaur, N.; Prakash, C.; Chaudhary, G.R. ZrO2 nanoparticles: An industrially viable, efficient and recyclable catalyst for synthesis of pharmaceutically significant xanthene derivatives. Vacuum, 2018, 157, 9-16.
[http://dx.doi.org/10.1016/j.vacuum.2018.08.018]
[105]
Singh, S.; Bajpai, S. Eco-friendly and facile synthesis of substituted imidazoles via nano zirconia catalyzed one-pot multicomponent reaction of isatin derivatives with ammonium acetate and substituted aromatic aldehydes under solvent free conditions. In: Nanocatalysts; IntechOpen; , 2019.
[http://dx.doi.org/10.5772/intechopen.82720]
[106]
Rao, T.N.; AlOmar, S.Y.; Ahmed, F.; Albalawi, F.; Ahmad, N.; Rao, N.K.; Rao, M.V.B.; Cheedarala, R.K.; Reddy, G.R.; Naidu, T.M. Reusable nano-zirconia-catalyzed synthesis of benzimidazoles and their antibacterial and antifungal activities. Molecules, 2021, 26(14), 4219.
[http://dx.doi.org/10.3390/molecules26144219] [PMID: 34299494]
[107]
Reddy, B.M.; Sreekanth, P.M.; Lakshmanan, P.; Khan, A. Synthesis, characterization and activity study of SO42−/CexZr1−xO2 solid superacid catalyst. J. Mol. Catal. Chem., 2006, 244(1-2), 1-7.
[http://dx.doi.org/10.1016/j.molcata.2005.08.054]
[108]
Tyagi, B.; Mishra, M.K.; Jasra, R.V. Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. J. Mol. Catal. Chem., 2007, 276(1-2), 47-56.
[http://dx.doi.org/10.1016/j.molcata.2007.06.003]
[109]
Negrón-Silva, G.; Hernández-Reyes, C.; Angeles-Beltrán, D.; Lomas-Romero, L.; González-Zamora, E. Microwave-enhanced sulphated zirconia and SZ/MCM-41 catalyzed regioselective synthesis of β-amino alcohols under solvent-free conditions. Molecules, 2008, 13(4), 977-985.
[http://dx.doi.org/10.3390/molecules13040977] [PMID: 18463599]
[110]
Tyagi, B.; Mishra, M.K.; Jasra, R.V. Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst. J. Mol. Catal. Chem., 2010, 317(1-2), 41-45.
[http://dx.doi.org/10.1016/j.molcata.2009.10.019]
[111]
Gondaliya, M.B.; Maheta, T.; Mamtora, M.J.; Shah, M.K. Reusable nanocatalyst: Zirconia and sulfated zirconia. Int. Lett. Chem. Phys. Astronomy, 2014, 17, 73716711.
[112]
Saravanan, K.; Tyagi, B.; Bajaj, H.C. Synthesis of dypnone by solvent free self condensation of acetophenone over nano-crystalline sulfated zirconia catalyst. J. Sol-Gel Sci. Technol., 2012, 61(1), 275-280.
[http://dx.doi.org/10.1007/s10971-011-2624-3]
[113]
Saravanan, K.; Tyagi, B.; Bajaj, H.C. Esterification of caprylic acid with alcohol over nano-crystalline sulfated zirconia. J. Sol-Gel Sci. Technol., 2012, 62(1), 13-17.
[http://dx.doi.org/10.1007/s10971-011-2671-9]
[114]
Teimouri, A.; Chermahini, A.N. One-pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst. Chin. J. Chem., 2012, 30(2), 372-376.
[http://dx.doi.org/10.1002/cjoc.201100143]
[115]
Ghafuri, H.; Rashidizadeh, A.; Ghorbani, B.; Paravand, F. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42-) as a solid acid and reusable catalyst for the protection of hydroxyl groups under solvent-free condition 2014.
[116]
Saravanan, K.; Tyagi, B.; Bajaj, H.C. Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol. Appl. Catal. B, 2016, 192, 161-170.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.037]
[117]
Nakhaei, A. Synthesis of tetrahydrobenzo[A]xanthene-11-one derivatives using zro2–So3H as highly efficient recyclable nano-catalyst. J. Appl. Chem. Res., 2017, 11(3), 72-83.
[118]
Nakhaei, A.; Nakhaei, Z. Catalytic activity of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the synthesis of tetrahydrobenzo [b] pyrans. Iranian J. Org. Chem., 2017, 9, 2135-2144.
[119]
Nakhaei, A. Synthesis of thiazole derivatives using magnetic nano zirconia–sulfuric acid as an efficient and recyclable catalyst in water. Russ. J. Gen. Chem., 2017, 87(8), 1850-1856.
[http://dx.doi.org/10.1134/S1070363217080333]
[120]
Nakhaei, A.; Davoodnia, A.; Yadegarian, S. 2018, An efficient green approach for the synthesis of fluoroquinolones using nano zirconia sulfuric acid as highly efficient recyclable catalyst in two forms of water. Iran. J. Chem. Chem. Eng., 2018, 37(3), 33-42.
[121]
Ghafuri, H.; Ghorbani, B.; Rashidizadeh, A.; Talebi, M.; Roshani, M. Fe3O4@ZrO2/SO42‐ A recyclable magnetic heterogeneous nanocatalyst for synthesis of β‐amino carbonyl derivatives and synthesis of benzylamino coumarin derivatives through Mannich reaction. Appl. Organomet. Chem., 2018, 32(3), e4147.
[http://dx.doi.org/10.1002/aoc.4147]
[122]
Nasseri, M.A.; Kazemnejadi, M.; Mahmoudi, B.; Assadzadeh, F.; Alavi, S.A.; Allahresani, A. Efficient preparation of 1, 8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles. J. Nanopart. Res., 2019, 21(10), 1-14.
[http://dx.doi.org/10.1007/s11051-019-4643-x]
[123]
Tailor, Y.K.; Khandelwal, S.; Gopal, R.; Rushell, E.; Prajapati, A.; Kumar, M. Use of nanomagnetic sulfated zirconia (Fe3O4@ZrO2/SO42−) as sustainable heterogeneous acid catalyst for synthesis of spiroheterocycles under solvent-free conditions. ChemistrySelect, 2017, 2(34), 11055-11061.
[http://dx.doi.org/10.1002/slct.201702422]
[124]
Ghafuri, H.; Rashidizadeh, A.; Ghorbani, B.; Talebi, M. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−): An efficient solid acid catalyst for the green synthesis of α-aminonitriles and imines. New J. Chem., 2015, 39(6), 4821-4829.
[http://dx.doi.org/10.1039/C5NJ00314H]
[125]
Ghafuri, H.; Rashidizadeh, A.; Esmaili Zand, H.R. Highly efficient solvent free synthesis of α-aminophosphonates catalyzed by recyclable nano-magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−). RSC Advances, 2016, 6(19), 16046-16054.
[http://dx.doi.org/10.1039/C5RA13173A]
[126]
Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F.B.; Tabrizian, E. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions. New J. Chem., 2016, 40(1), 770-780.
[http://dx.doi.org/10.1039/C5NJ02430G]
[127]
Hosseini, M.M.; Kolvari, E. Nano-magnetic zirconia sulfuric acid (Fe3O4@ ZrO2-SO3H): Magnetically separable and reusable heterogeneous catalyst for multicomponent reactions. Chem. Lett., 2017, 46(1), 53-55.
[http://dx.doi.org/10.1246/cl.160793]
[128]
Hejazi, S.; Shojaei, A.; Tabatabaeian, K.; Shirini, F. Preparation and characterization of ZrO2 supported Fe3O4 MNPs as an effective and reusable superparamagnetic catalyst for the riedländer synthesis of quinoline derivatives. J. Serb. Chem. Soc., 2015, 80(8), 971-982.
[http://dx.doi.org/10.2298/JSC141023031H]
[129]
Pal, N.; Bhaumik, A. Self-assembled NiO–ZrO2 nanocrystals with mesoscopic void space: An efficient and green catalyst for C–S cross-coupling reaction in water. Dalton Trans., 2012, 41(30), 9161-9169.
[http://dx.doi.org/10.1039/c2dt30343d] [PMID: 22576811]
[130]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Four-component fusion protocol with NiO/ZrO2 as a robust recyclable catalyst for novel 1, 4-dihydropyridines. ACS Omega, 2019, 4(25), 21187-21196.
[http://dx.doi.org/10.1021/acsomega.9b02608] [PMID: 31867512]
[131]
Samantaray, S.; Mishra, B.G. Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones. J. Mol. Catal. Chem., 2011, 339(1-2), 92-98.
[http://dx.doi.org/10.1016/j.molcata.2011.02.017]
[132]
Biklarian, H.; Behbahani, K.F.; Fakhroueian, Z. 22% Co/CeO2-ZrO2-catalyzed synthesis of 1, 2, 3, 4-tetrahydro-2-pyrimidinones and-thiones. Lett. Org. Chem., 2012, 9(8), 580-584.
[http://dx.doi.org/10.2174/157017812802850159]
[133]
Sudarsanam, P.; Katta, L.; Thrimurthulu, G.; Reddy, B.M. Vapor phase synthesis of cyclopentanone over nanostructured ceria–zirconia solid solution catalysts. J. Ind. Eng. Chem., 2013, 19(5), 1517-1524.
[http://dx.doi.org/10.1016/j.jiec.2013.01.018]
[134]
Wang, A.; Liu, X.; Su, Z.; Jing, H. New magnetic nanocomposites of ZrO2 –Al2O3 –Fe3O4 as green solid acid catalysts in organic reactions. Catal. Sci. Technol., 2014, 4(1), 71-80.
[http://dx.doi.org/10.1039/C3CY00572K]
[135]
Mahdavi, M.; Abedini, E.; Darabi, A. Biodiesel synthesis from oleic acid by nano-catalyst (ZrO 2/Al 2 O 3) under high voltage conditions. RSC Advances, 2015, 5(68), 55027-55032.
[http://dx.doi.org/10.1039/C5RA07081C]
[136]
Narasimhamurthy, K.H.; Girish, Y.R.; Thimmaraju, N.; Rangappa, K.S. Utility of ZrO2–Al2O3 in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Chem. Data Collect., 2019, 21, 100230.
[http://dx.doi.org/10.1016/j.cdc.2019.100230]
[137]
Khan, S.A.; Khan, S.B.; Asiri, A.M.; Ahmad, I. Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Res. Lett., 2016, 11(1), 345.
[http://dx.doi.org/10.1186/s11671-016-1525-3] [PMID: 27460593]
[138]
Shojaei, A.F.; Tabatabaeian, K.; Hamidiyan, M.; Hejazi, S.Z. Synthesis and characterization of RuO2@ZrO2 core–shell nano particles as heterogeneous catalyst for oxidation of benzylic alcohols in different conditions. J. Indian Chem. Soc., 2016, 13(5), 803-808.
[http://dx.doi.org/10.1007/s13738-015-0794-6]
[139]
Shabalala, S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Innovative efficient method for the synthesis of 1,4-dihydropyridines using Y2O3 loaded on ZrO2 as catalyst. Ind. Eng. Chem. Res., 2017, 56(40), 11372-11379.
[http://dx.doi.org/10.1021/acs.iecr.7b02579]
[140]
Nakhaei, A. Nano-Fe3O4@ZrO2-H3PO4 as an efficient recyclable catalyst for the neat preparation of thiazole derivatives in ordinary or magnetized water. Curr. Catal., 2018, 7(1), 72-78.
[http://dx.doi.org/10.2174/2211544706666171010155918]
[141]
Cui, Y.; Rimoldi, M.; Platero-Prats, A.E.; Chapman, K.W.; Hupp, J.T.; Farha, O.K. Stabilizing a vanadium oxide catalyst by supporting on a metal–organic framework. ChemCatChem, 2018, 10(8), 1772-1777.
[http://dx.doi.org/10.1002/cctc.201701658]
[142]
Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B.V. 2 O 5/ZrO 2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Catal. Today, 2018, 309, 276-281.
[http://dx.doi.org/10.1016/j.cattod.2017.05.038]
[143]
Thimmaraju, N.; Mohamed Shamshuddin, S.Z.; Pratap, S.R.; Shyam Prasad, K. Effective synthesis of novel O-acetylated compounds over ZrO2-Al2O3 solid acid. Arab. J. Chem., 2019, 12(8), 1860-1869.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.011]
[144]
Girish, Y.R.; Sharath Kumar, K.S.; Muddegowda, U.; Lokanath, N.K.; Rangappa, K.S.; Shashikanth, S. ZrO2 -supported Cu(II)–β-cyclodextrin complex: Construction of 2,4,5-trisubstituted-1,2,3-triazoles via azide–chalcone oxidative cycloaddition and post-triazole alkylation. RSC Advances, 2014, 4(99), 55800-55806.
[http://dx.doi.org/10.1039/C4RA09970B]
[145]
Zheng, J.; Li, J.; Wei, H.; Yu, J.; Su, H.; Wang, X. The investigation of gold/zirconia as a photocatalyst for the direct synthesis of imines from alcohols and aniline. Mater. Sci. Semicond. Process., 2015, 32, 131-136.
[http://dx.doi.org/10.1016/j.mssp.2015.01.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy