Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Recent Advances in Direct Pyridine C-H Activation Strategies

Author(s): Sushmita Roy*

Volume 11, Issue 2, 2022

Published on: 24 January, 2023

Page: [94 - 114] Pages: 21

DOI: 10.2174/2211544712666230104142809

Price: $65

Abstract

Background: Pyridine is one of the most ubiquitous hetero-aromatic moieties in pharmaceutical chemistry and it has enormous importance in a plethora of fields. From a synthetic chemistry standpoint, pyridine moiety has been used as a directing group in C-H activation strategies to functionalize various rings. However, this unique feature to participate as a directing group hinders developing methodologies to carry out C-H activation on the pyridine ring itself. One of the simplest solutions is to block the activity of ring nitrogen at the cost of two extra steps. Here, in this review, along with the blocking, we will briefly mention some interesting ways to get around this problem and the remaining challenges ahead.

Objective: The coordinating ability of pyridine N poses a big challenge toward C-H functionalization on the pyridine ring. This review summarizes some of the recent methods towards this challenge.

Methods: Some key ideas towards that goal have been described. Here, the C-H activation strategies are categorised as follows: (1) Pyridine N-oxide mediated C-H activation, (2) Dimerization of C-H activation of pyridine, (3) Direct Pyridine C2-H activation, (4) Direct Pyridine C3-H activation and (5) Direct Pyridine C4-H activation.

Results: Several methods have been highlighted that can be utilised to prepare C-H functionalized products with regiospecificity that subsequently may be manipulated into interesting products which are difficult to attain easily.

Conclusion: This review explores various new direct C-H activation methods on pyridine which attempts to fill the void of traditional synthetic protocols in regard to regioselective pyridine functionalization. This review also explores the limitations of current methodologies which must be wiped off to attain a mature state in need of the pharmaceutical industry.

Graphical Abstract

[1]
Anderson, T. Ueber Picolin. Eine neue Basis aus dem Steinkohlen-Theeröl. Justus Liebigs Ann. Chem., 1846, 60(1), 86-103.
[http://dx.doi.org/10.1002/jlac.18460600106]
[2]
Duffy, C.D.; Maderna, P.; McCarthy, C.; Loscher, C.E.; Godson, C.; Guiry, P.J. Synthesis and biological evaluation of pyridine-containing lipoxin A4 analogues. ChemMedChem, 2010, 5(4), 517-522.
[http://dx.doi.org/10.1002/cmdc.200900533] [PMID: 20127785]
[3]
Lacerda, R.B.; de Lima, C.K.F.; da Silva, L.L.; Romeiro, N.C.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg. Med. Chem., 2009, 17(1), 74-84.
[http://dx.doi.org/10.1016/j.bmc.2008.11.018] [PMID: 19059783]
[4]
Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assié, M.B.; Cosi, C.; Kleven, M. Novel derivatives of 2-pyridinemethylamine as selective, potent, and orally active agonists at 5-HT1A receptors. J. Med. Chem., 1999, 42(9), 1648-1660.
[http://dx.doi.org/10.1021/jm9806906] [PMID: 10229633]
[5]
Buckley, G.M.; Cooper, N.; Dyke, H.J.; Galleway, F.P.; Gowers, L.; Haughan, A.F.; Kendall, H.J.; Lowe, C.; Maxey, R.; Montana, J.G.; Naylor, R.; Oxford, J.; Peake, J.C.; Picken, C.L.; Runcie, K.A.; Sabin, V.; Sharpe, A.; Warneck, J.B.H. 8-Methoxyquinoline-5-carboxamides as PDE4 inhibitors: a potential treatment for asthma. Bioorg. Med. Chem. Lett., 2002, 12(12), 1613-1615.
[http://dx.doi.org/10.1016/S0960-894X(02)00223-8] [PMID: 12039574]
[6]
Horiuch, M.; Murakami, C.; Fukamiya, N.; Yu, D.; Chen, T.H.; Bastow, K.F.; Zhang, D.C.; Takaishi, Y.; Imakura, Y.; Lee, K.H. Tripfordines A-C, sesquiterpene pyridine alkaloids from Tripterygium wilfordii, and structure anti-HIV activity relationships of Tripterygium alkaloids. J. Nat. Prod., 2006, 69(9), 1271-1274.
[http://dx.doi.org/10.1021/np060124a] [PMID: 16989518]
[7]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids (1998 to 1999). Nat. Prod. Rep., 2000, 17(5), 435-446.
[http://dx.doi.org/10.1039/a707613d] [PMID: 11072891]
[8]
Abe, Y.; Kayakiri, H.; Satoh, S.; Inoue, T.; Sawada, Y.; Inamura, N.; Asano, M.; Aramori, I.; Hatori, C.; Sawai, H.; Oku, T.; Tanaka, H. A novel class of orally active non-peptide bradykinin B2 receptor antagonists. 4. Discovery of novel frameworks mimicking the active conformation. J. Med. Chem., 1998, 41(23), 4587-4598.
[http://dx.doi.org/10.1021/jm980330i] [PMID: 9804698]
[9]
Song, Z.J.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D.M.; Tillyer, R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, R.; Dolling, U.H.; Reider, P.J.; Okada, S.; Kato, Y.; Mano, E. Practical asymmetric synthesis of an endothelin receptor antagonist. J. Org. Chem., 1999, 64(26), 9658-9667.
[http://dx.doi.org/10.1021/jo991292t]
[10]
El-Sayed Ali, T. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur. J. Med. Chem., 2009, 44(11), 4385-4392.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.031] [PMID: 19586688]
[11]
Matolcsy, G.N.d.M.A.V. Pesticide chemistry; Elsevier, 1989.
[12]
Ren, Q.; Mo, W.; Gao, L.; He, H.; Gu, Y. Facile synthesis and herbicidal activity of novel multisubstituted pyridine derivatives. J. Heterocycl. Chem., 2010, 47(1), 171-178.
[13]
Allais, C.; Grassot, J.M.; Rodriguez, J.; Constantieux, T. Metal-free multicomponent syntheses of pyridines. Chem. Rev., 2014, 114(21), 10829-10868.
[http://dx.doi.org/10.1021/cr500099b] [PMID: 25302420]
[14]
Hill, M.D. Recent strategies for the synthesis of pyridine derivatives. Chemistry, 2010, 16(40), 12052-12062.
[http://dx.doi.org/10.1002/chem.201001100] [PMID: 20827696]
[15]
Belhadj, E.; El-Ghayoury, A.; Mazari, M.; Sallé, M. The parent tetrathiafulvalene–terpyridine dyad: synthesis and metal binding properties. Tetrahedron Lett., 2013, 54(24), 3051-3054.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.102]
[16]
Bora, D.; Deb, B.; Fuller, A.L.; Slawin, A.M.Z.; Derek Woollins, J.; Dutta, D.K. Dicarbonyliridium(I) complexes of pyridine ester ligands and their reactivity towards various electrophiles. Inorg. Chim. Acta, 2010, 363(7), 1539-1546.
[http://dx.doi.org/10.1016/j.ica.2010.01.015]
[17]
Campeau, L.C.; Rousseaux, S.; Fagnou, K. A solution to the 2-pyridyl organometallic cross-coupling problem: regioselective catalytic direct arylation of pyridine N-oxides. J. Am. Chem. Soc., 2005, 127(51), 18020-18021.
[http://dx.doi.org/10.1021/ja056800x] [PMID: 16366550]
[18]
Murray, R.W.; Jeyaraman, R. Dioxiranes: synthesis and reactions of methyldioxiranes. J. Org. Chem., 1985, 50(16), 2847-2853.
[http://dx.doi.org/10.1021/jo00216a007]
[19]
van den Heuvel, M.; van den Berg, T.A.; Kellogg, R.M.; Choma, C.T.; Feringa, B.L. Synthesis of a non-heme template for attaching four peptides: an approach to artificial iron(II)-containing peroxidases. J. Org. Chem., 2004, 69(2), 250-262.
[http://dx.doi.org/10.1021/jo035157z] [PMID: 14725436]
[20]
Kanyiva, K.S.; Nakao, Y.; Hiyama, T. Nickel-catalyzed addition of pyridine-N-oxides across alkynes. Angew. Chem. Int. Ed., 2007, 46(46), 8872-8874.
[http://dx.doi.org/10.1002/anie.200703758] [PMID: 17990254]
[21]
Cho, S.H.; Hwang, S.J.; Chang, S. Palladium-catalyzed C-H functionalization of pyridine N-oxides: highly selective alkenylation and direct arylation with unactivated arenes. J. Am. Chem. Soc., 2008, 130(29), 9254-9256.
[http://dx.doi.org/10.1021/ja8026295] [PMID: 18582040]
[22]
Gong, X.; Song, G.; Zhang, H.; Li, X. Palladium-catalyzed oxidative cross-coupling between pyridine N-oxides and indoles. Org. Lett., 2011, 13(7), 1766-1769.
[http://dx.doi.org/10.1021/ol200306y] [PMID: 21388218]
[23]
Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions. Org. Lett., 2014, 16(7), 1840-1843.
[http://dx.doi.org/10.1021/ol500183w] [PMID: 24628081]
[24]
Kianmehr, E.; Faghih, N.; Karaji, S.; Amiri Lomedasht, Y.; Khan, K.M. Copper-catalyzed cross-dehydrogenative coupling of pyridine N-oxides with cyclic ethers. J. Organomet. Chem., 2016, 801, 10-13.
[http://dx.doi.org/10.1016/j.jorganchem.2015.10.010]
[25]
Zeng, Y.; Zhang, C.; Yin, C.; Sun, M.; Fu, H.; Zheng, X.; Yuan, M.; Li, R.; Chen, H. Direct C–H functionalization of pyridine via a transient activator strategy: synthesis of 2,6-diarylpyridines. Org. Lett., 2017, 19(8), 1970-1973.
[http://dx.doi.org/10.1021/acs.orglett.7b00498] [PMID: 28388083]
[26]
Wang, R.; Zeng, Z.; Chen, C.; Yi, N.; Jiang, J.; Cao, Z.; Deng, W.; Xiang, J. Fast regioselective sulfonylation of pyridine/quinoline N-oxides induced by iodine. Org. Biomol. Chem., 2016, 14(23), 5317-5321.
[http://dx.doi.org/10.1039/C6OB00925E] [PMID: 27219641]
[27]
Davin, L.; Clegg, W.; Kennedy, A.R.; Probert, M.R.; McLellan, R.; Hevia, E. Structural and synthetic insights into pyridine homocouplings mediated by a β-diketiminato magnesium amide complex. Chemistry, 2018, 24(55), 14830-14835.
[http://dx.doi.org/10.1002/chem.201803297] [PMID: 30051933]
[28]
Nagaoka, M.; Kawashima, T.; Suzuki, H.; Takao, T. Dehydrogenative coupling of 4-substituted pyridines catalyzed by a trinuclear complex of ruthenium and cobalt. Organometallics, 2016, 35(14), 2348-2360.
[http://dx.doi.org/10.1021/acs.organomet.6b00277]
[29]
Chen, Y.; Song, D.; Li, J.; Hu, X.; Bi, X.; Jiang, T.; Hou, Z. Diastereoselective cyclization of 1,5-dienes with the C-H bond of pyridine catalyzed by a cationic mono(phosphinoamide) alkyl scandium complex. ChemCatChem, 2018, 10(1), 159-164.
[http://dx.doi.org/10.1002/cctc.201700980] [PMID: 29399207]
[30]
Lewis, J.C.; Bergman, R.G.; Ellman, J.A. Rh(I)-catalyzed alkylation of quinolines and pyridines via C-H bond activation. J. Am. Chem. Soc., 2007, 129(17), 5332-5333.
[http://dx.doi.org/10.1021/ja070388z] [PMID: 17411050]
[31]
Deng, G.; Li, C.J. Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes. Org. Lett., 2009, 11(5), 1171-1174.
[http://dx.doi.org/10.1021/ol900070x] [PMID: 19193046]
[32]
Wen, J.; Qin, S.; Ma, L.F.; Dong, L.; Zhang, J.; Liu, S.S.; Duan, Y.S.; Chen, S.Y.; Hu, C.W.; Yu, X.Q. Iron-mediated direct Suzuki-Miyaura reaction: a new method for the ortho-arylation of pyrrole and pyridine. Org. Lett., 2010, 12(12), 2694-2697.
[http://dx.doi.org/10.1021/ol100838m] [PMID: 20481607]
[33]
Mousseau, J.J.; Fortier, A.; Charette, A.B. Synthesis of 2-substituted pyrazolo[1,5-a]pyridines through cascade direct alkenylation/cyclization reactions. Org. Lett., 2010, 12(3), 516-519.
[http://dx.doi.org/10.1021/ol902710f] [PMID: 20052989]
[34]
Guan, B.T.; Hou, Z. Rare-earth-catalyzed C-H bond addition of pyridines to olefins. J. Am. Chem. Soc., 2011, 133(45), 18086-18089.
[http://dx.doi.org/10.1021/ja208129t] [PMID: 21999322]
[35]
Luo, G.; Luo, Y.; Qu, J.; Hou, Z. Mechanistic investigation on scandium-catalyzed C–H addition of pyridines to olefins. Organometallics, 2012, 31(10), 3930-3937.
[http://dx.doi.org/10.1021/om300147y]
[36]
Fier, P.S.; Hartwig, J.F. Selective C-H fluorination of pyridines and diazines inspired by a classic amination reaction. Science, 2013, 342(6161), 956-960.
[http://dx.doi.org/10.1126/science.1243759] [PMID: 24264986]
[37]
Shih, W.C.; Ozerov, O.V. Selective ortho C–H activation of pyridines directed by lewis acidic boron of PBP pincer iridium complexes. J. Am. Chem. Soc., 2017, 139(48), 17297-17300.
[http://dx.doi.org/10.1021/jacs.7b10570] [PMID: 29112403]
[38]
Song, G. O, W.W.N.; Hou, Z. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes. J. Am. Chem. Soc., 2014, 136(35), 12209-12212.
[http://dx.doi.org/10.1021/ja504995f] [PMID: 25133821]
[39]
Sun, Q.; Chen, P.; Wang, Y.; Luo, Y.; Yuan, D.; Yao, Y. Addition of C–H bonds of pyridine derivatives to alkenes catalyzed by zirconium complexes bearing amine-bridged bis(phenolato) ligands. Inorg. Chem., 2018, 57(18), 11788-11800.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01959] [PMID: 30160944]
[40]
Fischer, D.F.; Sarpong, R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C-H functionalization. J. Am. Chem. Soc., 2010, 132(17), 5926-5927.
[http://dx.doi.org/10.1021/ja101893b] [PMID: 20387895]
[41]
Cho, J.Y.; Tse, M.K.; Holmes, D.; Maleczka, R.E., Jr; Smith, M.R. III Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds. Science, 2002, 295(5553), 305-308.
[http://dx.doi.org/10.1126/science.1067074] [PMID: 11719693]
[42]
Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N.R.; Hartwig, J.F. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc., 2002, 124(3), 390-391.
[http://dx.doi.org/10.1021/ja0173019] [PMID: 11792205]
[43]
Ye, M.; Gao, G.L.; Yu, J.Q. Ligand-promoted C-3 selective C-H olefination of pyridines with Pd catalysts. J. Am. Chem. Soc., 2011, 133(18), 6964-6967.
[http://dx.doi.org/10.1021/ja2021075] [PMID: 21491938]
[44]
Song, G.; Gong, X.; Li, X. Synthesis of quinolines via Rh(III)-catalyzed oxidative annulation of pyridines. J. Org. Chem., 2011, 76(18), 7583-7589.
[http://dx.doi.org/10.1021/jo201266u] [PMID: 21819061]
[45]
Yang, L.; Uemura, N.; Nakao, Y. meta-Selective C–H borylation of benzamides and pyridines by an iridium–lewis acid bifunctional catalyst. J. Am. Chem. Soc., 2019, 141(19), 7972-7979.
[http://dx.doi.org/10.1021/jacs.9b03138] [PMID: 31017408]
[46]
Guo, P.; Joo, J.M.; Rakshit, S.; Sames, D. C-H arylation of pyridines: high regioselectivity as a consequence of the electronic character of C-H bonds and heteroarene ring. J. Am. Chem. Soc., 2011, 133(41), 16338-16341.
[http://dx.doi.org/10.1021/ja206022p] [PMID: 21939181]
[47]
Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. Selective C-4 alkylation of pyridine by nickel/Lewis acid catalysis. J. Am. Chem. Soc., 2010, 132(39), 13666-13668.
[http://dx.doi.org/10.1021/ja106514b] [PMID: 20822182]
[48]
Lee, W.C.; Chen, C.H.; Liu, C.Y.; Yu, M.S.; Lin, Y.H.; Ong, T.G. Nickel-catalysed para-CH activation of pyridine with switchable regioselective hydroheteroarylation of allylarenes. Chem. Commun. (Camb.), 2015, 51(96), 17104-17107.
[http://dx.doi.org/10.1039/C5CC07455J] [PMID: 26451893]
[49]
Andou, T.; Saga, Y.; Komai, H.; Matsunaga, S.; Kanai, M. Cobalt-catalyzed C4-selective direct alkylation of pyridines. Angew. Chem. Int. Ed., 2013, 52(11), 3213-3216.
[http://dx.doi.org/10.1002/anie.201208666] [PMID: 23371410]
[50]
Zhang, W.B.; Yang, X.T.; Ma, J.B.; Su, Z.M.; Shi, S.L. Regio- and enantioselective c–h cyclization of pyridines with alkenes enabled by a nickel/N-heterocyclic carbene catalysis. J. Am. Chem. Soc., 2019, 141(14), 5628-5634.
[http://dx.doi.org/10.1021/jacs.9b00931] [PMID: 30888167]
[51]
Lee, K.; Lee, S.; Kim, N.; Kim, S.; Hong, S. Visible‐light‐enabled trifluoromethylative pyridylation of alkenes from pyridines and triflic anhydride. Angew. Chem. Int. Ed., 2020, 59(32), 13379-13384.
[http://dx.doi.org/10.1002/anie.202004439] [PMID: 32368820]
[52]
Jung, S.; Shin, S.; Park, S.; Hong, S. Visible-light-driven C4-selective alkylation of pyridinium derivatives with alkyl bromides. J. Am. Chem. Soc., 2020, 142(26), 11370-11375.
[http://dx.doi.org/10.1021/jacs.0c04499] [PMID: 32530614]
[53]
Ma, J.B.; Zhao, X.; Zhang, D.; Shi, S.L. enantio- and regioselective ni-catalyzed para -C–H alkylation of pyridines with styrenes via intermolecular hydroarylation. J. Am. Chem. Soc., 2022, 144(30), 13643-13651.
[http://dx.doi.org/10.1021/jacs.2c04043] [PMID: 35857884]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy