[1]
Banerjee, B. Organic transformations by following green credentials - Part 1(A). Curr. Green Chem., 2019, 6(3), 154.
[http://dx.doi.org/10.2174/221334610603191120125019]
[http://dx.doi.org/10.2174/221334610603191120125019]
[2]
Banerjee, B. Organic transformations by following green credentials - Part 1(B). Curr. Green Chem., 2020, 7(1), 3-4.
[http://dx.doi.org/10.2174/221334610701200403100438]
[http://dx.doi.org/10.2174/221334610701200403100438]
[3]
Wu, J.Y.C.; Fong, W.F.; Zhang, J.X.; Leung, C.H.; Kwong, H.L.; Yang, M.S.; Li, D.; Cheung, H.Y. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol., 2003, 473(1), 9-17.
[http://dx.doi.org/10.1016/S0014-2999(03)01946-0] [PMID: 12877932]
[http://dx.doi.org/10.1016/S0014-2999(03)01946-0] [PMID: 12877932]
[4]
Rueping, M.; Sugiono, E.; Merino, E. Asymmetric organocatalysis: An efficient enantioselective access to benzopyranes and chromenes. Chemistry, 2008, 14(21), 6329-6332.
[http://dx.doi.org/10.1002/chem.200800836] [PMID: 18576457]
[http://dx.doi.org/10.1002/chem.200800836] [PMID: 18576457]
[5]
Raj, T.; Bhatia, R.K. kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P.S. Cytotoxic activity of 3-(5-phenyl-3 H -[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4 H -chromene-3-carbothioic acid N -phenylamides. Eur. J. Med. Chem., 2010, 45(2), 790-794.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.001] [PMID: 19939522]
[http://dx.doi.org/10.1016/j.ejmech.2009.11.001] [PMID: 19939522]
[6]
Moon, D.O.; Kim, K.C.; Jin, C.Y.; Han, M.H.; Park, C.; Lee, K.J.; Park, Y.M.; Choi, Y.H.; Kim, G.Y. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int. Immunopharmacol., 2007, 7(2), 222-229.
[http://dx.doi.org/10.1016/j.intimp.2006.10.001] [PMID: 17178390]
[http://dx.doi.org/10.1016/j.intimp.2006.10.001] [PMID: 17178390]
[7]
Morgan, L.R.; Jursic, B.S.; Hooper, C.L.; Neumann, D.M.; Thangaraj, K.; LeBlanc, B. Anticancer activity for 4,4′-Dihydroxybenzophenone-2,4-dinitrophenylhydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorg. Med. Chem. Lett., 2002, 12(23), 3407-3411.
[http://dx.doi.org/10.1016/S0960-894X(02)00725-4] [PMID: 12419372]
[http://dx.doi.org/10.1016/S0960-894X(02)00725-4] [PMID: 12419372]
[8]
Kumar, A.; Maurya, R.A.; Sharma, S.; Ahmad, P.; Singh, A.B.; Bhatia, G.; Srivastava, A.K. Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(22), 6447-6451.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[9]
de Andrade-Neto, V.F.; Goulart, M.O.F.; da Silva Filho, J.F.; da Silva, M.J.; Pinto, M.C.F.R.; Pinto, A.V.; Zalis, M.G.; Carvalho, L.H.; Krettli, A.U. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2004, 14(5), 1145-1149.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.069] [PMID: 14980653]
[http://dx.doi.org/10.1016/j.bmcl.2003.12.069] [PMID: 14980653]
[10]
Banik, B.K.; Banerjee, B. Heterocyclic anticancer agents; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9783110735772]
[http://dx.doi.org/10.1515/9783110735772]
[11]
Banerjee, B. Role of the heterocycles to design anti-cancer agents. Anticancer. Agents Med. Chem., 2022, 22(19), 3194-3195.
[http://dx.doi.org/10.2174/187152062219220930154651] [PMID: 36221179]
[http://dx.doi.org/10.2174/187152062219220930154651] [PMID: 36221179]
[12]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7(1), 5-22.
[http://dx.doi.org/10.2174/2213335607666200226102010]
[http://dx.doi.org/10.2174/2213335607666200226102010]
[13]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[14]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[15]
Banerjee, B. Recent developments on ultrasound-assisted synthesis of bioactive N-heterocycles at ambient temperature. Aust. J. Chem., 2017, 70(8), 872-888.
[http://dx.doi.org/10.1071/CH17080]
[http://dx.doi.org/10.1071/CH17080]
[16]
Banerjee, B. Recent developments on ultrasound-assisted organic synthesis in aqueous medium. J. Serb. Chem. Soc., 2017, 82(7-8), 755-790.
[http://dx.doi.org/10.2298/JSC170217057B]
[http://dx.doi.org/10.2298/JSC170217057B]
[17]
Banerjee, B. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4(8), 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[http://dx.doi.org/10.1002/slct.201803081]
[18]
Banerjee, B.; Tajti, A.; Keglevich, G. 13. Ultrasound-assisted synthesis of organophosphorus compounds: Novel Developments. In: Organophosphorus Chemistry; , 2018.
[http://dx.doi.org/10.1515/9783110535839-013]
[http://dx.doi.org/10.1515/9783110535839-013]
[19]
Banerjee, B.; Kaur, G. Recent advances in photo-irradiated synthesis of bioactive heterocycles in. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2020; pp. 407-452.
[http://dx.doi.org/10.1016/B978-0-12-819539-0.00016-6]
[http://dx.doi.org/10.1016/B978-0-12-819539-0.00016-6]
[20]
Kaur, G.; Shamim, M.; Bhardwaj, V.; Gupta, V.K.; Banerjee, B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun., 2020, 50(10), 1545-1560.
[http://dx.doi.org/10.1080/00397911.2020.1745844]
[http://dx.doi.org/10.1080/00397911.2020.1745844]
[21]
Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: A decade update. ChemistrySelect, 2018, 3(34), 9892-9910.
[http://dx.doi.org/10.1002/slct.201801887]
[http://dx.doi.org/10.1002/slct.201801887]
[22]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83(10), 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[http://dx.doi.org/10.2298/JSC180103052K]
[23]
Banerjee, B. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2017, 2(27), 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[http://dx.doi.org/10.1002/slct.201701700]
[24]
Kaur, G.; Sharma, A.; Banerjee, B. Ultrasound and ionic liquid: An ideal combination for organic transformations. ChemistrySelect, 2018, 3(19), 5283-5295.
[http://dx.doi.org/10.1002/slct.201800326]
[http://dx.doi.org/10.1002/slct.201800326]
[25]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5(3), 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[http://dx.doi.org/10.2174/2213346105666181001113413]
[26]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3(45), 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[http://dx.doi.org/10.1002/slct.201802824]
[27]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23(16), 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[http://dx.doi.org/10.2174/1385272822666190924182538]
[28]
Singh, A.; Kaur, G.; Kaur, A.; Gupta, V.K.; Banerjee, B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem., 2020, 7(1), 128-140.
[http://dx.doi.org/10.2174/2213346107666200228125715]
[http://dx.doi.org/10.2174/2213346107666200228125715]
[29]
Kaur, G.; Kumar, R.; Saroch, S.; Gupta, V.K.; Banerjee, B. Mandelic Acid: An efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal., 2021, 8(1), 147-159.
[http://dx.doi.org/10.2174/22133380MTA4jMTIf1]
[http://dx.doi.org/10.2174/22133380MTA4jMTIf1]
[30]
Banerjee, B. Recent developments on organo-bycyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22(3), 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[http://dx.doi.org/10.2174/1385272821666170703123129]
[31]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: Versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4(7), 2181-2199.
[http://dx.doi.org/10.1002/slct.201803600]
[http://dx.doi.org/10.1002/slct.201803600]
[32]
Banerjee, B. Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2020; pp. 153-190.
[http://dx.doi.org/10.1016/B978-0-12-819542-0.00005-1]
[http://dx.doi.org/10.1016/B978-0-12-819542-0.00005-1]
[33]
Kaur, N.; Devi, M.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Ahlawat, N.; Jangid, N.K. Photochemical synthesis of fused five-membered O-heterocycles. Curr. Green Chem., 2019, 6(3), 155-183.
[http://dx.doi.org/10.2174/2213346106666190904145200]
[http://dx.doi.org/10.2174/2213346106666190904145200]
[34]
Sarkar, R.; Mukhopadhyay, C. Carbon-hydrogen bond functionalization in aqueous medium: A brief review. Curr. Green Chem., 2019, 6(3), 184-197.
[http://dx.doi.org/10.2174/2213346106666191019120048]
[http://dx.doi.org/10.2174/2213346106666191019120048]
[35]
Singh, P.; Nath, M. A concise account on eco-friendly synthetic strategies for pyrazole heterocycles. Curr. Green Chem., 2019, 6(3), 198-209.
[http://dx.doi.org/10.2174/2213346106666191026094131]
[http://dx.doi.org/10.2174/2213346106666191026094131]
[36]
Deepthi, A.; Thomas, N.V.; Sathi, V. Green protocols for the synthesis of 3,3′-spirooxindoles- 2016- mid 2019. Curr. Green Chem., 2019, 6, 210-225.
[http://dx.doi.org/10.2174/2213346106666191019144116]
[http://dx.doi.org/10.2174/2213346106666191019144116]
[37]
Mukherjee, A.; Ghosal, N.C.; Zyryanov, G.V.; Majee, A.; Santra, S. An updated library on the synthesis of aziridines. Curr. Green Chem., 2019, 6(3), 226-241.
[http://dx.doi.org/10.2174/2213346106666191024123452]
[http://dx.doi.org/10.2174/2213346106666191024123452]
[38]
Das, A.; Sarkar, S.; Chakraborty, B.; Kar, A.; Jana, U. Catalytic alkyne/alkene-carbonyl metathesis: Towards the development of green organic synthesis. Curr. Green Chem., 2020, 7(1), 5-39.
[http://dx.doi.org/10.2174/2213346106666191105144019]
[http://dx.doi.org/10.2174/2213346106666191105144019]
[39]
Biswas, K.; Ghosh, S.; Basu, B. Ion-exchange resins and polypeptide supported catalysts: A critical review. Curr. Green Chem., 2020, 7(1), 40-52.
[http://dx.doi.org/10.2174/2213346107666200204125435]
[http://dx.doi.org/10.2174/2213346107666200204125435]
[40]
Saha, M.; Das, A.R. Nanocrystalline ZnO: A competent and reusable catalyst for the preparation of pharmacology relevant heterocycles in the aqueous medium. Curr. Green Chem., 2020, 7(1), 53-104.
[http://dx.doi.org/10.2174/2213346107666200218122718]
[http://dx.doi.org/10.2174/2213346107666200218122718]
[41]
Padvi, S.A.; Dalal, D.S. Task-specific ionic liquids as a green catalysts and solvents for organic synthesis. Curr. Green Chem., 2020, 7(1), 105-119.
[http://dx.doi.org/10.2174/2213346107666200115153051]
[http://dx.doi.org/10.2174/2213346107666200115153051]
[42]
Kumar, M.; Kumar, R.; Rana, N.; Prasad, A.K. Chemo-enzymatic Synthesis of 3′-azido/-amino-C-4′-spirooxetano-xylo nucleosides. Curr. Green Chem., 2020, 7(1), 120-127.
[http://dx.doi.org/10.2174/2213346107666200110092413]
[http://dx.doi.org/10.2174/2213346107666200110092413]
[43]
Mukhopadhyay, C.; Pal, R. Significant organic transformations using catalysts in water: A greener way to combat environmental hazards. Curr. Green Chem., 2021, 8(1), 5-16.
[http://dx.doi.org/10.2174/2213346107999200820114317]
[http://dx.doi.org/10.2174/2213346107999200820114317]
[44]
Meshram, J.S.; Raghuvanshi, D.S. Role of zeolites and zeotypes in green chemistry. Curr. Green Chem., 2021, 8(1), 17-27.
[http://dx.doi.org/10.2174/2213346107999201208214310]
[http://dx.doi.org/10.2174/2213346107999201208214310]
[45]
Basak, P.; Ghosh, P. Green organic transformations: Novelty of graphene oxide (GO) and sulfonated graphene oxide (SGO). Curr. Green Chem., 2021, 8(1), 28-45.
[http://dx.doi.org/10.2174/2213346107999201231125827]
[http://dx.doi.org/10.2174/2213346107999201231125827]
[46]
Bagdi, A.K.; Sikdar, P. Rhodamines as photocatalyst in organic synthesis. Curr. Green Chem., 2021, 8, 46-61.
[http://dx.doi.org/10.2174/2213347XMTEwpOTI12]
[http://dx.doi.org/10.2174/2213347XMTEwpOTI12]
[47]
Komar, M.; Prašnikar, F.; Kraljević, T.G.; Aladić, K.; Molnar, M. 3-Amino-2-methylquinazolin-4-(3H)-one schiff bases synthesis - A green chemistry approach - A comparison of microwave and ultrasound promoted synthesis with mechanosynthesis. Curr. Green Chem., 2021, 8(1), 62-69.
[http://dx.doi.org/10.2174/2213346107999201231125434]
[http://dx.doi.org/10.2174/2213346107999201231125434]
[48]
Majhi, S.; Saha, I. Visible light-promoted synthesis of bioactive N, N-heterocycles. Curr. Green Chem., 2022, 9, 127-144.
[http://dx.doi.org/10.2174/2213346110666221223141323]
[http://dx.doi.org/10.2174/2213346110666221223141323]