Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Microwave Radiations: A Green Approach to the Synthesis of Five- Membered Heterocyclic Compounds

Author(s): Monika Kamboj*, Sangeeta Bajpai*, Monika Yadav and Surabhi Singh

Volume 10, Issue 1, 2023

Published on: 02 February, 2023

Page: [57 - 72] Pages: 16

DOI: 10.2174/2213346110666230102095423

Price: $65

Abstract

Synthesis of heterocyclic scaffolds by microwave irradiation is a green and clean process. The organic transformation induced by microwave irradiation, as an alternative source of energy, has been of great interest due to the high efficiency, yield, and short reaction time with minimum by-product production. Heterocyclic compounds, an important skeleton for pharmaceuticals, are the most privileged and prevalent class of organic chemistry. They have enormous medicinal value and pharmaceutical potential. This review demonstrates the effectiveness of microwave heating for the synthesis of heterocyclic compounds. The eco-friendly microwave-induced synthesis of five-membered heterocyclic systems covering recent literature is highlighted in this article.

Graphical Abstract

[1]
Victoria Gómez, M.; Aranda, A.I.; Moreno, A.; Cossío, F.P.; de Cózar, A.; Díaz-Ortiz, Á.; de la Hoz, A.; Prieto, P. Microwave-assisted reactions of nitroheterocycles with dienes. Diels-Alder and tandem hetero Diels-Alder/[3,3] sigmatropic shift. Tetrahedron, 2009, 65(27), 5328-5336.
[http://dx.doi.org/10.1016/j.tet.2009.04.065]
[2]
Montel, S.; Bouyssi, D.; Balme, G. An efficient and general microwave-assisted copper-catalyzed conia-ene reaction of terminal and internal alkynes tethered to a wide variety of carbonucleophiles. Adv. Synth. Catal., 2010, 352(13), 2315-2320.
[http://dx.doi.org/10.1002/adsc.201000351]
[3]
Lamaty, F.; Declerck, V.; Martinez, J. Microwave-assisted copper-catalyzed Heck reaction in PEG solvent. Synlett, 2006, 2006(18), 3029-3032.
[http://dx.doi.org/10.1055/s-2006-951523]
[4]
Raut, C.N.; Bharambe, S.M.; Pawar, Y.A.; Mahulikar, P.P. Microwave-mediated synthesis and antibacterial activity of some novel 2-(substituted biphenyl) benzimidazoles via Suzuki-Miyaura cross coupling reaction and their N-substituted derivatives. J. Heterocycl. Chem., 2011, 48(2), 419-425.
[http://dx.doi.org/10.1002/jhet.610]
[5]
Dong, X.; Liu, T.; Chen, J.; Ying, H.; Hu, Y. Microwave-assisted Mannich reaction of 2-hydroxy-chalcones. Synth. Commun., 2009, 39(4), 733-742.
[http://dx.doi.org/10.1080/00397910802431107]
[6]
Bose, A.K.; Banik, B.K.; Barakat, K.J.; Manhas, M.S. Simplified rapid hydrogenation under microwave irradiation: selective transformations of βlactams. Synlett, 1993, 1993(8), 575-576.
[http://dx.doi.org/10.1055/s-1993-22534]
[7]
Van Baelen, G.; Maes, B.U.W. Study of the microwave-assisted hydrolysis of nitriles and esters and the implementation of this system in rapid microwave-assisted Pd-catalyzed amination. Tetrahedron, 2008, 64(23), 5604-5619.
[http://dx.doi.org/10.1016/j.tet.2008.03.028]
[8]
Tanji, K.; Koshio, J.; Sugimoto, O. Microwave‐assisted dehydration and chlorination using phosphonium salt. Synth. Commun., 2005, 35(15), 1983-1987.
[http://dx.doi.org/10.1081/SCC-200066639]
[9]
Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M.; Yan, Y.; Wang, Z. Microwave-accelerated esterification of salicylic acid using Brönsted acidic ionic liquids as catalysts. Catal. Commun., 2010, 11(7), 588-591.
[http://dx.doi.org/10.1016/j.catcom.2009.12.025]
[10]
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
[11]
Pillai, U.R.; Sahle-Demessie, E.; Varma, R.S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile. Tetrahedron Lett., 2002, 43(16), 2909-2911.
[http://dx.doi.org/10.1016/S0040-4039(02)00426-4]
[12]
Schmoger, C.; Stolle, A.; Bonrath, W.; Ondruschka, B. Microwave-assisted organic reduction reactions. Curr. Org. Chem., 2011, 15(2), 151-167.
[http://dx.doi.org/10.2174/138527211793979808]
[13]
Rahayu, D.U.C.; Al-Laily, R.S.; Khalwani, D.A.; Anjani, A.; Handayani, S.; Saepudin, E.; Dianhar, H.; Sugita, P. Microwave-assisted synthesis of 4-methyl coumarins, their antioxidant and antibacterial activities. Rasayan J. Chem., 2022, 15, 1053-1062.
[http://dx.doi.org/10.31788/RJC.2022.1526780]
[14]
Ibrahim, H.M.; Behbehani, H.; Makhseed, S.; Elnagdi, M.H. Acylation of heteroaromatic amines: Facile and efficient synthesis of a new class of 1,2,3-triazolo[4,5-b]pyridine and pyrazolo[4,3-b]pyridine derivatives. Molecules, 2011, 16(5), 3723-3739.
[http://dx.doi.org/10.3390/molecules16053723] [PMID: 21544037]
[15]
Anastas, P.T.; Warner, J. Green Chemistry. Theory and Practice; Oxford University Press: Oxford, 1998.
[16]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[17]
Azarifar, D.; Maleki, B.; Setayeshnazar, M. A simple, microwave-assisted, and solvent-free synthesis of 2-arylbenzothiazoles by acetic acid-promoted condensation of aldehydes with 2-aminothiophenol in air. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(8), 2097-2102.
[http://dx.doi.org/10.1080/10426500802423933]
[18]
Colombo, M.; Peretto, I. Chemistry strategies in early drug discovery: An overview of recent trends. Drug Discov. Today, 2008, 13(15-16), 677-684.
[http://dx.doi.org/10.1016/j.drudis.2008.03.007] [PMID: 18675762]
[19]
Azarifar, D.; Maleki, B.; Sahraei, M. Microwave‐promoted oxidation of 1,3,5‐trisubstituted 4,5‐dihydro‐1 H ‐pyrazoles by in‐situ generation of NO+ and NO respectively from sodium nitrite and sodium nitrate in acetic acid. J. Heterocycl. Chem., 2008, 45(2), 563-565.
[http://dx.doi.org/10.1002/jhet.5570450241]
[20]
Azarifar, D.; Nadimi, E.; Ghorbani-Vaghei, R.; Maleki, B. Microwave-assisted oxidation of 1,3,5-trisubstituted 4,5-dihydro-1H-pyrazoles to the corresponding pyrazoles with poly(N,N′-dibromobenzene-1,3-disulfonamide-1,2-ethanediyl). Mendeleev Commun., 2006, 16(6), 330-331.
[http://dx.doi.org/10.1070/MC2006v016n06ABEH002421]
[21]
Azarifar, D.; Maleki, B. Microwave‐assisted aromatization of 1,3,5‐trisubstituted 2‐pyrazolines by Bi(NO3)3· 5H2O, as a novel and convenient oxidizing agent. Synth. Commun., 2005, 35(19), 2581-2585.
[http://dx.doi.org/10.1080/00397910500214136]
[22]
Kruithof, A.; Ruijter, E.; Orru, R.V.A. Microwave-assisted multicomponent synthesis of heterocycles. Curr. Org. Chem., 2011, 15(2), 204-236.
[http://dx.doi.org/10.2174/138527211793979817]
[23]
Kranjc, K.; Kocevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14(10), 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[24]
Jiang, B.; Shi, F.; Tu, S.J. Microwave-assisted multicomponent reactions in the heterocyclic chemistry. Curr. Org. Chem., 2010, 14(4), 357-378.
[http://dx.doi.org/10.2174/138527210790231892]
[25]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[26]
Sakhuja, R.; Panda, S.S.; Bajaj, K. Microwave assisted synthesis of five membered azaheterocyclic systems. Curr. Org. Chem., 2012, 16(6), 789-828.
[http://dx.doi.org/10.2174/138527212799958011]
[27]
Toja, E.; Selva, D.; Schiatti, P. 3-Alkyl-2-aryl-3H-naphth[1,2-d]imidazoles, a novel class of nonacidic antiinflammatory agents. J. Med. Chem., 1984, 27(5), 610-616.
[http://dx.doi.org/10.1021/jm00371a010] [PMID: 6609233]
[28]
Lehuédé, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M. Synthesis and antioxidant activity of new tetraarylpyrroles. Eur. J. Med. Chem., 1999, 34(11), 991-996.
[http://dx.doi.org/10.1016/S0223-5234(99)00111-7] [PMID: 10889322]
[29]
Bürli, R.W.; McMinn, D.; Kaizerman, J.A.; Hu, W.; Ge, Y.; Pack, Q.; Jiang, V.; Gross, M.; Garcia, M.; Tanaka, R.; Moser, H.E. DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: Internal benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2004, 14(5), 1253-1257.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.042] [PMID: 14980676]
[30]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[31]
Del Poeta, M.; Schell, W.A.; Dykstra, C.C.; Jones, S.; Tidwell, R.R.; Czarny, A.; Bajic, M.; Bajic, M.; Kumar, A.; Boykin, D.; Perfect, J.R. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob. Agents Chemother., 1998, 42(10), 2495-2502.
[http://dx.doi.org/10.1128/AAC.42.10.2495] [PMID: 9756747]
[32]
Thompson, R.B. Foundations for blockbuster drugs in federally sponsored research. FASEB J., 2001, 15(10), 1671-1676.
[http://dx.doi.org/10.1096/fj.01-0024lsf] [PMID: 11481212]
[33]
Knorr, L.; Lange, H. On the formation of pyrrole derivatives from isonitrosoketone. Ber. Dtsch. Chem. Ges., 1902, 35(3), 2998-3008. [machine translation]
[http://dx.doi.org/10.1002/cber.19020350392]
[34]
Amarnath, V.; Anthony, D.C.; Amarnath, K.; Valentine, W.M.; Wetterau, L.A.; Graham, D.G. Intermediates in the Paal-Knorr synthesis of pyrroles. J. Org. Chem., 1991, 56(24), 6924-6931.
[http://dx.doi.org/10.1021/jo00024a040]
[35]
Matiychuk, V.S.; Martyak, R.L.; Obushak, N.D.; Ostapiuk, Y.V.; Pidlypnyi, N.I. 3-aryl-2-chloropropanals in Hantzsch synthesis of pyrroles. Chem. Heterocycl. Compd., 2004, 40(9), 1218-1219.
[http://dx.doi.org/10.1023/B:COHC.0000048299.17625.7f]
[36]
Robles-Machín, R.; López-Pérez, A.; González-Esguevillas, M.; Adrio, J.; Carretero, J.C. Pyrrole and oligopyrrole synthesis by 1,3-dipolar cycloaddition of azomethine ylides with sulfonyl dipolarophiles. Chemistry, 2010, 16(32), 9864-9873.
[http://dx.doi.org/10.1002/chem.201000742] [PMID: 20572184]
[37]
Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y. Threecomponent synthesis of polysubstituted pyrroles from α-diazoketones, nitroalkenes, and amines. Org. Lett., 2011, 13(17), 4668-4671.
[http://dx.doi.org/10.1021/ol201891r] [PMID: 21830767]
[38]
Oussaid, B.; Garrigues, B.; Soufiaoui, M. New method for microwave synthesis of pyrroles. Can. J. Chem., 1994, 72(12), 2483-2485.
[http://dx.doi.org/10.1139/v94-314]
[39]
Ruault, P.; Pilard, J.F.; Touaux, B.; Texier-Boullet, F.; Hamelin, J. Rapid generation of amines by microwave irradiation of ureas dispersed on clay. Synlett, 1994, 1994(11), 935-936.
[http://dx.doi.org/10.1055/s-1994-23054]
[40]
Abid, M.; Török, B.; Huang, X. Corrigendum to: Microwave-assisted tandem processes for the synthesis of N-heterocycles. Aust. J. Chem., 2009, 62(4), 392-392.
[http://dx.doi.org/10.1071/CH08474_CO]
[41]
Danks, T.N. Microwave assisted synthesis of pyrroles. Tetrahedron Lett., 1999, 40(20), 3957-3960.
[http://dx.doi.org/10.1016/S0040-4039(99)00620-6]
[42]
Minetto, G.; Raveglia, L.F.; Taddei, M. Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans. Org. Lett., 2004, 6(3), 389-392.
[http://dx.doi.org/10.1021/ol0362820] [PMID: 14748600]
[43]
Werner, S.; Iyer, P.S. Microwave-assisted synthesis of pyrrole-2carboxamides. Synlett, 2005, 2005(9), 1405-1408.
[http://dx.doi.org/10.1055/s-2005-868512]
[44]
Miles, K.C.; Mays, S.M.; Southerland, B.K.; Auvil, T.J.; Ketcha, D.M. The Clauson-Kaas pyrrole synthesis under microwave irradiation. Arkivoc, 2009, 14, 181-190.
[45]
Rivera, S.; Bandyopadhyay, D.; Banik, B.K. Facile synthesis of N-substituted pyrroles via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron Lett., 2009, 50(39), 5445-5448.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.002]
[46]
Wilson, M.A.; Filzen, G.; Welmaker, G.S. A microwave-assisted, green procedure for the synthesis of N-aryl sulfonyl and N-aryl pyrroles. Tetrahedron Lett., 2009, 50(34), 4807-4809.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.079]
[47]
Karakuş, H.; Dürüst, Y. Novel benzothiophene 1,1-dioxide deoxygenation path for the microwave-assisted synthesis of substituted benzothiophene-fused pyrrole derivatives. Mol. Divers., 2017, 21(1), 53-60.
[http://dx.doi.org/10.1007/s11030-016-9700-0] [PMID: 27677736]
[48]
Bonacorso, H.G.; Libero, F.M.; Dal Forno, G.M.; Pittaluga, E.P.; Back, D.F.; Hörner, M.; Martins, M.A.P.; Zanatta, N. New regioselective synthesis of polyfunctionalized 3-ferrocenyl-1 H -pyrroles under microwave irradiation. Tetrahedron Lett., 2016, 57(41), 4568-4573.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.088]
[49]
Georgescu, E.; Dumitrascu, F.; Georgescu, F.; Draghici, C.; Dumitrescu, D. Microwave-Assisted synthesis of a library of pyrrolo [1, 2-c] quinazolines. Revista de Chimie, 2019, 70(9), 3094-3099.
[http://dx.doi.org/10.37358/RC.19.9.7495]
[50]
Aghapoor, K.; Mohsenzadeh, F.; Darabi, H.R.; Rastgar, S. Microwave-induced calcium(II) chloride-catalyzed Paal-Knorr pyrrole synthesis: a safe, expeditious, and sustainable protocol. Res. Chem. Intermed., 2018, 44(7), 4063-4072.
[http://dx.doi.org/10.1007/s11164-018-3355-7]
[51]
Aghapoor, K.; Mohsenzadeh, F.; Darabi, H.R.; Sayahi, H. Crystalline salicylic acid as an efficient catalyst for ultrafast Paal-Knorr pyrrole synthesis under microwave induction. J. Chem. Sci., 2021, 133(2), 38.
[http://dx.doi.org/10.1007/s12039-021-01891-9]
[52]
Kamel, M.S.; Belal, A.; Aboelez, M.O.; Shokr, E.K.; Abdel-Ghany, H.; Mansour, H.S.; Shawky, A.M.; El-Remaily, M.A.E.A.A.A. Microwave-assisted synthesis, biological activity evaluation, molecular docking, and ADMET studies of some novel pyrrolo [2,3-b] pyrrole derivatives. Molecules, 2022, 27(7), 2061.
[http://dx.doi.org/10.3390/molecules27072061] [PMID: 35408463]
[53]
Khan, A.; Siddique, A.M.; Shaikh, M.; Khan, I.A.; Shafi, S. Microwave-assisted solvent-free tandem cross-metathesis/intramolecular isomerization-cyclization reaction for the synthesis of N -substituted pyrroles: It’s computational analysis. Synth. Commun., 2022, 52(4), 585-596.
[http://dx.doi.org/10.1080/00397911.2022.2039710]
[54]
Rostami, H.; Shiri, L.; Khani, Z. Recent advances in the synthesis of pyrazole scaffolds via nanoparticles: A review. Tetrahedron, 2022, 110132688
[http://dx.doi.org/10.1016/j.tet.2022.132688]
[55]
Wang, Y.; Zhang, W.X.; Xi, Z. Carbodiimide-based synthesis of N-heterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev., 2020, 49(16), 5810-5849.
[http://dx.doi.org/10.1039/C9CS00478E] [PMID: 32658233]
[56]
Regan, A.C.; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. Bicyclic 5-6 systems with one bridgehead (ring junction) nitrogen atom: Two extra heteroatoms 1:1. In: Comprehensive Heterocyclic Chemistry III; Elsevier: Oxford, UK, 2008; 11, pp. 551-587.
[57]
Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional pyrazolo [1, 5-a] pyrimidines: Current approaches in synthetic transformations and uses as an antitumor scaffold. Molecules, 2021, 26(9), 2708.
[http://dx.doi.org/10.3390/molecules26092708] [PMID: 34063043]
[58]
Sarmiento, J.T.; Portilla, J. Current advances in chemosensors diazoles-based for CN- and F- detection. Curr. Org. Synth., 2022, 61-79.
[59]
Zanatta, N.; Camargo, A.F.; Marangoni, M.A.; de Moraes, P.A.; Nogara, P.A.; Afolabi, B.A.; Bencke, C.E.; Rocha, J.B.T.; Bonacorso, H.G.; Martins, M.A.P. Regioselective synthesis of pyrazolyl-pyrimidine hybrids of pharmacological interest. Synthesis, 2020, 52(16), 2347-2356.
[http://dx.doi.org/10.1055/s-0040-1707948]
[60]
Donaire-Arias, A.; Montagut, A.M.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. 1H-Pyrazolo[3,4-b]pyridines: Synthesis and biomedical applications. Molecules, 2022, 27(7), 2237.
[http://dx.doi.org/10.3390/molecules27072237] [PMID: 35408636]
[61]
Martins, M.A.P.; Pereira, C.M.P.; Beck, P.; Machado, P.; Moura, S.; Teixeira, M.V.M.; Bonacorso, H.G.; Zanatta, N. Microwave-assisted synthesis of 5-trichloromethyl substituted 1-phenyl-1H-pyrazoles and 1,2-dimethylpyrazolium chlorides. Tetrahedron Lett., 2003, 44(35), 6669-6672.
[http://dx.doi.org/10.1016/S0040-4039(03)01633-2]
[62]
Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. Comprehensive Heterocyclic Chemistry III, 14th ed; Pergamon: Oxford, U.K, 2008.
[63]
Arrieta, A.; Ramón Carrillo, J.; Cossío, F.P.; Díaz-Ortiz, A.; JoséGómez-Escalonilla, M.; de la Hoz, A.; Langa, F.; Moreno, A. Efficient tautomerization hydrazone-azomethine imine under microwave irradiation. Synthesis of [4,3′] and [5,3′]bipyrazoles. Tetrahedron, 1998, 54(43), 13167-13180.
[http://dx.doi.org/10.1016/S0040-4020(98)00798-4]
[64]
Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei, M. Microwave-assisted solution-phase synthesis of 1,4,5-trisubstituted pyrazoles. Eur. J. Org. Chem., 2003, 2003(3), 537-541.
[http://dx.doi.org/10.1002/ejoc.200390091]
[65]
Sridhar, R.; Perumal, P.T. Synthesis of novel 1-H-pyrazole-4-carboxylic acid esters by conventional and microwave assisted Vilsmeier cyclization of hydrazones. Synth. Commun., 2003, 33(9), 1483-1488.
[http://dx.doi.org/10.1081/SCC-120018766]
[66]
Khodadad, H.; Hatamjafari, F.; Pourshamsian, K.; Sadeghi, B. Microwave-assisted synthesis of novel pyrazole derivatives and their biological evaluation as anti-bacterial agents. Comb. Chem. High Throughput Screen., 2021, 24(5), 695-700.
[http://dx.doi.org/10.2174/1386207323666201019152206] [PMID: 33076806]
[67]
Gomha, S.M.; Edrees, M.M.; Faty, R.A.M.; Muhammad, Z.A.; Mabkhot, Y.N. Microwave-assisted one pot three-component synthesis of some novel pyrazole scaffolds as potent anticancer agents. Chem. Cent. J., 2017, 11(1), 37.
[http://dx.doi.org/10.1186/s13065-017-0266-4] [PMID: 29086808]
[68]
Sood, S.; Kumari, P.; Yadav, A.N.; Kumar, A.; Singh, K. Microwave‐assisted synthesis and biological evaluation of pyrazole‐4‐carbonitriles as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(7), 2936-2944.
[http://dx.doi.org/10.1002/jhet.4003]
[69]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249131605
[http://dx.doi.org/10.1016/j.molstruc.2021.131605]
[70]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[71]
Wang, L.M.; Wang, Y.H.; Tian, H.; Yao, Y.F.; Shao, J.H.; Liu, B. Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. J. Fluor. Chem., 2006, 127(12), 1570-1573.
[http://dx.doi.org/10.1016/j.jfluchem.2006.08.005]
[72]
Sharma, G.V.M.; Ramesh, A.; Singh, A.; Srikanth, G.; Jayaram, V.; Duscharla, D.; Jun, J.H.; Ummanni, R.; Malhotra, S.V. Imidazole derivatives show anticancer potential by inducing apoptosis and cellular senescence. MedChemComm, 2014, 5(11), 1751-1760.
[http://dx.doi.org/10.1039/C4MD00277F]
[73]
Fang, Y.; Yuan, R.; Ge, W.; Wang, Y.; Liu, G.; Li, M.; Xu, J.; Wan, Y.; Zhou, S.; Han, X.; Zhang, P.; Liu, J.; Wu, H. Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles. Res. Chem. Intermed., 2017, 43(8), 4413-4421.
[http://dx.doi.org/10.1007/s11164-017-2886-7]
[74]
Ghorbani-Vaghei, R.; Izadkhah, V.; Mahmoodi, J.; Karamian, R.; Ahmadi Khoei, M. The synthesis of imidazoles and evaluation of their antioxidant and antifungal activities. Monatsh. Chem., 2018, 149(8), 1447-1452.
[http://dx.doi.org/10.1007/s00706-018-2167-1]
[75]
Mader, M.; de Dios, A.; Shih, C.; Bonjouklian, R.; Li, T.; White, W.; López de Uralde, B.; Sánchez-Martinez, C.; del Prado, M.; Jaramillo, C.; de Diego, E.; Martín Cabrejas, L.M.; Dominguez, C.; Montero, C.; Shepherd, T.; Dally, R.; Toth, J.E. Imidazolyl benzimidazoles and imidazo[4,5-b]pyridines as potent p38alpha MAP kinase inhibitors with excellent in vivo anti-inflammatory properties. Bioorg. Med. Chem. Lett., 2008, 18(1), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.106] [PMID: 18039577]
[76]
Takle, A.K.; Brown, M.J.B.; Davies, S.; Dean, D.K.; Francis, G.; Gaiba, A.; Hird, A.W.; King, F.D.; Lovell, P.J.; Naylor, A.; Reith, A.D.; Steadman, J.G.; Wilson, D.M. The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett., 2006, 16(2), 378-381.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.072] [PMID: 16260133]
[77]
Rossi, R.; Angelici, G.; Casotti, G.; Manzini, C.; Lessi, M. Catalytic synthesis of 1,2,4,5‐tetrasubstituted 1 H‐imidazole derivatives: State of the art. Adv. Synth. Catal., 2019, 361(12), 2737-2803.
[http://dx.doi.org/10.1002/adsc.201801381]
[78]
Esmaeilpour, M.; Javidi, J.; Zandi, M. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4 @SiO2 -imid-PMAn magnetic porous nanospheres as a recyclable catalyst. New J. Chem., 2015, 39(5), 3388-3398.
[http://dx.doi.org/10.1039/C5NJ00050E]
[79]
Bahrami, K.; Khodaei, M.M.; Nejati, A. One-pot synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazoles by zinc oxide as efficient and reusable catalyst. Monatsh. Chem., 2011, 142(2), 159-162.
[http://dx.doi.org/10.1007/s00706-010-0428-8]
[80]
Kumar, D.; Kommi, D.N.; Bollineni, N.; Patel, A.R.; Chakraborti, A.K. Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles. Green Chem., 2012, 14(7), 2038-2049.
[http://dx.doi.org/10.1039/c2gc35277j]
[81]
Green, M.D.; Long, T.E. Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym. Rev. (Phila. Pa.), 2009, 49(4), 291-314.
[http://dx.doi.org/10.1080/15583720903288914]
[82]
Singh, H.; Rajput, J.K. Co(II) anchored glutaraldehyde crosslinked magnetic chitosan nanoparticles (MCS) for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Appl. Organomet. Chem., 2018, 32(1)e3989
[http://dx.doi.org/10.1002/aoc.3989]
[83]
Wolkenberg, S.E.; Wisnoski, D.D.; Leister, W.H.; Wang, Y.; Zhao, Z.; Lindsley, C.W. Efficient synthesis of imidazoles from aldehydes and 1,2-diketones using microwave irradiation. Org. Lett., 2004, 6(9), 1453-1456.
[http://dx.doi.org/10.1021/ol049682b] [PMID: 15101765]
[84]
Ahmed Arafa, W.A. An eco-compatible pathway to the synthesis of mono and bis-multisubstituted imidazoles over novel reusable ionic liquids: an efficient and green sonochemical process. RSC Adv, 2018, 8(29), 16392-16399.
[http://dx.doi.org/10.1039/C8RA02755B] [PMID: 35559116]
[85]
Taha, N.I.; Tapabashi, N.O.; El-Subeyhi, M.N. Green synthesis of new tetra schiff bases and bis-azo bis-schiff bases derived from 2, 6-diaminopyridine as promising photosensitizers. Int. J. Org. Chem. (Irvine), 2018, 8(3), 309-318.
[http://dx.doi.org/10.4236/ijoc.2018.83023]
[86]
Shaikh, M.; Wagare, D.; Farooqui, M.; Durrani, A. Microwave assisted synthesis of novel schiff bases of pyrazolyl carbaldehyde and triazole in PEG400. Polycycl. Aromat. Compd., 2020, 40(5), 1315-1320.
[http://dx.doi.org/10.1080/10406638.2018.1544154]
[87]
Zhou, J.F.; Song, Y.Z.; Yang, Y.L.; Zhu, Y.L.; Tu, S.J. One‐step synthesis of 2‐aryl‐4, 5‐diphenylimidazoles under microwave irradiation. Synth. Commun., 2005, 35(10), 1369-1373.
[http://dx.doi.org/10.1081/SCC-200057281]
[88]
Wu, L.; Jing, X.; Zhu, H.; Liu, Y.; Yan, C. One-pot synthesis of polysubstituted imidazoles from arylaldehydes in water catalyzed by NHC using microwave irradiation. J. Chil. Chem. Soc., 2012, 57(3), 1204-1207.
[http://dx.doi.org/10.4067/S0717-97072012000300002]
[89]
Kalhor, M.; Samiei, S.; Mirshokraei, S.A. Microwave-assisted one-step rapid synthesis of dicyano imidazoles by HNO3 as a high efficient promoter. Green Chem. Lett. Rev., 2021, 14(3), 500-508.
[http://dx.doi.org/10.1080/17518253.2021.1943005]
[90]
Güngör, T. Microwave assisted, sequential two-step, one-pot synthesis of novel imidazo[1,2-a] pyrimidine containing tri/tetrasubstituted imidazole derivatives. Turk. J. Chem., 2021, 45(1), 219-230.
[http://dx.doi.org/10.3906/kim-2009-40] [PMID: 33679165]
[91]
Safari, J.; Naseh, S.; Zarnegar, Z.; Akbari, Z. Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst. J. Taibah Univ. Sci., 2014, 8(4), 323-330.
[http://dx.doi.org/10.1016/j.jtusci.2014.01.007]
[92]
Hanoon, H.D.; Radhi, S.M.; Abbas, S.K. Simple and efficient synthesis of 2, 4, 5-triarylsubstituted imidazole derivatives via a multicomponent reaction using microwave irradiation. AIP Conf. Proc., 2019, 2144(1), 020005.
[http://dx.doi.org/10.1063/1.5123062]
[93]
Kumar, S.; Sarmah, M.P.; Reddy, Y.; Bhatt, A.; Kant, R. A one-step synthesis of substituted benzo- and pyridine-fused 1H-imidazoles. Synth. Commun., 2022, 52(1), 96-105.
[http://dx.doi.org/10.1080/00397911.2021.2001658]
[94]
Mahmoodi, N.O.; Rahimi, S.; Pasandideh Nadamani, M. Microwave-assisted synthesis and photochromic properties of new azo-imidazoles. Dyes Pigments, 2017, 143, 387-392.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.053]
[95]
Hantzsch, A.; Weber, J.H. Thiazole compounds. Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[96]
Thomsen, I.; Pedersen, U.; Rasmussen, P.B.; Yde, B.; Andersen, T.P. SStudies on organophosphorus compounds. CLIV. novel and convenient methods for R the preparation of substituted thiophenes, thiazoles, and 1, 3, 4‐thiadiazole‐2 (3h)‐thiones from bifunctional substrates. ChemInform, 1983, 14(51)
[97]
Cook, A.H.; Heilbron, I.; Macdonald, S.F.; Mahadevan, A.P. Studies in the azole series. Part XII. Some thiazolopyrimidines. J. Chem. Soc., 1949, 1064-1068.
[http://dx.doi.org/10.1039/jr9490001064]
[98]
Huestis, L.D.; Walsh, M.L.; Hahn, N. The Herz reaction. The formation and hydrolysis of Herz compounds. J. Org. Chem., 1965, 30(8), 2763-2766.
[http://dx.doi.org/10.1021/jo01019a061]
[99]
Kidwai, M.; Dave, B.; Bhushan, K.R. Alumina-supported synthesis of aminoazoles using microwaves. Chem. Pap., 2000, 54(4), 231-234.
[100]
Kidwai, M.; Venkataramanan, R.; Dave, B. Potassium carbonate, a support for the green synthesis of azoles and diazines. J. Heterocycl. Chem., 2002, 39(5), 1045-1047.
[http://dx.doi.org/10.1002/jhet.5570390530]
[101]
El-Borai, M.A.; Rizk, H.F.; Ibrahim, S.A.; El-Sayed, H.F. Microwave assisted synthesis of fused thiazoles in multicomponent system and their in vitro antitumor, antioxidant, and antimicrobial activities. J. Heterocycl. Chem., 2017, 54(2), 1031-1041.
[http://dx.doi.org/10.1002/jhet.2671]
[102]
Asif, M.; Ali, A.; Zafar, A.; Farhan, M.; Khanam, H.; Hadi, S.M. Shamsuzzaman, Microwave-assisted one pot synthesis, characterization, biological evaluation and molecular docking studies of steroidal thiazoles. J. Photochem. Photobiol. B, 2017, 166, 104-115.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.11.010] [PMID: 27888739]
[103]
Seeger, T.F.; Seymour, P.A.; Schmidt, A.W.; Zorn, S.H.; Schulz, D.W.; Lebel, L.A.; McLean, S.; Guanowsky, V.; Howard, H.R.; Lowe, J.A. III Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J. Pharmacol. Exp. Ther., 1995, 275(1), 101-113.
[PMID: 7562537]
[104]
Onrust, S.V.; McClellan, K. Perospirone. CNS Drugs, 2001, 15(4), 329-337.
[http://dx.doi.org/10.2165/00023210-200115040-00006] [PMID: 11463136]
[105]
Morrison, A.J.; Paton, R.M.; Sharp, R.D. Microwave‐assisted generation and reactions of nitrile sulfides. Synth. Commun., 2005, 35(6), 807-813.
[http://dx.doi.org/10.1081/SCC-200050948]
[106]
Mishra, M.; Mahalanabis, K.K. Silica supported chromium trioxide: Microwave promoted oxidative ring closure of alpha-cyano-beta-thioenaminones to isothiazoles. Indian J. Chem., 2007, 46B(1), 204-206.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy