Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Revisiting the South Indian Traditional Plants against Several Targets of SARS-CoV-2 - An in silico Approach

Author(s): Srikanth Jupudi*, Srikala Rajala, Narasimha Rao Gaddam, Gomathi Swaminathan, Jaya Preethi Peesa, Kalirajan Rajagopal and Mohammed Afzal Azam

Volume 19, Issue 3, 2023

Published on: 19 January, 2023

Page: [202 - 233] Pages: 32

DOI: 10.2174/1573409919666221230105758

Price: $65

Abstract

Background: The south Indian Telugu states will celebrate a new year called ‘Ugadi’ which is a south Indian traditional festival. The ingredients used in ugadi pachadi have often also been used in food as well as traditional Ayurveda and Siddha medicinal preparations. Coronaviruses (CoVs) are a diverse family of enveloped positive-sense single-stranded RNA viruses which can infect humans and have the potential to cause large-scale outbreaks.

Objective: Considering the benefits of ugadi pachadi, we investigated the binding modes of various phytochemical constituents reported from its ingredients against five targets of SARS-CoV-2.

Methods: Flexible-ligand docking simulations were achieved through AutoDock version 1.5.6. Following 50ns of molecular dynamics simulation using GROMACS 2018.1 software and binding free energy (ΔGbind) of the protein-ligand complexes were calculated using the g_mmpbsa tool. ADME prediction was done using Qikprop of Schrodinger.

Results: From the molecular docking and MM/PBSA results compound Eriodictin exhibited the highest binding energy when complexed with nucleocapsid N protein (6M3M) (-6.8 kcal/mol, - 82.46 kJ/mol), bound SARS-CoV-2-hACE2 complex (6M0J) (-7.4 kcal/mol, -71.10 kJ/mol) and Mpro (6XR3) (-8.6 kcal/mol, -140.21 kJ/mol). Van der Waal and electrostatic energy terms highly favored total free energy binding.

Conclusion: The compounds Eriodictin, Vitexin, Cycloart-3, 24, 27-triol, Agigenin, Mangiferin, Mangiferolic acid, Schaftoside, 27-Hydroxymangiferonic acid, Quercetin, Azadirachtol, Cubebin, Isomangiferin, Isoquercitrin, Malicarpin, Orientin and procyanidin dimer exhibited satisfactory binding energy values when compared with standard molecules. The further iterative optimization of high-ranked compounds following validation by in vitro and in vivo techniques assists in discovering therapeutic anti-SARS-CoV-2 molecules.

Graphical Abstract

[1]
Sekhar, A.C. Census of India, Monograph Series, Ugadi, Part VIIB, Monograph no.4; Ministry of Home affairs: New Delhi, 1961.
[2]
Jagannathan, M. South Indian Hindu festivals and traditions; Abhinav Publications: New Delhi, 2005.
[3]
Chandra, S.; Jain, A.K. Foundations of ethnobotany: 21st century perspective, 1st ed; Scientific Publishers: India, 2017.
[4]
Shah, K.A.; Patel, M.B.; Patel, R.J.; Parmar, P.K. Mangifera indica (mango). Pharmacogn. Rev., 2010, 4(7), 42-48.
[http://dx.doi.org/10.4103/0973-7847.65325] [PMID: 22228940]
[5]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango). Evid. Based Complement. Alternat. Med., 2017, 2017, 1-24.
[http://dx.doi.org/10.1155/2017/6949835] [PMID: 29456572]
[6]
Hanif, M.A.; Nawaz, H.; Khan, M.M.; Byrne, H.J. Medicinal Plants of South Asia-Novel Sources for Drug Discovery; Elseveir: United Kingdom, 2020.
[7]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), 728.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[8]
Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, G.; Dhawan, R. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev., 2015, 9(17), 45-54.
[http://dx.doi.org/10.4103/0973-7847.156340] [PMID: 26009693]
[9]
Gupta, R.; Misra, A.; Pais, P.; Rastogi, P.; Gupta, V.P. Correlation of regional cardiovascular disease mortality in India with lifestyle and nutritional factors. Int. J. Cardiol., 2006, 108(3), 291-300.
[http://dx.doi.org/10.1016/j.ijcard.2005.05.044] [PMID: 15978684]
[10]
Awad, K.; Penson, P.; Banach, M. D-003 (Saccharum officinarum): The forgotten lipid-lowering agent. Pharmacol. Res., 2016, 114, 42-46.
[http://dx.doi.org/10.1016/j.phrs.2016.10.008] [PMID: 27751878]
[11]
Kuru, P. Tamarindus indica and its health related effects. Asian Pac. J. Trop. Biomed., 2014, 4(9), 676-681.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0173]
[12]
Devarajan, A.; Mohanmarugaraja, M.K. A comprehensive review on Rasam: A South Indian traditional functional food. Pharmacogn. Rev., 2017, 11(22), 73-82.
[http://dx.doi.org/10.4103/phrev.phrev_13_17] [PMID: 28989243]
[13]
Havinga, R.M.; Hartl, A.; Putscher, J.; Prehsler, S.; Buchmann, C.; Vogl, C.R. Tamarindus indica L. (Fabaceae): Patterns of use in traditional African medicine. J. Ethnopharmacol., 2010, 127(3), 573-588.
[http://dx.doi.org/10.1016/j.jep.2009.11.028] [PMID: 19963055]
[14]
Lima, E.B.C.; Sousa, C.N.S.; Meneses, L.N.; Ximenes, N.C.; Santos Júnior, M.A.; Vasconcelos, G.S.; Lima, N.B.C.; Patrocínio, M.C.A.; Macedo, D.; Vasconcelos, S.M.M. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz. J. Med. Biol. Res., 2015, 48(11), 953-964.
[http://dx.doi.org/10.1590/1414-431x20154773] [PMID: 26292222]
[15]
Chatterjee, P.; Fernando, M.; Fernando, B.; Dias, C.B.; Shah, T.; Silva, R.; Williams, S.; Pedrini, S.; Hillebrandt, H.; Goozee, K.; Barin, E.; Sohrabi, H.R.; Garg, M.; Cunnane, S.; Martins, R.N. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer’s disease. Mech. Ageing Dev., 2020, 186111209
[http://dx.doi.org/10.1016/j.mad.2020.111209] [PMID: 31953123]
[16]
Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S.; Ali, M.; Khan, M.A. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac. J. Trop. Biomed., 2012, 2(3), S1945-S1953.
[http://dx.doi.org/10.1016/S2221-1691(12)60524-3]
[17]
Mani, D.; Dhawan, S.S. Scientific basis of therapeutic uses of opium poppy (Papaver somniferum) in Ayurveda. ISHS Acta Horticulturae 1036. International Symposium on Papaver, 2011, pp. 175-180.
[18]
Balasubramanian, S.; Roselin, P.; Singh, K.K.; Zachariah, J.; Saxena, S.N. Postharvest processing and benefits of black pepper, coriander, cinnamon, fenugreek, and turmeric spices. Crit. Rev. Food Sci. Nutr., 2016, 56(10), 1585-1607.
[http://dx.doi.org/10.1080/10408398.2012.759901] [PMID: 25747463]
[19]
Derosa, G.; Maffioli, P.; Sahebkar, A. Piperine and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 173-184.
[http://dx.doi.org/10.1007/978-3-319-41334-1_8] [PMID: 27671817]
[20]
Gupta, S.C.; Prasad, S.; Aggarwal, B.B. Anti-inflammatory nutraceuticals and chronic diseases; Springer: New York, 2016, p. 928.
[http://dx.doi.org/10.1007/978-3-319-41334-1]
[21]
Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine, 2017, 34(34), 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[22]
Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; Medhi, B. Drug targets for corona virus: A systematic review. Int. J. Pharmacol., 2020, 52(1), 56-65.
[PMID: 32201449]
[23]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[24]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[25]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[26]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[27]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[28]
Srinivasan, S.; Cui, H.; Gao, Z.; Liu, M.; Lu, S.; Mkandawire, W.; Narykov, O.; Sun, M.; Korkin, D. Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses, 2020, 12(4), 360.
[http://dx.doi.org/10.3390/v12040360] [PMID: 32218151]
[29]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[30]
Hunter, A.D. ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0. J. Chem. Educ., 1997, 74(8), 905-906.
[http://dx.doi.org/10.1021/ed074p905]
[31]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[32]
Systèmes, D.; Visualizer, D.S. Discovery Studio Visualizer, Dassault Systèmes BIOVIA, San Diego. 2020. Available from: https://discover.3ds.com/discovery-studio-visualizer-download
[33]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[34]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[35]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808.
[http://dx.doi.org/10.1021/jm060522a] [PMID: 16884290]
[36]
Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem., 2005, 48(12), 4040-4048.
[http://dx.doi.org/10.1021/jm049081q] [PMID: 15943477]
[37]
Pitera, J.W. Expected distributions of root-mean-square positional deviations in proteins. J. Phys. Chem. B, 2014, 118(24), 6526-6530.
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[38]
Bornot, A.; Etchebest, C.; de Brevern, A.G. Predicting protein flexibility through the prediction of local structures. Proteins, 2011, 79(3), 839-852.
[http://dx.doi.org/10.1002/prot.22922] [PMID: 21287616]
[39]
DUD E. A Database of Useful Decoys: Enhanced. Available from: dude.docking.org/
[40]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy