Abstract
Background: The south Indian Telugu states will celebrate a new year called ‘Ugadi’ which is a south Indian traditional festival. The ingredients used in ugadi pachadi have often also been used in food as well as traditional Ayurveda and Siddha medicinal preparations. Coronaviruses (CoVs) are a diverse family of enveloped positive-sense single-stranded RNA viruses which can infect humans and have the potential to cause large-scale outbreaks.
Objective: Considering the benefits of ugadi pachadi, we investigated the binding modes of various phytochemical constituents reported from its ingredients against five targets of SARS-CoV-2.
Methods: Flexible-ligand docking simulations were achieved through AutoDock version 1.5.6. Following 50ns of molecular dynamics simulation using GROMACS 2018.1 software and binding free energy (ΔGbind) of the protein-ligand complexes were calculated using the g_mmpbsa tool. ADME prediction was done using Qikprop of Schrodinger.
Results: From the molecular docking and MM/PBSA results compound Eriodictin exhibited the highest binding energy when complexed with nucleocapsid N protein (6M3M) (-6.8 kcal/mol, - 82.46 kJ/mol), bound SARS-CoV-2-hACE2 complex (6M0J) (-7.4 kcal/mol, -71.10 kJ/mol) and Mpro (6XR3) (-8.6 kcal/mol, -140.21 kJ/mol). Van der Waal and electrostatic energy terms highly favored total free energy binding.
Conclusion: The compounds Eriodictin, Vitexin, Cycloart-3, 24, 27-triol, Agigenin, Mangiferin, Mangiferolic acid, Schaftoside, 27-Hydroxymangiferonic acid, Quercetin, Azadirachtol, Cubebin, Isomangiferin, Isoquercitrin, Malicarpin, Orientin and procyanidin dimer exhibited satisfactory binding energy values when compared with standard molecules. The further iterative optimization of high-ranked compounds following validation by in vitro and in vivo techniques assists in discovering therapeutic anti-SARS-CoV-2 molecules.
Graphical Abstract
[http://dx.doi.org/10.4103/0973-7847.65325] [PMID: 22228940]
[http://dx.doi.org/10.1155/2017/6949835] [PMID: 29456572]
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[http://dx.doi.org/10.4103/0973-7847.156340] [PMID: 26009693]
[http://dx.doi.org/10.1016/j.ijcard.2005.05.044] [PMID: 15978684]
[http://dx.doi.org/10.1016/j.phrs.2016.10.008] [PMID: 27751878]
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0173]
[http://dx.doi.org/10.4103/phrev.phrev_13_17] [PMID: 28989243]
[http://dx.doi.org/10.1016/j.jep.2009.11.028] [PMID: 19963055]
[http://dx.doi.org/10.1590/1414-431x20154773] [PMID: 26292222]
[http://dx.doi.org/10.1016/j.mad.2020.111209] [PMID: 31953123]
[http://dx.doi.org/10.1016/S2221-1691(12)60524-3]
[http://dx.doi.org/10.1080/10408398.2012.759901] [PMID: 25747463]
[http://dx.doi.org/10.1007/978-3-319-41334-1_8] [PMID: 27671817]
[http://dx.doi.org/10.1007/978-3-319-41334-1]
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[PMID: 32201449]
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[http://dx.doi.org/10.3390/v12040360] [PMID: 32218151]
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[http://dx.doi.org/10.1021/ed074p905]
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[http://dx.doi.org/10.1063/1.448118]
[http://dx.doi.org/10.1021/jm060522a] [PMID: 16884290]
[http://dx.doi.org/10.1021/jm049081q] [PMID: 15943477]
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[http://dx.doi.org/10.1002/prot.22922] [PMID: 21287616]
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]