Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Pharmacogenomics—a New Frontier for Individualized Treatment of Parkinson’s Disease

Author(s): Jia-Si Liu, Ying Chen, Dan-Dan Shi, Bao-Rong Zhang* and Jia-Li Pu*

Volume 21, Issue 3, 2023

Published on: 25 January, 2023

Page: [536 - 546] Pages: 11

DOI: 10.2174/1570159X21666221229154830

Price: $65

Abstract

Background: Parkinson’s disease (PD) is the second most common neurodegenerative disease with a significant public health burden. It is characterized by the gradual degeneration of dopamine neurons in the central nervous system. Although symptomatic pharmacological management remains the primary therapeutic method for PD, clinical experience reveals significant inter-individual heterogeneity in treatment effectiveness and adverse medication responses. The mechanisms behind the observed interindividual variability may be elucidated by investigating the role of genetic variation in human-to-human variances in medication responses and adverse effects.

Objective: This review aims to explore the impact of gene polymorphism on the efficacy of antiparkinsonian drugs. The identification of factors associated with treatment effectiveness variability might assist the creation of a more tailored pharmacological therapy with higher efficacy, fewer side outcomes, and cheaper costs.

Methods: In this review, we conducted a thorough search in databases such as PubMed, Web of Science, and Google Scholar, and critically examined current discoveries on Parkinson's disease pharmacogenetics. The ethnicity of the individuals, research methodologies, and potential bias of these studies were thoroughly compared, with the primary focus on consistent conclusions.

Results: This review provides a summary of the existing data on PD pharmacogenetics, identifies its limitations, and offers insights that may be beneficial for future research. Previous studies have investigated the impact of gene polymorphism on the effectiveness and adverse effects of levodopa. The trendiest genes are the COMT gene, DAT gene, and DRD2 gene. However, limited study on other anti-Parkinson's drugs has been conducted.

Conclusion: Therefore, In order to develop an individualized precision treatment for PD, it is an inevitable trend to carry out multi-center, prospective, randomized controlled clinical trials of PD pharmacogenomics covering common clinical anti-PD drugs in large, homogeneous cohorts.

Graphical Abstract

[1]
deRijk, M.C.; Tzourio, C.; Breteler, M.M.B.; Dartigues, J.F.; Amaducci, L.; Lopez, P.S.; Manubens, B.J.M.; Alperovitch, A.; Rocca, W.A. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON collaborative study. J. Neurol. Neurosur. PS, 1997, 62(1), 10-15.
[http://dx.doi.org/10.1136/jnnp.62.1.10]
[2]
Zhang, Z.; Roman, G.; Hong, Z.; Wu, C.; Qu, Q.; Huang, J.; Zhou, B.; Geng, Z.; Wu, J.; Wen, H.; Zhao, H.; Zahner, G.E.P. Parkinson’s disease in China: Prevalence in beijing, xian, and shanghai. Lancet, 2005, 365(9459), 595-597.
[http://dx.doi.org/10.1016/S0140-6736(05)70801-1] [PMID: 15708103]
[3]
Qi, S.; Yin, P.; Wang, L.; Qu, M.; Kan, G.L.; Zhang, H.; Zhang, Q.; Xiao, Y.; Deng, Y.; Dong, Z.; Shi, Y.; Meng, J.; Chan, P.; Wang, Z. Prevalence of Parkinson’s Disease: A Community‐Based Study in China. Mov. Disord., 2021, 36(12), 2940-2944.
[http://dx.doi.org/10.1002/mds.28762] [PMID: 34390510]
[4]
Wolters, E.Ch.; Braak, H. Parkinson’s disease: Premotor clinico-pathological correlations. J. Neural Transm. Suppl., 2006, (70), 309-319.
[PMID: 17017546]
[5]
Rocha, E.M.; De Miranda, B.; Sanders, L.H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol. Dis. 2018, 109(Pt B), 249.
[6]
Fahn, S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov. Disord., 2008, 23(S3)(Suppl. 3), S497-S508.
[http://dx.doi.org/10.1002/mds.22028] [PMID: 18781671]
[7]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[8]
Corvol, J.C.; Poewe, W. Pharmacogenetics of Parkinson’s disease in clinical practice. Mov. Disord. Clin. Pract. (Hoboken), 2017, 4(2), 173-180.
[http://dx.doi.org/10.1002/mdc3.12444] [PMID: 30363349]
[9]
Cacabelos, R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3), 551.
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[10]
Payami, H. The emerging science of precision medicine and pharmacogenomics for Parkinson’s disease. Mov. Disord., 2017, 32(8), 1139-1146.
[http://dx.doi.org/10.1002/mds.27099] [PMID: 28686320]
[11]
Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol., 2009, 158(3), 693-705.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00430.x] [PMID: 19785645]
[12]
Roden, D.M.; McLeod, H.L.; Relling, M.V.; Williams, M.S.; Mensah, G.A.; Peterson, J.F.; Van Driest, S.L. Pharmacogenomics. Lancet, 2019, 394(10197), 521-532.
[http://dx.doi.org/10.1016/S0140-6736(19)31276-0] [PMID: 31395440]
[13]
Cacabelos, R.; Cacabelos, P.; Aliev, G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open J. Psychiatr., 2013, 3(1), 46-139.
[http://dx.doi.org/10.4236/ojpsych.2013.31008]
[14]
Schumacher-Schuh, A.F.; Rieder, C.R.M.; Hutz, M.H. Parkinson’s disease pharmacogenomics: New findings and perspectives. Pharmacogenomics, 2014, 15(9), 1253-1271.
[http://dx.doi.org/10.2217/pgs.14.93] [PMID: 25141900]
[15]
Redenšek, S.; Dolžan, V. The role of pharmacogenomics in the personalization of Parkinson’s disease treatment. Pharmacogenomics, 2020, 21(14), 1033-1043.
[http://dx.doi.org/10.2217/pgs-2020-0031] [PMID: 32893736]
[16]
Politi, C.; Ciccacci, C.; Novelli, G.; Borgiani, P. Genetics and treatment response in Parkinson’s disease: An update on pharmacogenetic studies. Neuromol. Med., 2018, 20(1), 1-17.
[http://dx.doi.org/10.1007/s12017-017-8473-7] [PMID: 29305687]
[17]
Scanlon, P.D.; Raymond, F.A.; Weinshilboum, R.M. Catechol-O-methyltransferase: Thermolabile enzyme in erythrocytes of subjects homozygous for allele for low activity. Science, 1979, 203(4375), 63-65.
[http://dx.doi.org/10.1126/science.758679] [PMID: 758679]
[18]
McLeod, H.L.; Fang, L.; Luo, X.; Scott, E.P.; Evans, W.E. Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J. Pharmacol. Exp. Ther., 1994, 270(1), 26-29.
[PMID: 8035323]
[19]
Emin Erdal, M.; Herken, H.; Yilmaz, M.; Bayazit, Y.A. Significance of the catechol-O-methyltransferase gene polymorphism in migraine. Brain Res. Mol. Brain Res., 2001, 94(1-2), 193-196.
[http://dx.doi.org/10.1016/S0169-328X(01)00219-4] [PMID: 11597779]
[20]
Lachman, H.M.; Papolos, D.F.; Saito, T.; Yu, Y.M.; Szumlanski, C.L.; Weinshilboum, R.M. Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 1996, 6(3), 243-250.
[http://dx.doi.org/10.1097/00008571-199606000-00007] [PMID: 8807664]
[21]
Białecka, M.; Droździk, M.; Kłodowska-Duda, G.; Honczarenko, K.; Gawrońska-Szklarz, B.; Opala, G.; Stankiewicz, J. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol. Scand., 2004, 110(4), 260-266.
[http://dx.doi.org/10.1111/j.1600-0404.2004.00315.x] [PMID: 15355491]
[22]
Cheshire, P.; Bertram, K.; Ling, H.; O’Sullivan, S.S.; Halliday, G.; McLean, C.; Bras, J.; Foltynie, T.; Storey, E.; Williams, D.R. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener. Dis., 2014, 13(1), 24-28.
[http://dx.doi.org/10.1159/000351097] [PMID: 24008922]
[23]
Sampaio, T.F.; dos Santos, E.U.D.; de Lima, G.D.C.; dos Anjos, R.S.G.; da Silva, R.C.; Asano, A.G.C.; Asano, N.M.J.; Crovella, S.; de Souza, P.R.E. MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J. Clin. Pharmacol., 2018, 58(7), 920-926.
[http://dx.doi.org/10.1002/jcph.1096] [PMID: 29578580]
[24]
Contin, M.; Martinelli, P.; Mochi, M.; Riva, R.; Albani, F.; Baruzzi, A. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patients with Parkinson’s disease. Mov. Disord., 2005, 20(6), 734-739.
[http://dx.doi.org/10.1002/mds.20410] [PMID: 15747357]
[25]
Lee, M.S.; Lyoo, C.H.; Ulmanen, I.; Syvänen, A.C.; O., Rinne J. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neurosci. Lett., 2001, 298(2), 131-134.
[http://dx.doi.org/10.1016/S0304-3940(00)01749-3] [PMID: 11163295]
[26]
Grandy, D.K.; Litt, M.; Allen, L.; Bunzow, J.R.; Marchionni, M.; Makam, H.; Reed, L.; Magenis, R.E.; Civelli, O. The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am. J. Hum. Genet., 1989, 45(5), 778-785.
[PMID: 2573278]
[27]
Kaiser, R.; Hofer, A.; Grapengiesser, A.; Gasser, T.; Kupsch, A.; Roots, I.; Brockmöller, J. L -Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology, 2003, 60(11), 1750-1755.
[http://dx.doi.org/10.1212/01.WNL.0000068009.32067.A1] [PMID: 12796525]
[28]
dos Santos, E.U.D.; Sampaio, T.F.; Tenório dos Santos, A.D.; Bezerra Leite, F.C.; da Silva, R.C.; Crovella, S.; Asano, A.G.C.; Asano, N.M.J.; de Souza, P.R.E. The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson’s disease. J. Pharm. Pharmacol., 2019, 71(2), 206-212.
[http://dx.doi.org/10.1111/jphp.13031] [PMID: 30353564]
[29]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics, 2011, 12(1), 79-82.
[http://dx.doi.org/10.1007/s10048-010-0254-5] [PMID: 20680652]
[30]
Altmann, V.; Schumacher-Schuh, A.F.; Rieck, M.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson’s disease. Pharmacogenomics, 2016, 17(5), 481-488.
[http://dx.doi.org/10.2217/pgs.15.183] [PMID: 27019953]
[31]
Vuletić, V.; Rački, V.; Papić, E.; Peterlin, B. A systematic review of Parkinson’s disease pharmacogenomics: Is there time for translation into the clinics? Int. J. Mol. Sci., 2021, 22(13), 7213.
[http://dx.doi.org/10.3390/ijms22137213] [PMID: 34281267]
[32]
de Lau, L.M.L.; Verbaan, D.; Marinus, J.; Heutink, P.; van Hilten, J.J. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov. Disord., 2012, 27(1), 132-135.
[http://dx.doi.org/10.1002/mds.23805] [PMID: 22083803]
[33]
Watanabe, M.; Harada, S.; Nakamura, T.; Ohkoshi, N.; Yoshizawa, K.; Hayashi, A.; Shoji, S. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology, 2003, 48(4), 190-193.
[http://dx.doi.org/10.1159/000074637] [PMID: 14673217]
[34]
Oliveri, R.L.; Annesi, G.; Zappia, M.; Civitelli, D.; Montesanti, R.; Branca, D.; Nicoletti, G.; Spadafora, P.; Pasqua, A.A.; Cittadella, R.; Andreoli, V.; Gambardella, A.; Aguglia, U.; Quattrone, A. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology, 1999, 53(7), 1425-1430.
[http://dx.doi.org/10.1212/WNL.53.7.1425] [PMID: 10534246]
[35]
Rieck, M.; Schumacher-Schuh, A.F.; Altmann, V.; Francisconi, C.L.M.; Fagundes, P.T.B.; Monte, T.L.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics, 2012, 13(15), 1701-1710.
[http://dx.doi.org/10.2217/pgs.12.149] [PMID: 23171335]
[36]
Strong, J.A.; Dalvi, A.; Revilla, F.J.; Sahay, A.; Samaha, F.J.; Welge, J.A.; Gong, J.; Gartner, M.; Yue, X.; Yu, L. Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord., 2006, 21(5), 654-659.
[http://dx.doi.org/10.1002/mds.20785] [PMID: 16435402]
[37]
Kurzawski, M.; Białecka, M.; Droździk, M. Pharmacogenetic considerations in the treatment of Parkinson’s disease. Neurodegener. Dis. Manag., 2015, 5(1), 27-35.
[http://dx.doi.org/10.2217/nmt.14.38] [PMID: 25711452]
[38]
Kaplan, N.; Vituri, A.; Korczyn, A.D.; Cohen, O.S.; Inzelberg, R.; Yahalom, G.; Kozlova, E.; Milgrom, R.; Laitman, Y.; Friedman, E.; Rosset, S.; Hassin-Baer, S. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. J. Mol. Neurosci., 2014, 53(2), 183-188.
[http://dx.doi.org/10.1007/s12031-014-0276-9] [PMID: 24633632]
[39]
Sossi, V.; de la Fuente-Fernández, R.; Schulzer, M.; Troiano, A.R.; Ruth, T.J.; Stoessl, A.J. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: A positron emission tomography study. Ann. Neurol., 2007, 62(5), 468-474.
[http://dx.doi.org/10.1002/ana.21204] [PMID: 17886297]
[40]
Troiano, A.R.; de la Fuente-Fernandez, R.; Sossi, V.; Schulzer, M.; Mak, E.; Ruth, T.J.; Stoessl, A.J. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology, 2009, 72(14), 1211-1216.
[http://dx.doi.org/10.1212/01.wnl.0000338631.73211.56] [PMID: 19020294]
[41]
Bjornestad, A.; Forsaa, E.B.; Pedersen, K.F.; Tysnes, O.B.; Larsen, J.P.; Alves, G. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat. Disord., 2016, 22, 48-53.
[http://dx.doi.org/10.1016/j.parkreldis.2015.11.007] [PMID: 26585090]
[42]
Stocchi, F.; Olanow, C.W. Continuous dopaminergic stimulation in early and advanced Parkinson’s disease. Neurology, 2004, 62(1, Supplement 1 Suppl. 1), S56-S63.
[http://dx.doi.org/10.1212/WNL.62.1_suppl_1.S56] [PMID: 14718681]
[43]
Gilgun-Sherki, Y.; Djaldetti, R.; Melamed, E.; Offen, D. Polymorphism in candidate genes: Implications for the risk and treatment of idiopathic Parkinson’s disease. Pharmacogenomics J., 2004, 4(5), 291-306.
[http://dx.doi.org/10.1038/sj.tpj.6500260] [PMID: 15224083]
[44]
Zappia, M.; Annesi, G.; Nicoletti, G.; Arabia, G.; Annesi, F.; Messina, D.; Pugliese, P.; Spadafora, P.; Tarantino, P.; Carrideo, S.; Civitelli, D.; De Marco, E.V.; Cirò-Candiano, I.C.; Gambardella, A.; Quattrone, A. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: An exploratory study. Arch. Neurol., 2005, 62(4), 601-605.
[http://dx.doi.org/10.1001/archneur.62.4.601] [PMID: 15824260]
[45]
Fahn, S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later L-DOPA. Arch. Neurol., 1999, 56(5), 529-535.
[http://dx.doi.org/10.1001/archneur.56.5.529] [PMID: 10328247]
[46]
Schumacher-Schuh, A.F.; Altmann, V.; Rieck, M.; Tovo-Rodrigues, L.; Monte, T.L.; Callegari-Jacques, S.M.; Medeiros, M.S.; Rieder, C.R.M.; Hutz, M.H. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenomics J., 2014, 14(3), 289-294.
[http://dx.doi.org/10.1038/tpj.2013.37] [PMID: 24126708]
[47]
Shen, Y.; Huang, J.Y.; Li, J.; Liu, C.F. Excessive daytime sleepiness in Parkinson’s disease. Chin. Med. J. (Engl.), 2018, 131(8), 974-981.
[http://dx.doi.org/10.4103/0366-6999.229889] [PMID: 29664059]
[48]
Rissling, I.; Frauscher, B.; Kronenberg, F.; Tafti, M.; Stiasny-Kolster, K.; Robyr, A.C.; Körner, Y.; Oertel, W.H.; Poewe, W.; Högl, B.; Möller, J.C. Daytime sleepiness and the COMT val158met polymorphism in patients with Parkinson disease. Sleep, 2006, 29(1), 108-111.
[PMID: 16453988]
[49]
Ying, Y.; Lin, S.; Kong, F.; Li, Y.; Xu, S.; Liang, X.; Wang, C.; Han, L. Ideal cardiovascular health metrics and incidence of ischemic stroke among hypertensive patients: A prospective cohort study. Front. Cardiovasc. Med., 2020, 7590809
[http://dx.doi.org/10.3389/fcvm.2020.590809] [PMID: 33330652]
[50]
Fallest-Strobl, P.C.; Koch, D.D.; Stein, J.H.; McBride, P.E. Homocysteine: A new risk factor for atherosclerosis. Am. Fam. Physician, 1997, 56(6), 1607-1612, 1615-1616.
[PMID: 9351429]
[51]
House, D.J.; Brosnan, E.M.; Brosnan, T.J. Characterization of homocysteine metabolism in the rat kidney. Biochem. J., 1997, 328(1), 287-292.
[http://dx.doi.org/10.1042/bj3280287] [PMID: 9359866]
[52]
Anniwaer, J.; Liu, M.; Xue, K.; Maimaiti, A.; Xiamixiding, A. Homocysteine might increase the risk of recurrence in patients presenting with primary cerebral infarction. Int. J. Neurosci., 2019, 129(7), 654-659.
[http://dx.doi.org/10.1080/00207454.2018.1517762] [PMID: 30215548]
[53]
De Bonis, M.L.; Tessitore, A.; Pellecchia, M.T.; Longo, K.; Salvatore, A.; Russo, A.; Ingrosso, D.; Zappia, V.; Barone, P.; Galletti, P.; Tedeschi, G. Impaired transmethylation potential in Parkinson’s disease patients treated with l-Dopa. Neurosci. Lett., 2010, 468(3), 287-291.
[http://dx.doi.org/10.1016/j.neulet.2009.11.014] [PMID: 19909787]
[54]
Redenšek, S.; Flisar, D.; Kojović, M.; Gregorič Kramberger, M.; Georgiev, D.; Pirtošek, Z.; Trošt, M.; Dolžan, V. Dopaminergic pathway genes influence adverse events related to dopaminergic treatment in Parkinson’s disease. Front. Pharmacol., 2019, 10, 8.
[http://dx.doi.org/10.3389/fphar.2019.00008] [PMID: 30745869]
[55]
Goetz, C.G.; Burke, P.F.; Leurgans, S.; Berry-Kravis, E.; Blasucci, L.M.; Raman, R.; Zhou, L. Genetic variation analysis in parkinson disease patients with and without hallucinations: Case-control study. Arch. Neurol., 2001, 58(2), 209-213.
[http://dx.doi.org/10.1001/archneur.58.2.209] [PMID: 11176958]
[56]
Makoff, A.; Graham, J.; Arranz, M.; Forsyth, J.; Li, T.; Aitchison, K.; Shaikh, S.; Grünewald, R. Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics, 2000, 10(1), 43-48.
[http://dx.doi.org/10.1097/00008571-200002000-00006] [PMID: 10739171]
[57]
Cormier-Dequaire, F.; Bekadar, S.; Anheim, M.; Lebbah, S.; Pelissolo, A.; Krack, P.; Lacomblez, L.; Lhommée, E.; Castrioto, A.; Azulay, J.P.; Defebvre, L.; Kreisler, A.; Durif, F.; Marques-Raquel, A.; Brefel-Courbon, C.; Grabli, D.; Roze, E.; Llorca, P.M.; Ory-Magne, F.; Benatru, I.; Ansquer, S.; Maltête, D.; Tir, M.; Krystkowiak, P.; Tranchant, C.; Lagha-Boukbiza, O.; Lebrun-Vignes, B.; Mangone, G.; Vidailhet, M.; Charbonnier-Beaupel, F.; Rascol, O.; Lesage, S.; Brice, A.; Tezenas du Montcel, S.; Corvol, J.C.; Grp, B-P.S. Suggestive association between OPRM1 and impulse control disorders in Parkinson’s disease. Mov. Disord., 2018, 33(12), 1878-1886.
[http://dx.doi.org/10.1002/mds.27519] [PMID: 30444952]
[58]
Zainal Abidin, S.; Tan, E.L.; Chan, S.C.; Jaafar, A.; Lee, A.X.; Abd Hamid, M.H.N.; Abdul Murad, N.A.; Pakarul Razy, N.F.; Azmin, S.; Ahmad Annuar, A.; Lim, S.Y.; Cheah, P.S.; Ling, K.H.; Mohamed Ibrahim, N. DRD and GRIN2B polymorphisms and their association with the development of impulse control behaviour among Malaysian Parkinson’s disease patients. BMC Neurol., 2015, 15(1), 59.
[http://dx.doi.org/10.1186/s12883-015-0316-2] [PMID: 25896831]
[59]
Kraemmer, J.; Smith, K.; Weintraub, D.; Guillemot, V.; Nalls, M.A.; Cormier-Dequaire, F.; Moszer, I.; Brice, A.; Singleton, A.B.; Corvol, J.C. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2016, 87(10), 1106-1111.
[http://dx.doi.org/10.1136/jnnp-2015-312848] [PMID: 27076492]
[60]
Liu, Y.Z.; Tang, B.S.; Yan, X.X.; Liu, J.; Ouyang, D.S.; Nie, L.N.; Fan, L.; Li, Z.; Ji, W.; Hu, D.L.; Wang, D.; Zhou, H.H. Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. Eur. J. Clin. Pharmacol., 2009, 65(7), 679-683.
[http://dx.doi.org/10.1007/s00228-009-0658-z] [PMID: 19396436]
[61]
Xu, S.; Liu, J.; Yang, X.; Qian, Y.; Xiao, Q. Association of the DRD2 CA n -STR and DRD3 Ser9Gly polymorphisms with Parkinson’s disease and response to dopamine agonists. J. Neurol. Sci., 2017, 372, 433-438.
[http://dx.doi.org/10.1016/j.jns.2016.08.005] [PMID: 27817855]
[62]
Paus, S.; Grünewald, A.; Klein, C.; Knapp, M.; Zimprich, A.; Janetzky, B.; Möller, J.C.; Klockgether, T.; Wüllner, U. TheDRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Mov. Disord., 2008, 23(4), 599-602.
[http://dx.doi.org/10.1002/mds.21901] [PMID: 18175338]
[63]
Paus, S.; Seeger, G.; Brecht, H.M.; Köster, J.; El-Faddagh, M.; Nöthen, M.M.; Klockgether, T.; Wüllner, U. Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Mov. Disord., 2004, 19(6), 705-707.
[http://dx.doi.org/10.1002/mds.20134] [PMID: 15197713]
[64]
Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.M.; Poewe, W.; Rascol, O.; Goetz, C.G.; Sampaio, C. The movement disorder society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord., 2011, 26(Suppl. 3), S42-S80.
[http://dx.doi.org/10.1002/mds.23884] [PMID: 22021174]
[65]
Shoulson, I.; Oakes, D.; Fahn, S.; Lang, A.; Langston, J.W.; LeWitt, P.; Olanow, C.W.; Penney, J.B.; Tanner, C.; Kieburtz, K.; Rudolph, A. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: A randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann. Neurol., 2002, 51(5), 604-612.
[http://dx.doi.org/10.1002/ana.10191] [PMID: 12112107]
[66]
Mahmood, I. Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin. Pharmacokinet., 1997, 33(2), 91-102.
[http://dx.doi.org/10.2165/00003088-199733020-00002] [PMID: 9260033]
[67]
Foley, P.; Gerlach, M.; Youdim, M.B.H.; Riederer, P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat. Disord., 2000, 6(1), 25-47.
[http://dx.doi.org/10.1016/S1353-8020(99)00043-7] [PMID: 18591148]
[68]
Masellis, M.; Collinson, S.; Freeman, N.; Tampakeras, M.; Levy, J.; Tchelet, A.; Eyal, E.; Berkovich, E.; Eliaz, R.E.; Abler, V.; Grossman, I.; Fitzer-Attas, C.; Tiwari, A.; Hayden, M.R.; Kennedy, J.L.; Lang, A.E.; Knight, J.; Investigators, A. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: A pharmacogenetic study. Brain, 2016, 139(7), 2050-2062.
[http://dx.doi.org/10.1093/brain/aww109] [PMID: 27190009]
[69]
Kaakkola, S. Problems with the present inhibitors and a relevance of new and improved comt inhibitors in parkinson’s disease. In: Basic Aspects of Catechol-O-Methyltransterase and the Clinical Applications of Its Inhibitors; Nissinen, E., Ed.; Elsevier Academic Press Inc: San Diego, 2010, Vol. 95, pp. 207-225.
[http://dx.doi.org/10.1016/B978-0-12-381326-8.00009-0]
[70]
Kiss, L.E.; Soares-da-Silva, P. Medicinal chemistry of catechol O-methyltransferase (COMT) inhibitors and their therapeutic utility. J. Med. Chem., 2014, 57(21), 8692-8717.
[http://dx.doi.org/10.1021/jm500572b] [PMID: 25080080]
[71]
Corvol, J.C.; Bonnet, C.; Charbonnier-Beaupel, F.; Bonnet, A.M.; Fiévet, M.H.; Bellanger, A.; Roze, E.; Meliksetyan, G.; Ben Djebara, M.; Hartmann, A.; Lacomblez, L.; Vrignaud, C.; Zahr, N.; Agid, Y.; Costentin, J.; Hulot, J.S.; Vidailhet, M. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: A randomized crossover clinical trial. Ann. Neurol., 2011, 69(1), 111-118.
[http://dx.doi.org/10.1002/ana.22155] [PMID: 21280081]
[72]
Acuña, G.; Foernzler, D.; Leong, D.; Rabbia, M.; Smit, R.; Dorflinger, E.; Gasser, R.; Hoh, J.; Ott, J.; Borroni, E.; To, Z.; Thompson, A.; Li, J.; Hashimoto, L.; Lindpaintner, K. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J., 2002, 2(5), 327-334.
[http://dx.doi.org/10.1038/sj.tpj.6500123] [PMID: 12439739]
[73]
Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet, 2021, 397(10291), 2284-2303.
[http://dx.doi.org/10.1016/S0140-6736(21)00218-X] [PMID: 33848468]
[74]
Kalinderi, K.; Papaliagkas, V.; Fidani, L. Pharmacogenetics and levodopa induced motor complications. Int. J. Neurosci., 2019, 129(4), 384-392.
[http://dx.doi.org/10.1080/00207454.2018.1538993] [PMID: 30359152]
[75]
Sauerbier, A.; Aris, A.; Lim, E.W.; Bhattacharya, K.; Ray Chaudhuri, K. Impact of ethnicity on the natural history of Parkinson disease. Med. J. Aust., 2018, 208(9), 410-414.
[http://dx.doi.org/10.5694/mja17.01074] [PMID: 29764354]
[76]
Ciccacci, C.; Borgiani, P. Pharmacogenomics in Parkinson’s disease: Which perspective for developing a personalized medicine? Neural Regen. Res., 2019, 14(1), 75-76.
[http://dx.doi.org/10.4103/1673-5374.243706] [PMID: 30531077]
[77]
Greenland, J.C.; Williams-Gray, C.H.; Barker, R.A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci., 2019, 49(3), 328-338.
[http://dx.doi.org/10.1111/ejn.14094] [PMID: 30059179]
[78]
Bialecka, M.; Kurzawski, M.; Klodowska-Duda, G.; Opala, G.; Tan, E.K.; Drozdzik, M. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet. Genomics, 2008, 18(9), 815-821.
[http://dx.doi.org/10.1097/FPC.0b013e328306c2f2] [PMID: 18698234]
[79]
Frauscher, B.; Högl, B.; Maret, S.; Wolf, E.; Brandauer, E.; Wenning, G.K.; Kronenberg, M.F.; Kronenberg, F.; Tafti, M.; Poewe, W. Association of daytime sleepiness with COMT polymorphism in patients with Parkinson disease: A pilot study. Sleep, 2004, 27(4), 733-736.
[http://dx.doi.org/10.1093/sleep/27.4.733] [PMID: 15283009]
[80]
Purcaro, C.; Vanacore, N.; Moret, F.; Di Battista, M.E.; Rubino, A.; Pierandrei, S.; Lucarelli, M.; Meco, G.; Fattapposta, F.; Pascale, E. DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson’s disease. Neurosci. Lett., 2019, 690, 83-88.
[http://dx.doi.org/10.1016/j.neulet.2018.10.021] [PMID: 30316985]
[81]
Foltynie, T.; Cheeran, B.; Williams-Gray, C.H.; Edwards, M.J.; Schneider, S.A.; Weinberger, D.; Rothwell, J.C.; Barker, R.A.; Bhatia, K.P. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2009, 80(2), 141-144.
[http://dx.doi.org/10.1136/jnnp.2008.154294] [PMID: 18977816]
[82]
Lin, J.J.; Yueh, K.C.; Lin, S.Z.; Harn, H.J.; Liu, J.T. Genetic polymorphism of the angiotensin converting enzyme and l-dopa-induced adverse effects in Parkinson’s disease. J. Neurol. Sci., 2007, 252(2), 130-134.
[http://dx.doi.org/10.1016/j.jns.2006.10.018] [PMID: 17196621]
[83]
Gorgone, G.; Currò, M.; Ferlazzo, N.; Parisi, G.; Parnetti, L.; Belcastro, V.; Tambasco, N.; Rossi, A.; Pisani, F.; Calabresi, P.; Ientile, R.; Caccamo, D. Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. Neuromol. Med., 2012, 14(1), 84-90.
[http://dx.doi.org/10.1007/s12017-012-8174-1] [PMID: 22354693]
[84]
Martín-Flores, N.; Fernández-Santiago, R.; Antonelli, F.; Cerquera, C.; Moreno, V.; Martí, M.J.; Ezquerra, M.; Malagelada, C. MTOR pathway-based discovery of genetic susceptibility to L-DOPA-induced dyskinesia in Parkinson’s disease patients. Mol. Neurobiol., 2019, 56(3), 2092-2100.
[http://dx.doi.org/10.1007/s12035-018-1219-1] [PMID: 29992529]
[85]
Rissling, I.; Körner, Y.; Geller, F.; Stiasny-Kolster, K.; Oertel, W.H.; Möller, J.C. Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep, 2005, 28(7), 871-875.
[http://dx.doi.org/10.1093/sleep/28.7.871] [PMID: 16124668]
[86]
Bonifácio, M.J.; Palma, P.N.; Almeida, L.; Soares-da-Silva, P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev., 2007, 13(3), 352-379.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00020.x] [PMID: 17894650]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy