Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Short Communication

Synthesis, Characterization, ‘ADMET-SAR’ Prediction, DPPH Assay, and Anti-Mycobacterium Study of 4-[(substituted benzyl) amino]benzo hydrazides and its Hydrazones as the Acyl-CoA Carboxylase, AccD5 Inhibitors

Author(s): Vijay J. Desale, Suraj N. Mali*, Bapu R. Thorat*, Ramesh S. Yamgar, Swapnali V. Dharanguttikar, Vyankatesh R. Dharanguttikar, Samir Chtita, Mozaniel Oliveira and Jorddy Neves Cruz

Volume 19, Issue 4, 2023

Published on: 17 January, 2023

Page: [300 - 312] Pages: 13

DOI: 10.2174/1573409919666221227091735

Price: $65

Abstract

Background: Hydrazide-hydrazone derivatives have shown diverse biological activities, such as antitubercular (anti-TB), antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal actions.

Objectives: Hydrazide–hydrazones contain azomethine (-NH-N=CH-) group connected with carbonyl group and are believed to be responsible for various pharmaceutical applications. They aid in the synthesis of different five-membered heterocyclic systems, such as oxadiazole, triazoles, etc.

Methods: In the present study, various hydrazines/hydrazones were synthesized starting from 4- amino benzoic acid derivatives. Structures of all 9 newly synthesized compounds (6a-6d and 8a- 8e) were further characterized by using various spectroscopic methods, such as 1H-NMR (Nuclear Magnetic Resonance), FT-IR (Fourier-transform infrared spectroscopy), Gas chromatographymass spectrometry (GC-MS), etc. Furthermore, molecular docking analysis against the acyl-CoA carboxylase, AccD5 (PDB ID: 2A7S), was also carried out using the Glide module, which depicted good binding scores than standard drugs. The anti-tuberculosis activity of all the hydrazides and hydrazones (6a-6d and 8a-8e) were evaluated against the Mycobacterium tuberculosis H37 RV strain using the Alamar-Blue susceptibility (MABA) test. The activity was expressed as the minimum inhibitory concentration (MIC) in μg/mL values. The antioxidant activity was also carried out using a DPPH assay.

Results: Our findings demonstrated highly encouraging in-vitro results (MABA assay, MIC: 1.2 μg/mL) of hydrazones as depicted by good antimycobacterial activity. The antioxidant results showed a moderate to a good percentage of DPPH inhibition. Our in-silico ADMET analysis further suggested good pharmacokinetic and toxicity-free profiles of synthesized analogues (6a-6d and 8a-8e).

Conclusion: Our results signify hydrazones/hydrazines as potential hit candidates against the future developments of potent and safer anti-TB agents.

Graphical Abstract

[2]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2 H -chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[3]
Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Foye’s principles of medicinal chemistry, 7th ed; Wolters Kluwer: New Delhi, 2013, p. 1177.
[4]
Bhat, M.A.; Al-Omar, M.A. Synthesis, characterization, and in vitro anti-Mycobacterium tuberculosis activity of terpene Schiff bases. Med. Chem. Res., 2013, 22(9), 4522-4528.
[http://dx.doi.org/10.1007/s00044-012-0458-3]
[5]
Paidi, K.R.; Tatipamula, V.B.; Kolli, M.K.; Pedakotla, V.R. Benzohydrazide incorporated Imidazo [1, 2-b] pyridazine: Synthesis, Characterization and in vitro Anti-tubercular Activity. Int. J. Chem. Sci., 2017, 15(3), 172.
[6]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno [1, 2-c] quinoline derivatives as potent dual antituberculosis and anti-Inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[7]
Mali, S.N.; Chaudhari, H.K. Computational studies on imidazo[1,2-a] pyridine-3-carboxamide analogues as antimycobacterial agents: Common pharmacophore generation, atom-based 3D-QSAR, molecular dynamics simulation, qikprop, molecular docking and prime MMGBSA approaches. Open Pharm. Sci. J., 2018, 5(1), 12-23.
[http://dx.doi.org/10.2174/1874844901805010012]
[8]
Pavan, F.R.; Maia, P.I.S.; Leite, S.R.A.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q.F. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti – Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[9]
Nusrath Unissa, A.; Hanna, L.E.; Swaminathan, S. A note on derivatives of isoniazid, Rifampicin, and pyrazinamide showing activity against resistant Mycobacterium tuberculosis. Chem. Biol. Drug Des., 2016, 87(4), 537-550.
[http://dx.doi.org/10.1111/cbdd.12684] [PMID: 26613382]
[10]
Sriram, D.; Yogeeswari, P.; Vyas, D.R.K.; Senthilkumar, P.; Bhat, P.; Srividya, M. 5-Nitro-2-furoic acid hydrazones: Design, synthesis and in vitro antimycobacterial evaluation against log and starved phase cultures. Bioorg. Med. Chem. Lett., 2010, 20(15), 4313-4316.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.096] [PMID: 20615698]
[11]
Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and antituberculosis activity of indole–pyridine derived hydrazides, hydrazide–hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett., 2016, 26(3), 978-985.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.049] [PMID: 26725953]
[12]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and Anti-mycobacterium Study of halo-substituted 2-aryloxyacetohydrazones. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[13]
Coelho, T.S.; Cantos, J.B.; Bispo, M.L.F.; Gonçalves, R.S.B.; Lima, C.H.S.; da Silva, P.E.A.; De Souza, M. In vitro anti-mycobacterial activity of (E)-N'-(monosubstituted-benzylidene) isonicotinohydrazide derivatives against isoniazid-resistant strains. Infect. Dis. Rep., 2012, 4(1), e13.
[http://dx.doi.org/10.4081/idr.2012.e13] [PMID: 24470920]
[14]
Joyashis, B.; Kuldeep, P.; Prafull, T.; Karthikeyan, C. Design, synthesis and characterization of novel 1,3,4-oxadiazole dimers from benzoic acids. Int. J. Chemtech Res., 2010, 2, 2055-2062.
[15]
Smieja, M.J.; Marchetti, C.A.; Cook, D.J.; Smaill, F.M. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst. Rev., 2000, (2), CD001363.
[PMID: 10796642]
[16]
Akolo, C.; Adetifa, I.; Shepperd, S.; Volmink, J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst. Rev., 2010, 2016(1), CD00017.
[http://dx.doi.org/10.1002/14651858.CD000171.pub3]
[17]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med., 2003, 198(5), 693-704.
[http://dx.doi.org/10.1084/jem.20030846] [PMID: 12953091]
[18]
Mathew, B.; Suresh, J.; Ahsan, M.; Mathew, G.; Usman, D.; Subramanyan, P.; Safna, K.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: A review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[19]
Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 2010, 45(7), 3019-3026.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.031] [PMID: 20403645]
[20]
Rane, R.A.; Telvekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(19), 5681-5685.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.026] [PMID: 20800487]
[21]
Kumar, S.; Drabu, S.; Kumar, R.; Bawa, S. Synthesis and antimicrobial activity of 2-chloro-6-methylquinoline hydrazone derivatives. J. Pharm. Bioallied Sci., 2009, 1(1), 27-31.
[http://dx.doi.org/10.4103/0975-7406.62683]
[22]
Kaplancikli, Z.A.; Altintop, M.D.; Özdemir, A.; Turan-Zitounia, G.; Khan, S.I.; Tabanca, N. Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Lett. Drug Des. Discov., 2012, 9, 310-315.
[http://dx.doi.org/10.2174/157018012799129828]
[23]
Hu, W.; Zhou, W.; Xia, C.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16(8), 2213-2218.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.048] [PMID: 16458509]
[24]
Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem., 2013, 21(21), 6592-6599.
[http://dx.doi.org/10.1016/j.bmc.2013.08.026] [PMID: 24071449]
[25]
Vicini, P.; Incerti, M.; La Colla, P.; Loddo, R. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J. Med. Chem., 2009, 44(4), 1801-1807.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.030] [PMID: 18614259]
[26]
Rocha, L.T.S.; Costa, K.A.; Oliveira, A.C.P.; Nascimento, E.B., Jr; Bertollo, C.M.; Araújo, F.; Teixeira, L.R.; Andrade, S.P.; Beraldo, H.; Coelho, M.M. Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci., 2006, 79(5), 499-505.
[http://dx.doi.org/10.1016/j.lfs.2006.01.027] [PMID: 16600310]
[27]
Krishnan, K.; Prathiba, K.; Jayaprakash, V.; Basu, A.; Mishra, N.; Zhou, B.; Hu, S.; Yen, Y. Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2008, 18(23), 6248-6250.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.097] [PMID: 18976907]
[28]
Thanigaimalai, P.; Lee, K.C.; Sharma, V.K.; Roh, E.; Kim, Y.; Jung, S.H. Ketonethiosemicarbazones: Structure–activity relationships for their melanogenesis inhibition. Bioorg. Med. Chem. Lett., 2011, 21(12), 3527-3530.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.146] [PMID: 21601449]
[29]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[30]
Bukowski, L.; Janowiec, M. 1-Methyl-1H-2-imidazo[4,5-b]pyridinecarboxylic acid and some of its derivatives with suspected antituberculotic activity. ChemInform, 1996, 27(30) no.
[http://dx.doi.org/10.1002/chin.199630179] [PMID: 8999430]
[31]
Küçükgüzel, Ş.G.; Rollas, S.; Küçükgüzel, I.; Kiraz, M. Synthesis and antimycobacterial activity of some coupling products from 4-aminobenzoic acid hydrazones. Eur. J. Med. Chem., 1999, 34(12), 1093-1100.
[http://dx.doi.org/10.1016/S0223-5234(99)00129-4]
[32]
Cocco, M.T.; Congiu, C.; Onnis, V.; Pusceddu, M.C.; Schivo, M.L.; De Logu, A. Synthesis and antimycobacterial activity of some isonicotinoylhydrazones. Eur. J. Med. Chem., 1999, 34(12), 1071-1076.
[http://dx.doi.org/10.1016/S0223-5234(99)00124-5]
[33]
Bukowski, L.; Janowiec, M.; Zwolska-Kwiek, Z.; Andrzejczyk, Z. Synthesis and some reactions of 2-acetylimidazo[4,5-b]pyridine. Antituberculotic activity of the obtained compounds. Pharmazie, 1999, 54(9), 651-654.
[PMID: 10522269]
[34]
John, S.F.; Aniemeke, E.; Ha, N.P.; Chong, C.R.; Gu, P.; Zhou, J.; Zhang, Y.; Graviss, E.A.; Liu, J.O.; Olaleye, O.A. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis, 2016, 101, S73-S77.
[http://dx.doi.org/10.1016/j.tube.2016.09.025] [PMID: 27856197]
[35]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[36]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[37]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, synthesis, antibacterial screening and DNA cleavage for 1,2,5-thiadiazole derivative. Curr. Computeraided Drug Des., 2019, 15(5), 445-455.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[38]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[39]
Ghanavatkar, C.W.; Mishra, V.R.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Synthesis, bioactivities, DFT and in-silico appraisal of azo clubbed benzothiazole derivatives. J. Mol. Struct., 2019, 1192, 162-171.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.123]
[40]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[41]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, in silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr. Comput. Aided Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[42]
Kshatriya, R.; Kambale, D.; Mali, S.; Jejurkar, V.P.; Lokhande, P.; Chaudhari, H.K.; Saha, S. Brønsted acid catalyzed domino synthesis of functionalized 4H‐Chromens and their ADMET, molecular docking and antibacterial studies. ChemistrySelect, 2019, 4(27), 7943-7948.
[http://dx.doi.org/10.1002/slct.201901775]
[43]
Shelke, P.B.; Mali, S.N.; Chaudhari, H.K.; Pratap, A.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3048-3054.
[http://dx.doi.org/10.1002/jhet.3700]
[44]
Mali, S.N.; Pandey, A.; Bhandare, R.R.; Shaik, A.B. Identification of hydantoin based Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. Sci. Rep., 2022, 12(1), 16368.
[http://dx.doi.org/10.1038/s41598-022-20325-1] [PMID: 36180452]
[45]
Anuse, D.G.; Thorat, B.R.; Sawant, S.; Yamgar, R.S.; Chaudhari, H.K.; Mali, S.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666190902143648] [PMID: 31475902]
[46]
Jejurkar, V.P.; Mali, S.N.; Kshatriya, R.; Chaudhari, H.K.; Saha, S. Synthesis, antimicrobial screening and in silico appraisal of iminocarbazole derivatives. ChemistrySelect, 2019, 4(32), 9470-9475.
[http://dx.doi.org/10.1002/slct.201901890]
[47]
Abate, G.; Mshana, R.N.; Miörner, H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 1998, 2(12), 1011-1016.
[PMID: 9869118]
[48]
Anuse, D.G.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S.; Chaudhari, H.K. Synthesis, SAR, in silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives. Curr Comput Aided Drug Des, 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666191210125647] [PMID: 31820704]
[49]
Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study-. Anal. Sci., 2014, 30(7), 717-721.
[http://dx.doi.org/10.2116/analsci.30.717] [PMID: 25007929]
[50]
Thorat, B.R.; Rani, D.; Mali, S.N.; Yamgar, R.S. Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents. Curr. Comput. Aided Drug Des., 2021, 17(2), 294-306.
[http://dx.doi.org/10.2174/1573409916666200302120942]
[51]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in-vitro and computational analysis of hydrazones as potential antituberculosis agents: (Part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[52]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis and in silico identification of new bioactive 1,3,4-oxadiazole tagged 2,3-dihydroimidazo[1,2-a] pyridine derivatives. Curr. Bioact. Compd., 2021, 17(4), 318-330.
[53]
Thorat, B.R.; Mali, S.N.; Dalvi, B. Green synthesis of substituted dihydropyrimidin-2(1H)-one by using zinc chloride/acetic acid catalytic system. Curr. Chinese Chem., 2021, 1(1), 30-46.
[54]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Greener synthesis, in silico and theoretical analysis of hydrazides as potential antituberculosis agents (Part 1). Chem. Proc., 2021, 8, 86.
[http://dx.doi.org/10.3390/ecsoc-25-11655]
[55]
Mali, S.N.; Pandey, A. Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part-II). J. Comput. Chem. Biophys.Chem., 2022, 21(7), 857-882.
[http://dx.doi.org/10.1142/S2737416522500387]
[56]
Mali, S.N.; Pandey, A. Synthesis, computational analysis, antimicrobial, antioxidant, trypan blue exclusion assay, β-hematin assay and anti-inflammatory studies of some hydrazones (Part-I). Curr. Comput. Aided Drug Des, 2022, 18.
[http://dx.doi.org/10.2174/1573409918666220929145824] [PMID: 36177631]
[57]
Mali, S.N.; Pandey, A. Balanced QSAR and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against trypanosomiases. J. Comput. Chem. Biophys.Chem., 2022, 21(1), 83-114.
[http://dx.doi.org/10.1142/S2737416521410015]
[58]
Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-review of the importance of hydrazides and their derivatives-synthesis and biological activity. Engineering Proceedings, 2021, 11(1), 21.
[59]
Kshatriya, R.; Shelke, P.; Mali, S.; Yashwantrao, G.; Pratap, A.; Saha, S. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs). ChemistrySelect, 2021, 6(24), 6230-6239.
[http://dx.doi.org/10.1002/slct.202101083]
[60]
Kapale, S.S.; Mali, S.N.; Chaudhari, H.K. Molecular modelling studies for 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as anticancer agents. Med. Drug Disco., 2019, 2, 100008.
[http://dx.doi.org/10.1016/j.medidd.2019.100008]
[61]
Mali, S.N.; Pandey, A. Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis. J. Comput. Biophysics Chem., 2021, 20(3), 267-282.
[http://dx.doi.org/10.1142/S2737416521500125]
[62]
Mali, S.N.; Pandey, A. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J. Indian Chem. Soc., 2021, 98(6), 100082.
[http://dx.doi.org/10.1016/j.jics.2021.100082]
[63]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct. Chem., 2022, 33(3), 679-694.
[http://dx.doi.org/10.1007/s11224-022-01879-2]
[64]
Pandey, A.; Shyamal, S.S.; Shrivastava, R.; Ekka, S.; Mali, S.N. Inhibition of Plasmodium falciparum fatty acid biosynthesis (FASII Pathway) by natural flavonoids: A computer-aided drug designing approach. Chem. Africa, 2022, 1-23.
[65]
Bhosale, D.; Mali, S.N.; Thorat, B.R.; Wavhal, S.S.; Bhagat, D.S.; Borade, R.M. Synthesis, molecular docking and in vitro antimycobacterial studies on N'-arylidene-4-nitrobenzohydrazides. Rec. Adv. Anti-infect. Drug Discov., 2022, 17(1), 69-83.
[66]
Thorat, B.R.; Nagre, D.T.; Dhurandhar, P.P.; Borase, P.K.; Bavkar, S.; Kasar, R.R.; Narkar, R.D.; Farooqui, M.; Mali, S.N. L-proline catalyzed knoevenagel condensation of aldehydes with active methylene compounds and their molecular modeling studies for anti-SARS CoV-2 potentials. Curr. Enzym. Inhib., 2022, 18(2), 145-159.
[http://dx.doi.org/10.2174/1573408018666220516104525]
[67]
Mali, S.N.; Tambe, S.; Pratap, A.P.; Cruz, J.N. Molecular modeling approaches to investigate essential oils (volatile compounds) interacting with molecular targets. In: Essential oils; Springer: Cham, 2022; pp. 417-442.
[http://dx.doi.org/10.1007/978-3-030-99476-1_18]
[68]
Thorat, B.R.; Mali, S.N.; Wagh, R.R.; Yamgar, R.S. Synthesis, molecular docking, antioxidant, anti-TB, and potent MCF-7 anticancerstudies of novel aryl-carbohydrazideanalogues. Curr. Computer. Aided Drug Des., 2022, 18(4), 247-257.
[69]
Nagre, D.T.; Thorat, B.R.; Mali, S.N.; Farooqui, M.; Agrawal, B. Experimental and computational insights into bis-indolylmethane derivatives as potent antimicrobial agents inhibiting 2,2-dialkylglycine decarboxylase. Curr. Enzym. Inhib., 2021, 17(3), 204-216.
[http://dx.doi.org/10.2174/1573408017666210914105731]
[70]
Ghosh, S.; Mali, S.N.; Bhowmick, D.N.; Pratap, A.P. Neem oil as natural pesticide: Pseudo ternary diagram and computational study. J. Indian Chem. Soc., 2021, 98(7), 100088.
[http://dx.doi.org/10.1016/j.jics.2021.100088]
[71]
Bozkurt, E.; Sıcak, Y.; Oruç-Emre, E.E.; Iyidoğan, A.K.; Öztürk, M. Design and bioevaluation of novel hydrazide-hydrazones derived from 4-acetyl-N-substituted benzenesulfonamide. Russ. J. Bioorganic Chem., 2020, 46(5), 702-714.
[http://dx.doi.org/10.1134/S1068162020050052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy