Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Study on Microwave-assisted Reduction of Pyrolusite

Author(s): Dongjie Liu*, Jinjia Du, Qingqing Dai and Junwen Zhou

Volume 9, Issue 2, 2022

Published on: 23 January, 2023

Page: [70 - 77] Pages: 8

DOI: 10.2174/2213335610666221226143419

Price: $65

Abstract

Manganese is a vital metal resource, and increased consumption of manganese is leading to the shortage of high-grade manganese ore resources. However, a large number of low-grade manganese ore resources ((Mn<30%) accounts for about 60% of the total manganese resources) have not been effectively utilized because of the lack of efficient industrial utilization methods. Researching new technologies for reducing low-grade pyrolusite is an urgent problem to be solved. Microwave is an effective and environmentally friendly heat source widely used in mining, metallurgy, and chemistry. Different substances have different dielectric constants. The difference in dielectric constant affects the absorption rate of substances, resulting in different heating rates for different substances when heated by microwaves. Microwave is widely used in the metal smelting process because of its unique heating method. So far, few works have been done to verify that microwave heating can effectively promote the reduction of pyrolusite. This article summarizes some current methods of reducing low-grade pyrolusite and compares them with the method of reducing pyrolusite by microwave heating. In addition, this article introduces the principle of microwave- enhanced reduction of pyrolusite and discusses the opportunities and challenges faced by microwave heating technology in its subsequent development. The aim is to analyze and study the promoting effect of microwave heating technology on the reduction of pyrolusite, further improve the utilization of low-grade pyrolusite, and provide new methods and approaches for the comprehensive utilization of mineral resources and provide assistance in industrial production.

[1]
Sinha, M.K.; Purcell, W. Reducing agents in the leaching of manganese ores: A comprehensive review. Hydrometallurgy, 2019, 187, 168-186.
[http://dx.doi.org/10.1016/j.hydromet.2019.05.021]
[2]
Xin, B.; Li, T.; Li, X.; Dan, Z.; Xu, F.; Duan, N.; Zhang, Y.; Zhang, H. Reductive dissolution of manganese from manganese dioxide ore by autotrophic mixed culture under aerobic conditions. J. Clean. Prod., 2015, 92, 54-64.
[http://dx.doi.org/10.1016/j.jclepro.2014.12.060]
[3]
Barik, S.P.; Prabaharan, G.; Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Clean. Prod., 2017, 147, 37-43.
[http://dx.doi.org/10.1016/j.jclepro.2017.01.095]
[4]
Byun, J.S.; Shim, J.H.; Cho, Y.W.; Lee, D.N. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel. Acta Mater., 2003, 51(6), 1593-1606.
[http://dx.doi.org/10.1016/S1359-6454(02)00560-8]
[5]
Tanaka, Y.; Utaka, T.; Kikuchi, R.; Takeguchi, T.; Sasaki, K.; Eguchi, K. Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide. J. Catal., 2003, 215(2), 271-278.
[http://dx.doi.org/10.1016/S0021-9517(03)00024-1]
[6]
Hagelstein, K. Globally sustainable manganese metal production and use. J. Environ. Manage., 2009, 90(12), 3736-3740.
[http://dx.doi.org/10.1016/j.jenvman.2008.05.025] [PMID: 19467569]
[7]
El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sustain. Energy Rev., 2018, 82, 2880-2892.
[http://dx.doi.org/10.1016/j.rser.2017.10.043]
[8]
Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, 2016, 9(4), 231.
[http://dx.doi.org/10.3390/ma9040231] [PMID: 28773355]
[9]
Coetsee, T. The role of metallic Iron in low temperature carbothermic reduction of MnO: Phase chemistry and thermodynamic analysis. Minerals, 2021, 11(11), 1205.
[http://dx.doi.org/10.3390/min11111205]
[10]
You, Z.; Li, G.; Dang, J.; Yu, W.; Lv, X. The mechanism on reducing manganese oxide ore with elemental sulfur. Powder Technol., 2018, 330, 310-316.
[http://dx.doi.org/10.1016/j.powtec.2018.02.035]
[11]
Feng, Y.L.; Zhang, S.Y.; Li, H.R.; Zhou, Y.Z. Roasting reduction and its kinetics of low-grade pyrolusite by biomass char. J. Nat. Sci., 2015, 36(10), 1482-1486.
[12]
Luo, S.Q.; Liang, Y. Research on Microwave heating process of deoxygenate restoring pyrolusite. Popular Science & Technology, 2012, (01), 62-64.
[13]
Chen, G.; Li, L.; Tao, C.; Liu, Z.; Chen, N.; Peng, J. Effects of microwave heating on microstructures and structure properties of the manganese ore. J. Alloys Compd., 2016, 657, 515-518.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.147]
[14]
Chen, J.; Li, L.; Chen, G.; Peng, J.; Srinivasakannan, C. Rapid thermal decomposition of manganese ore using microwave heating. J. Alloys Compd., 2017, 699, 430-435.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.379]
[15]
He, Y.; Liu, J.; Liu, J.; Chen, C.; Zhuang, C. Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating. Int. J. Miner. Metall. Mater., 2021, 28(2), 221-230.
[http://dx.doi.org/10.1007/s12613-020-2037-9]
[16]
Ye, Q.; Chen, J.; Chen, G.; Peng, J.; Srinivasakannan, C.; Ruan, R. Effect of microwave heating on the microstructures and kinetics of carbothermal reduction of pyrolusite ore. Adv. Powder Technol., 2018, 29(8), 1871-1878.
[http://dx.doi.org/10.1016/j.apt.2018.04.025]
[17]
He, F.; Chen, J.; Chen, G.; Peng, J.; Srinivasakannan, C.; Ruan, R. Microwave dielectric properties and reduction behavior of low-grade pyrolusite. J. Miner. Met. Mater. Soc., 2019, 71(11), 3909-3914.
[http://dx.doi.org/10.1007/s11837-019-03522-8]
[18]
Chen, G.; Ling, Y.; Li, Q.; Zheng, H.; Qi, J.; Li, K.; Chen, J.; Peng, J.; Gao, L.; Omran, M.; He, F. Investigation on microwave carbothermal reduction behavior of low-grade pyrolusite. J. Mater. Res. Technol., 2020, 9(4), 7862-7869.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.097]
[19]
Ye, Q.; Zhu, H.; Zhang, L.; Liu, P.; Chen, G.; Peng, J. Carbothermal reduction of low-grade pyrolusite by microwave heating. RSC Advances, 2014, 4(102), 58164-58170.
[http://dx.doi.org/10.1039/C4RA08010F]
[20]
Li, K.; Chen, J.; Peng, J.; Ruan, R.; Srinivasakannan, C.; Chen, G. Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating. Powder Technol., 2020, 360(C), 846-854.
[http://dx.doi.org/10.1016/j.powtec.2019.11.015]
[21]
Li, K.; Chen, G.; Li, X.; Peng, J.; Ruan, R.; Omran, M.; Chen, J. High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field. Bioresour. Technol., 2019, 294, 122217.
[http://dx.doi.org/10.1016/j.biortech.2019.122217] [PMID: 31606598]
[22]
Du, J.; Gao, L.; Yang, Y.; Guo, S.; Omran, M.; Chen, J.; Chen, G. Dielectric characterisation and reduction properties of the blending mixtures of low-grade pyrolusite and waste corn stalks in the microwave field. Fuel, 2021, 305, 121546.
[http://dx.doi.org/10.1016/j.fuel.2021.121546]
[23]
Li, K.; Jiang, Q.; Chen, G.; Gao, L.; Peng, J.; Chen, Q.; Koppala, S.; Omran, M.; Chen, J. Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends. Bioresour. Technol., 2021, 319, 124172.
[http://dx.doi.org/10.1016/j.biortech.2020.124172] [PMID: 33011627]
[24]
Xie, Z.M.; Chen, G.; Liu, R.L.; Liu, Z.H.; Cen, S.D.; Tao, C.Y.; Guo, S.H. Reaction kinetics characteristics of pyrolusite leaching process enhanced by rigid-flexible combined impeller. CIESC J., 2021, 72(05), 2586-2595.
[25]
Astuti, W.; Mufakhir, F.R.; Prasetyo, E.; Sumardi, S.; Yuda, A.P.T.; Nurjaman, F.; Supriyatna, Y.I.; Handoko, A.S. Reductive-atmospheric leaching of manganese from pyrolusite ore using various reducing agents. AIP Conf. Proc., 2019, 2097(1), 030117.
[http://dx.doi.org/10.1063/1.5098292]
[26]
Keshavarz, S.; Faraji, F.; Rashchi, F.; Mokmeli, M. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies. J. Environ. Manage., 2021, 285, 112153.
[http://dx.doi.org/10.1016/j.jenvman.2021.112153] [PMID: 33607567]
[27]
Chen, G.; Jiang, C.; Liu, R.; Xie, Z.; Liu, Z.; Cen, S.; Tao, C.; Guo, S. Leaching kinetics of manganese from pyrolusite using pyrite as a reductant under microwave heating. Separ. Purif. Tech., 2021, 277, 119472.
[http://dx.doi.org/10.1016/j.seppur.2021.119472]
[28]
Lin, S.; Gao, L.; Yang, Y.; Chen, J.; Guo, S.; Omran, M.; Chen, G. Efficiency and sustainable leaching process of manganese from pyrolusite-pyrite mixture in sulfuric acid systems enhanced by microwave heating. Hydrometallurgy, 2020, 198, 105519.
[http://dx.doi.org/10.1016/j.hydromet.2020.105519]
[29]
Lin, S.D.; Li, K.Q.; Yang, Y.; Gao, L.; Omran, M.; Guo, S.H.; Chen, J.; Chen, G. Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent. Chem. Eng. Proc. Proc. Intens., 2021, 159, 108209.
[30]
Tao, C.Y.; Sun, D.G.; Liu, Z.H.; Du, J.; Liu, R.L. A study on kinetics of high valent manganese oxide reducing leaching under microwave lrradiation. China Manganese Industry, 2010, 28(01), 21-24.
[31]
Addai, E.K.; Acquah, F.; Yeboah, I.; Addo, A. Reductive leaching of blended manganese carbonate and pyrolusite ores in sulphuric acid. Int. J. Min. Miner. Eng., 2016, 7(1), 18-36.
[http://dx.doi.org/10.1504/IJMME.2016.074591]
[32]
Beolchini, F.; Papini, M.P.; Toro, L.; Trifoni, M.; Vegliò, F. Acid leaching of manganiferous ores by sucrose: Kinetic modelling and related statistical analysis. Miner. Eng., 2001, 14(2), 175-184.
[http://dx.doi.org/10.1016/S0892-6875(00)00173-4]
[33]
Deng, L.; Qu, B.; Su, S.; Ding, S.; Sun, W. Separation of manganese from iron in the SO2 reductive leaching iron-rich pyrolusite ore: Leaching mechanism and kinetics. Arab. J. Sci. Eng., 2019, 44(6), 5335-5344.
[http://dx.doi.org/10.1007/s13369-018-3587-2]
[34]
Jennita Jacqueline, P.; Shenbaga Muthuraman, V.; Karthick, C.; Alaswad, A.; Velvizhi, G.; Nanthagopal, K. Catalytic microwave preheated co-pyrolysis of lignocellulosic biomasses: A study on biofuel production and its characterization. Bioresour. Technol., 2022, 347, 126382.
[http://dx.doi.org/10.1016/j.biortech.2021.126382] [PMID: 34808319]
[35]
Ju, J.; Feng, Y.; Li, H.; Zhong, X. Efficient extraction of manganese from low-grade pyrolusite by a sawdust pyrolysis reduction roasting-acid leaching process. J. Miner. Met. Mater. Soc., 2022, 74(5), 1978-1988.
[http://dx.doi.org/10.1007/s11837-022-05215-1]
[36]
Liu, Y.; He, F.; Ma, D.; Hu, Q.; You, Z. Novel process of reduction roasting manganese ore with sulfur waste and extraction of mn by acid leaching. Metals, 2022, 12(3), 384.
[http://dx.doi.org/10.3390/met12030384]
[37]
Prashanth, P.F.; Gurrala, L.; Mohan, R.V.; Sarvanakumar, K.; Vinu, R. Microwave‐assisted torrefaction and pyrolysis of rice straw pellets for bioenergy. IET Renew. Power Gener., 2022, 16(14), 2964-2977.
[http://dx.doi.org/10.1049/rpg2.12445]
[38]
Lin, S.; Gao, L.; Yang, Y.; Liu, R.; Chen, J.; Guo, S.; Omran, M.; Chen, G. Microwave-enhanced reduction of manganese from a low-grade pyrolusite ore using pyrite: Process optimization and kinetic studies. Environ. Sci. Pollut. Res. Int., 2022, 29(39), 58915-58926.
[http://dx.doi.org/10.1007/s11356-022-19988-0] [PMID: 35368238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy