Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

KRAS Pathway-based Therapeutic Approaches in Pancreatic Cancer

Author(s): Abdullah Althaiban, Anita Thyagarajan and Ravi Prakash Sahu*

Volume 23, Issue 8, 2023

Published on: 13 January, 2023

Page: [953 - 961] Pages: 9

DOI: 10.2174/1389557523666221226095931

Price: $65

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly aggressive malignancies and the leading cause of cancer-related deaths. Despite recent advancements, the overall therapeutic responses in PDAC patients remained relatively low or short-lived. While KRAS is the most frequently mutated proto-oncogene and represents a critical driver, it remains challenging to target all mutant variants. Thus, strategies to target the downstream signaling cascades (RAS-RAF-MEK-ERK) in PDAC were associated with improved response rates. Nevertheless, the activation of other oncogenic cascades, such as PI3K/AKT/mTOR, has also been documented within the same context and implicated in the development of acquired tumor resistance mechanisms and/or reduced efficacy of therapeutic agents. Therefore, an in-depth understanding of overlapping and intersecting pathways is required to overcome the tumor resistance mechanisms to devise novel approaches to enhance the effectiveness of ongoing treatment options. The current review highlights the mechanistic insights from cellular and preclinical studies with particular emphasis on KRAS (i.e., MEK and ERK)-based approaches for PDAC treatment.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[3]
Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; Almario, C.V.; Halloran, C.; Lennon, A.M.; Costello, E. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol., 2020, 5(7), 698-710.
[http://dx.doi.org/10.1016/S2468-1253(19)30416-9] [PMID: 32135127]
[4]
Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early detection of pancreatic cancer: Opportunities and challenges. Gastroenterology, 2019, 156(7), 2024-2040.
[http://dx.doi.org/10.1053/j.gastro.2019.01.259] [PMID: 30721664]
[5]
Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol., 2019, 10(1), 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[6]
Carmicheal, J.; Patel, A.; Dalal, V.; Atri, P.; Dhaliwal, A.S.; Wittel, U.A.; Malafa, M.P.; Talmon, G.; Swanson, B.J.; Singh, S.; Jain, M.; Kaur, S.; Batra, S.K. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188318.
[http://dx.doi.org/10.1016/j.bbcan.2019.188318] [PMID: 31676330]
[7]
Sarvepalli, D.; Rashid, M.U.; Rahman, A.U.; Ullah, W.; Hussain, I.; Hasan, B.; Jehanzeb, S.; Khan, A.K.; Jain, A.G.; Khetpal, N.; Ahmad, S. Gemcitabine: A review of chemoresistance in pancreatic cancer. Crit. Rev. Oncog., 2019, 24(2), 199-212.
[http://dx.doi.org/10.1615/CritRevOncog.2019031641] [PMID: 31679214]
[8]
Rajabpour, A.; Rajaei, F.; Teimoori-Toolabi, L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology, 2017, 17(2), 310-320.
[http://dx.doi.org/10.1016/j.pan.2016.12.013] [PMID: 28065383]
[9]
Wang, S.; Li, Y.; Xing, C.; Ding, C.; Zhang, H.; Chen, L.; You, L.; Dai, M.; Zhao, Y. Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. Am. J. Cancer Res., 2020, 10(7), 1937-1953.
[PMID: 32774994]
[10]
Takahashi, S. How to treat borderline resectable pancreatic cancer: Current challenges and future directions. Jpn. J. Clin. Oncol., 2018, 48(3), 205-213.
[http://dx.doi.org/10.1093/jjco/hyx191] [PMID: 29340601]
[11]
Camara, S.N.; Yin, T.; Yang, M.; Li, X.; Gong, Q.; Zhou, J.; Zhao, G.; Yang, Z.; Aroun, T.; Kuete, M.; Ramdany, S.; Camara, A.K.; Diallo, A.T.; Feng, Z.; Ning, X.; Xiong, J.; Tao, J.; Qin, Q.; Zhou, W.; Cui, J.; Huang, M.; Guo, Y.; Gou, S.; Wang, B.; Liu, T.; Olivier, O.E.T.; Conde, T.; Cisse, M.; Magassouba, A.S.; Ballah, S.; Keita, N.L.M.; Souare, I.S.; Toure, A.; Traore, S.; Balde, A.K.; Keita, N.; Camara, N.D.; Emmanuel, D.; Wu, H.; Wang, C. High risk factors of pancreatic carcinoma. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(3), 295-304.
[http://dx.doi.org/10.1007/s11596-016-1583-x] [PMID: 27376795]
[12]
Kirkegård, J.; Mortensen, F.V.; Cronin-Fenton, D. Chronic pancreatitis and pancreatic cancer risk: A systematic review and meta-analysis. Am. J. Gastroenterol., 2017, 112(9), 1366-1372.
[http://dx.doi.org/10.1038/ajg.2017.218] [PMID: 28762376]
[13]
Kolodecik, T.; Shugrue, C.; Ashat, M.; Thrower, E.C. Risk factors for pancreatic cancer: Underlying mechanisms and potential targets. Front. Physiol., 2014, 4, 415.
[http://dx.doi.org/10.3389/fphys.2013.00415] [PMID: 24474939]
[14]
Abdelrehim, M.G.; Mahfouz, E.M.; Ewis, A.A.; Seedhom, A.E.; Afifi, H.M.; Shebl, F.M. Dietary factors associated with pancreatic cancer risk in minia, egypt: Principal component analysis. Asian Pac. J. Cancer Prev., 2018, 19(2), 449-455.
[PMID: 29480075]
[15]
Larsson, S.C.; Wolk, A. Red and processed meat consumption and risk of pancreatic cancer: Meta-analysis of prospective studies. Br. J. Cancer, 2012, 106(3), 603-607.
[http://dx.doi.org/10.1038/bjc.2011.585] [PMID: 22240790]
[16]
Giudice, A.; Crispo, A.; Massimiliano, G.; D’Arena, G.; Tecce, M.F.; Grimaldi, M.; Amore, A.; Esposito, E.; Montella, M. Metabolic syndrome, insulin resistance, circadian disruption, antioxidants and pancreatic carcinoma: An overview. J. Gastrointestin. Liver Dis., 2014, 23(1), 73-77.
[http://dx.doi.org/10.15403/jgld-1282] [PMID: 24689100]
[17]
Zanini, S.; Renzi, S.; Limongi, A.R.; Bellavite, P.; Giovinazzo, F.; Bermano, G. A review of lifestyle and environment risk factors for pancreatic cancer. Eur. J. Cancer, 2021, 145, 53-70.
[http://dx.doi.org/10.1016/j.ejca.2020.11.040] [PMID: 33423007]
[18]
Choi, M.; Bien, H.; Mofunanya, A.; Powers, S. Challenges in Ras therapeutics in pancreatic cancer. Semin. Cancer Biol., 2019, 54, 101-108.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.015] [PMID: 29170065]
[19]
Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 153-168.
[http://dx.doi.org/10.1038/s41575-019-0245-4] [PMID: 32005945]
[20]
Mann, K.M.; Ying, H.; Juan, J.; Jenkins, N.A.; Copeland, N.G. KRAS-related proteins in pancreatic cancer. Pharmacol. Ther., 2016, 168, 29-42.
[http://dx.doi.org/10.1016/j.pharmthera.2016.09.003] [PMID: 27595930]
[21]
Pathan, A.A.K.; Panthi, B.; Khan, Z.; Koppula, P.R.; Alanazi, M.; Reddy Parine, N.; Chourasia, M.; Sachchidanand, S. Lead identification for the K-Ras protein: Virtual screening and combinatorial fragment-based approaches. OncoTargets Ther., 2016, 9, 2575-2584.
[http://dx.doi.org/10.2147/OTT.S99671] [PMID: 27217775]
[22]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.012] [PMID: 26807863]
[23]
Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33.
[http://dx.doi.org/10.1016/j.cell.2017.06.009] [PMID: 28666118]
[24]
Sprang, S.R. Invited review: Activation of G proteins by GTP and the mechanism of Gα‐catalyzed GTP hydrolysis. Biopolymers, 2016, 105(8), 449-462.
[http://dx.doi.org/10.1002/bip.22836] [PMID: 26996924]
[25]
Hobbs, G.A.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci., 2016, 129(7), jcs.182873.
[http://dx.doi.org/10.1242/jcs.182873] [PMID: 26985062]
[26]
Waters, A.M.; Der, C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med., 2018, 8(9), a031435.
[http://dx.doi.org/10.1101/cshperspect.a031435] [PMID: 29229669]
[27]
Bournet, B.; Buscail, C.; Muscari, F.; Cordelier, P.; Buscail, L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur. J. Cancer, 2016, 54, 75-83.
[http://dx.doi.org/10.1016/j.ejca.2015.11.012] [PMID: 26735353]
[28]
Hayashi, A.; Hong, J.; Iacobuzio-Donahue, C.A. The pancreatic cancer genome revisited. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(7), 469-481.
[http://dx.doi.org/10.1038/s41575-021-00463-z] [PMID: 34089011]
[29]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[30]
Naim, N.; Moukheiber, S.; Daou, S.; Kourie, H.R. KRAS-G12C covalent inhibitors: A game changer in the scene of cancer therapies. Crit. Rev. Oncol. Hematol., 2021, 168, 103524.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103524] [PMID: 34800654]
[31]
Mathieu, M.; Steier, V.; Fassy, F.; Delorme, C.; Papin, D.; Genet, B.; Duffieux, F.; Bertrand, T.; Delarbre, L.; Le-Borgne, H.; Parent, A.; Didier, P.; Marquette, J.P.; Lowinski, M.; Houtmann, J.; Lamberton, A.; Debussche, L.; Alexey, R. KRAS G12C fragment screening renders new binding pockets. Small GTPases, 2022, 13(1), 225-238.
[http://dx.doi.org/10.1080/21541248.2021.1979360] [PMID: 34558391]
[32]
Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.; Burkard, M.R.; Fell, J.B.; Fischer, J.P.; Vigers, G.P.; Xue, Y.; Gatto, S.; Fernandez-Banet, J.; Pavlicek, A.; Velastagui, K.; Chao, R.C.; Barton, J.; Pierobon, M.; Baldelli, E.; Patricoin, E.F., III; Cassidy, D.P.; Marx, M.A.; Rybkin, I.I.; Johnson, M.L.; Ou, S-H. The KRAS G12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov., 2020, 10(1), 54-71.
[http://dx.doi.org/10.1158/2159-8290.CD-19-1167] [PMID: 31658955]
[33]
Khan, S.; Wiegand, J.; Zhang, P.; Hu, W.; Thummuri, D.; Budamagunta, V.; Hua, N.; Jin, L.; Allegra, C.J.; Kopetz, S.E.; Zajac-Kaye, M.; Kaye, F.J.; Zheng, G.; Zhou, D. BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers. J. Hematol. Oncol., 2022, 15(1), 23.
[http://dx.doi.org/10.1186/s13045-022-01241-3] [PMID: 35260176]
[34]
Bekaii-Saab, T.S.; Spira, A.I.; Yaeger, R.; Buchschacher, G.L.; McRee, A.J.; Sabari, J.K.; Johnson, M.L.; Barve, M.A.; Hafez, N.; Velastegui, K.; Christensen, J.G.; Kheoh, T.; Der-Torossian, H.; Rybkin, I.I. KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRASG12C mutation. J. Clin. Oncol., 2022, 40(4_suppl), 519.
[http://dx.doi.org/10.1200/JCO.2022.40.4_suppl.519]
[35]
Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; Bang, Y.J.; Dy, G.K.; Krauss, J.C.; Kuboki, Y.; Kuo, J.C.; Coveler, A.L.; Park, K.; Kim, T.W.; Barlesi, F.; Munster, P.N.; Ramalingam, S.S.; Burns, T.F.; Meric-Bernstam, F.; Henary, H.; Ngang, J.; Ngarmchamnanrith, G.; Kim, J.; Houk, B.E.; Canon, J.; Lipford, J.R.; Friberg, G.; Lito, P.; Govindan, R.; Li, B.T. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med., 2020, 383(13), 1207-1217.
[http://dx.doi.org/10.1056/NEJMoa1917239] [PMID: 32955176]
[36]
Haigis, K.M. KRAS alleles: The devil is in the detail. Trends Cancer, 2017, 3(10), 686-697.
[http://dx.doi.org/10.1016/j.trecan.2017.08.006] [PMID: 28958387]
[37]
Nagasaka, M.; Potugari, B.; Nguyen, A.; Sukari, A.; Azmi, A.S.; Ou, S.H.I. KRAS Inhibitors– yes but what next? Direct targeting of KRAS– vaccines, adoptive T cell therapy and beyond. Cancer Treat. Rev., 2021, 101, 102309.
[http://dx.doi.org/10.1016/j.ctrv.2021.102309] [PMID: 34715449]
[38]
Zhang, J.; Zhang, J.; Liu, Q.; Fan, X.X.; Leung, E.L.H.; Yao, X.J.; Liu, L. Resistance looms for KRAS G12C inhibitors and rational tackling strategies. Pharmacol. Ther., 2022, 229, 108050.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108050] [PMID: 34864132]
[39]
Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; Jacobson, J.O.; Yang, X.; Persky, N.S.; Root, D.E.; Lowder, K.E.; Feng, H.; Zhang, S.S.; Haigis, K.M.; Hung, Y.P.; Sholl, L.M.; Wolpin, B.M.; Wiese, J.; Christiansen, J.; Lee, J.; Schrock, A.B.; Lim, L.P.; Garg, K.; Li, M.; Engstrom, L.D.; Waters, L.; Lawson, J.D.; Olson, P.; Lito, P.; Ou, S.H.I.; Christensen, J.G.; Jänne, P.A.; Aguirre, A.J. Acquired resistance to KRAS G12C inhibition in cancer. N. Engl. J. Med., 2021, 384(25), 2382-2393.
[http://dx.doi.org/10.1056/NEJMoa2105281] [PMID: 34161704]
[40]
Chung, V.; McDonough, S.; Philip, P.A.; Cardin, D.; Wang-Gillam, A.; Hui, L.; Tejani, M.A.; Seery, T.E.; Dy, I.A.; Al Baghdadi, T.; Hendifar, A.E.; Doyle, L.A.; Lowy, A.M.; Guthrie, K.A.; Blanke, C.D.; Hochster, H.S. Effect of selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy. JAMA Oncol., 2017, 3(4), 516-522.
[http://dx.doi.org/10.1001/jamaoncol.2016.5383] [PMID: 27978579]
[41]
Bodoky, G.; Timcheva, C.; Spigel, D.R.; La Stella, P.J.; Ciuleanu, T.E.; Pover, G.; Tebbutt, N.C. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest. New Drugs, 2012, 30(3), 1216-1223.
[http://dx.doi.org/10.1007/s10637-011-9687-4] [PMID: 21594619]
[42]
Infante, J.R.; Somer, B.G.; Park, J.O.; Li, C.P.; Scheulen, M.E.; Kasubhai, S.M.; Oh, D.Y.; Liu, Y.; Redhu, S.; Steplewski, K.; Le, N. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur. J. Cancer, 2014, 50(12), 2072-2081.
[http://dx.doi.org/10.1016/j.ejca.2014.04.024] [PMID: 24915778]
[43]
Bedard, P.L.; Tabernero, J.; Janku, F.; Wainberg, Z.A.; Paz-Ares, L.; Vansteenkiste, J.; Van Cutsem, E.; Pérez-García, J.; Stathis, A.; Britten, C.D.; Le, N.; Carter, K.; Demanse, D.; Csonka, D.; Peters, M.; Zubel, A.; Nauwelaerts, H.; Sessa, C. A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 730-738.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1814] [PMID: 25500057]
[44]
Abdel-Wahab, R.; Varadhachary, G.R.; Bhosale, P.R.; Wang, X.; Fogelman, D.R.; Shroff, R.T.; Overman, M.J.; Wolff, R.A.; Javle, M. Randomized, phase I/II study of gemcitabine plus IGF-1R antagonist (MK-0646) versus gemcitabine plus erlotinib with and without MK-0646 for advanced pancreatic adenocarcinoma. J. Hematol. Oncol., 2018, 11(1), 71.
[http://dx.doi.org/10.1186/s13045-018-0616-2] [PMID: 29843755]
[45]
Philip, P.A.; Lacy, J.; Portales, F.; Sobrero, A.; Pazo-Cid, R.; Manzano Mozo, J.L.; Kim, E.J.; Dowden, S.; Zakari, A.; Borg, C.; Terrebonne, E.; Rivera, F.; Sastre, J.; Bathini, V.; López-Trabada, D.; Asselah, J.; Saif, M.W.; Shiansong Li, J.; Ong, T.J.; Nydam, T.; Hammel, P. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): A multicentre, open-label phase 2 study. Lancet Gastroenterol. Hepatol., 2020, 5(3), 285-294.
[http://dx.doi.org/10.1016/S2468-1253(19)30327-9] [PMID: 31953079]
[46]
Sai, S.; Toyoda, M.; Tobimatsu, K.; Satake, H.; Yasui, H.; Kimbara, S.; Koyama, T.; Fujishima, Y.; Imamura, Y.; Funakoshi, Y.; Kiyota, N.; Toyama, H.; Kodama, Y.; Minami, H. Phase 1 study of Gemcitabine/Nab-paclitaxel/S-1 in patients with unresectable pancreatic cancer (GeNeS1S trial). Cancer Chemother. Pharmacol., 2021, 87(1), 65-71.
[http://dx.doi.org/10.1007/s00280-020-04174-1] [PMID: 33098471]
[47]
Tsujimoto, A.; Sudo, K.; Nakamura, K.; Kita, E.; Hara, R.; Takayama, W.; Ishii, H.; Yamaguchi, T. Gemcitabine plus nab-paclitaxel for locally advanced or borderline resectable pancreatic cancer. Sci. Rep., 2019, 9(1), 16187.
[http://dx.doi.org/10.1038/s41598-019-52486-x] [PMID: 31700023]
[48]
Catalano, M.; Roviello, G.; Conca, R.; D’Angelo, A.; Palmieri, V.E.; Panella, B.; Petrioli, R.; Ianza, A.; Nobili, S.; Mini, E.; Ramello, M. Clinical outcomes and safety of patients treated with NAb-paclitaxel plus gemcitabine in metastatic pancreatic cancer: The NAPA study. Curr. Cancer Drug Targets, 2020, 20(11), 887-895.
[http://dx.doi.org/10.2174/1568009620999200918122426] [PMID: 32957885]
[49]
Kunzmann, V.; Siveke, J.T.; Algül, H.; Goekkurt, E.; Siegler, G.; Martens, U.; Waldschmidt, D.; Pelzer, U.; Fuchs, M.; Kullmann, F.; Boeck, S.; Ettrich, T.J.; Held, S.; Keller, R.; Klein, I.; Germer, C.T.; Stein, H.; Friess, H.; Bahra, M.; Jakobs, R.; Hartlapp, I.; Heinemann, V.; Hennes, E.; Lindig, U.; Geer, T.; Stahl, M.; Senkal, M.; Südhoff, T.; Egger, M.; Kahl, C.; Große-Thie, C.; Reiser, M.; Mahlmann, S.; Fix, P.; Schulz, H.; Maschmeyer, G.; Blau, W. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol., 2021, 6(2), 128-138.
[http://dx.doi.org/10.1016/S2468-1253(20)30330-7] [PMID: 33338442]
[50]
Ko, A.H.; Bekaii-Saab, T.; Van Ziffle, J.; Mirzoeva, O.M.; Joseph, N.M.; Talasaz, A.; Kuhn, P.; Tempero, M.A.; Collisson, E.A.; Kelley, R.K.; Venook, A.P.; Dito, E.; Ong, A.; Ziyeh, S.; Courtin, R.; Linetskaya, R.; Tahiri, S.; Korn, W.M. A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin. Cancer Res., 2016, 22(1), 61-68.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0979] [PMID: 26251290]
[51]
Kong, B.; Wu, W.; Cheng, T.; Schlitter, A.M.; Qian, C.; Bruns, P.; Jian, Z.; Jäger, C.; Regel, I.; Raulefs, S.; Behler, N.; Irmler, M.; Beckers, J.; Friess, H.; Erkan, M.; Siveke, J.T.; Tannapfel, A.; Hahn, S.A.; Theis, F.J.; Esposito, I.; Kleeff, J.; Michalski, C.W. A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling. Gut, 2016, 65(4), 647-657.
[http://dx.doi.org/10.1136/gutjnl-2014-307616] [PMID: 25601637]
[52]
Junttila, M.R.; Devasthali, V.; Cheng, J.H.; Castillo, J.; Metcalfe, C.; Clermont, A.C.; Otter, D.D.; Chan, E.; Bou-Reslan, H.; Cao, T.; Forrest, W.; Nannini, M.A.; French, D.; Carano, R.; Merchant, M.; Hoeflich, K.P.; Singh, M. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer. Mol. Cancer Ther., 2015, 14(1), 40-47.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0030] [PMID: 25376606]
[53]
Engelman, J.A.; Chen, L.; Tan, X.; Crosby, K.; Guimaraes, A.R.; Upadhyay, R.; Maira, M.; McNamara, K.; Perera, S.A.; Song, Y.; Chirieac, L.R.; Kaur, R.; Lightbown, A.; Simendinger, J.; Li, T.; Padera, R.F.; García-Echeverría, C.; Weissleder, R.; Mahmood, U.; Cantley, L.C.; Wong, K.K. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med., 2008, 14(12), 1351-1356.
[http://dx.doi.org/10.1038/nm.1890] [PMID: 19029981]
[54]
Sahu, N.; Chan, E.; Chu, F.; Pham, T.; Koeppen, H.; Forrest, W.; Merchant, M.; Settleman, J. Cotargeting of MEK and PDGFR/STAT3 pathways to treat pancreatic ductal adenocarcinoma. Mol. Cancer Ther., 2017, 16(9), 1729-1738.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0009] [PMID: 28619758]
[55]
Diep, C.H.; Munoz, R.M.; Choudhary, A.; Von Hoff, D.D.; Han, H. Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clin. Cancer Res., 2011, 17(9), 2744-2756.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2214] [PMID: 21385921]
[56]
Newhook, T.E.; Lindberg, J.M.; Adair, S.J.; Kim, A.J.; Stelow, E.B.; Rahma, O.E.; Parsons, J.T.; Bauer, T.W. Adjuvant trametinib delays the outgrowth of occult pancreatic cancer in a mouse model of patient-derived liver metastasis. Ann. Surg. Oncol., 2016, 23(6), 1993-2000.
[http://dx.doi.org/10.1245/s10434-016-5116-4] [PMID: 26847682]
[57]
Ning, C.; Liang, M.; Liu, S.; Wang, G.; Edwards, H.; Xia, Y.; Polin, L.; Dyson, G.; Taub, J.W.; Mohammad, R.M.; Azmi, A.S.; Zhao, L.; Ge, Y. Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget, 2017, 8(27), 44295-44311.
[http://dx.doi.org/10.18632/oncotarget.17869] [PMID: 28574828]
[58]
Pettazzoni, P.; Viale, A.; Shah, P.; Carugo, A.; Ying, H.; Wang, H.; Genovese, G.; Seth, S.; Minelli, R.; Green, T.; Huang-Hobbs, E.; Corti, D.; Sanchez, N.; Nezi, L.; Marchesini, M.; Kapoor, A.; Yao, W.; Francesco, M.E.D.; Petrocchi, A.; Deem, A.K.; Scott, K.; Colla, S.; Mills, G.B.; Fleming, J.B.; Heffernan, T.P.; Jones, P.; Toniatti, C.; DePinho, R.A.; Draetta, G.F. Genetic events that limit the efficacy of MEK and RTK inhibitor therapies in a mouse model of KRAS-driven pancreatic cancer. Cancer Res., 2015, 75(6), 1091-1101.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1854] [PMID: 25736685]
[59]
Thyagarajan, A.; Kadam, S.; Liu, L.; Kelly, L.; Rapp, C.; Chen, Y.; Sahu, R. Gemcitabine induces microvesicle particle release in a platelet-activating factor-receptor-dependent manner via modulation of the MAPK pathway in pancreatic cancer cells. Int. J. Mol. Sci., 2018, 20(1), 32.
[http://dx.doi.org/10.3390/ijms20010032] [PMID: 30577630]
[60]
Khader, S.; Thyagarajan, A.; Sahu, R.P. Exploring signaling pathways and pancreatic cancer treatment approaches using genetic models. Mini Rev. Med. Chem., 2019, 19(14), 1112-1125.
[http://dx.doi.org/10.2174/1389557519666190327163644] [PMID: 30924420]
[61]
Thyagarajan, A.; Alshehri, M.S.A.; Miller, K.L.R.; Sherwin, C.M.; Travers, J.B.; Sahu, R.P. Myeloid-derived suppressor cells and pancreatic cancer: Implications in novel therapeutic approaches. Cancers, 2019, 11(11), 1627.
[http://dx.doi.org/10.3390/cancers11111627] [PMID: 31652904]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy