Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Health-promoting Potential of Edible Mushroom Proteins

Author(s): Ana Sofia Sousa, Helena Araújo-Rodrigues and Manuela Estevez Pintado*

Volume 29, Issue 11, 2023

Published on: 06 January, 2023

Page: [804 - 823] Pages: 20

DOI: 10.2174/1381612829666221223103756

Price: $65

Abstract

Edible mushrooms have been classified as “next-generation food” due to their high nutritional value coupled with their biological and functional potential. The most extensively studied and reported mushroom macromolecules are polysaccharides. However, macrofungi proteins and peptides are also a representative and significant bioactive group. Several factors such as species, substrate composition and harvest time significantly impact the mushroom protein content, typically ranging between 19 and 35% on a dry weight basis. Proteins work based on their shape and structure. Numerous extraction methods, including chemical and non-conventional, and their implications on protein yield and stability will be discussed. Beyond their biological potential, a great advantage of mushroom proteins is their uniqueness, as they often differ from animal, vegetable, and microbial proteins. According to recently published reports, the most relevant mushroom bioactive proteins and peptides include lectins, fungal immunomodulatory proteins, ubiquitin-like proteins, and proteins possessing enzymatic activity such as ribonucleases laccases, and other enzymes and ergothioneine. These are reported as antioxidant, antiviral, antifungal, antibacterial, antihypertensive, immunomodulatory, antitumour, antihypercholesterolemic or antihyperlipidemic, antidiabetic and anti-inflammatory properties, which improved proteins and peptides research interest and contributed to the increase of mushroom market value. This review provides an overview of the most relevant biochemical and biological properties of the main protein groups in edible mushrooms, explicitly focusing on their biomedical potential. Although mushrooms are a rich source of various proteins, many of these molecules have yet to be identified and characterised. Accordingly, it is crucial to identify and characterise new macromolecules of macrofungi origin, which opens an opportunity for further investigation to identify new bioactives for food, nutraceutical, or medicinal applications.

[1]
Gong P, Wang S, Liu M, et al. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr Res 2020; 494: 108037.
[http://dx.doi.org/10.1016/j.carres.2020.108037] [PMID: 32592937]
[2]
Cerletti C, Esposito S, Iacoviello L. Edible mushrooms and beta-glucans: Impact on human health. Nutrients 2021; 13(7): 2195.
[http://dx.doi.org/10.3390/nu13072195] [PMID: 34202377]
[3]
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19(5): 2333-56.
[http://dx.doi.org/10.1111/1541-4337.12602] [PMID: 33336985]
[4]
Li M, Yu L, Zhao J, et al. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021; 83: 104538.
[http://dx.doi.org/10.1016/j.jff.2021.104538]
[5]
Marçal S, Sousa AS, Taofiq O, et al. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci Technol 2021; 110: 418-31.
[http://dx.doi.org/10.1016/j.tifs.2021.02.007]
[6]
Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 2017; 5(2): 35-46.
[http://dx.doi.org/10.1016/j.phanu.2017.02.001]
[7]
Cateni F, Gargano ML, Procida G, Venturella G, Cirlincione F, Ferraro V. Mycochemicals in wild and cultivated mushrooms: nutrition and health. Netherlands: Phytochemistry Reviews. Springer 2021; 2.
[8]
Venturella G, Ferraro V, Cirlincione F, Gargano ML. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int J Mol Sci 2021; 22(2): 634.
[http://dx.doi.org/10.3390/ijms22020634] [PMID: 33435246]
[9]
Niego AG, Rapior S, Thongklang N, et al. Macrofungi as a nutraceutical source: promising bioactive compounds and market value. J Fungi (Basel) 2021; 7(5): 397.
[http://dx.doi.org/10.3390/jof7050397] [PMID: 34069721]
[10]
Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J. Proteins of higher fungi – from forest to application. Trends Biotechnol 2012; 30(5): 259-73.
[http://dx.doi.org/10.1016/j.tibtech.2012.01.004] [PMID: 22341093]
[11]
Martinez-Medina GA, Chávez-González ML, Verma DK, et al. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J Funct Foods 2021; 77: 104326.
[http://dx.doi.org/10.1016/j.jff.2020.104326]
[12]
Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Wellness 2018; 7(2): 125-33.
[http://dx.doi.org/10.1016/j.fshw.2018.05.002]
[13]
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148(April): 110599.
[http://dx.doi.org/10.1016/j.foodres.2021.110599] [PMID: 34507744]
[14]
Murray JE, Laurieri N, Delgoda R. Proteins Pharmacognosy: Fundamentals, Applications and Strategy. Elsevier Inc. 2017; pp. 477-94.
[15]
González A, Cruz M, Losoya C, et al. Edible mushrooms as a novel protein source for functional foods. Food Funct 2020; 11(9): 7400-14.
[http://dx.doi.org/10.1039/D0FO01746A] [PMID: 32896845]
[16]
Usman M, Murtaza G, Ditta A. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A review. Appl Sci (Basel) 2021; 11(13): 5943.
[http://dx.doi.org/10.3390/app11135943]
[17]
Hoa HT, Wang CL, Wang CH. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015; 43(4): 423-34.
[http://dx.doi.org/10.5941/MYCO.2015.43.4.423] [PMID: 26839502]
[18]
Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015; 2015: 1-14.
[http://dx.doi.org/10.1155/2015/376387] [PMID: 25685150]
[19]
Li Z, Luo R, Zhang Y, Yan X, Pang Q. Effective protein extraction from mycelium and fruiting body of Auricularia auricula for proteomics studies. Int J Food Prop 2018; 21(1): 2156-66.
[http://dx.doi.org/10.1080/10942912.2018.1499111]
[20]
Zou Y, Xie C, Fan G, Gu Z, Han Y. Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innov Food Sci Emerg Technol 2010; 11(4): 611-5.
[http://dx.doi.org/10.1016/j.ifset.2010.07.002]
[21]
Roselló-Soto E, Parniakov O, Deng Q, et al. Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Eng Rev 2016; 8(2): 214-34.
[http://dx.doi.org/10.1007/s12393-015-9131-1]
[22]
Franca-Oliveira G, Fornari T, Hernández-Ledesma B. A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches. Processes (Basel) 2021; 9(9): 1626.
[http://dx.doi.org/10.3390/pr9091626]
[23]
Kumakura K, Hori C, Matsuoka H, Igarashi K, Samejima M. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. J Sci Food Agric 2019; 99(2): 529-35.
[http://dx.doi.org/10.1002/jsfa.9211] [PMID: 29931755]
[24]
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules 2021; 11(5): 631.
[http://dx.doi.org/10.3390/biom11050631] [PMID: 33922830]
[25]
Reis FS, Barros L, Martins A, Ferreira ICFR. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem Toxicol 2012; 50(2): 191-7.
[http://dx.doi.org/10.1016/j.fct.2011.10.056] [PMID: 22056333]
[26]
Goyal R, Grewal RB, Goyal RK. Nutritional attributes of Agaricus bisporus and Pleurotus sajor caju mushrooms. Nutr Health 2006; 18(2): 179-84.
[http://dx.doi.org/10.1177/026010600601800209] [PMID: 16859180]
[27]
Tsai S, Tsai H, Mau J. Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chem 2008; 107(3): 977-83.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.080] [PMID: 26065761]
[28]
Cohen N, Cohen J, Asatiani MD, et al. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms 2014; 16(3): 273-91.
[http://dx.doi.org/10.1615/IntJMedMushr.v16.i3.80] [PMID: 24941169]
[29]
Pereira E, Barros L, Martins A, Ferreira ICFR. Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 2012; 130(2): 394-403.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.057]
[30]
Ouzouni PK, Petridis D, Koller WD, Riganakos KA. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 2009; 115(4): 1575-80.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.014]
[31]
Vaz JA, Barros L, Martins A, Santos-Buelga C, Vasconcelos MH, Ferreira ICFR. Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chem 2011; 126(2): 610-6.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.063]
[32]
Srikram A, Supapvanich S. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agric Nat Resour (Bangk) 2016; 50(6): 432-6.
[http://dx.doi.org/10.1016/j.anres.2016.08.001]
[33]
Huang SJ, Tsai SY, Lee YL, Mau JL. Nonvolatile taste components of fruit bodies and mycelia of Cordyceps militaris. Lebensm Wiss Technol 2006; 39(6): 577-83.
[http://dx.doi.org/10.1016/j.lwt.2005.05.002]
[34]
Tang C, Hoo PCX, Tan LTH, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol 2016; 7: 474.
[http://dx.doi.org/10.3389/fphar.2016.00474] [PMID: 28003804]
[35]
Sharif S, Mustafa G, Munir H, Weaver CM, Jamil Y, Shahid M. Proximate composition and micronutrient mineral profile of wild Ganoderma lucidum and four commercial exotic mushrooms by ICP-OES and LIBS. J Food Nutr Res 2016; 4(11): 703-8.
[36]
Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int 2001; 34(6): 521-6.
[http://dx.doi.org/10.1016/S0963-9969(01)00067-9]
[37]
Rodrigues DMF, Freitas AC, Rocha-Santos TAP, et al. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J Food Sci Technol 2015; 52(11): 6927-39.
[http://dx.doi.org/10.1007/s13197-015-1826-z]
[38]
Kurtzman RH Jr. Mushrooms as a source of food proteins. In: M. Friedman, Ed. Protein Nutritional Quality of foods and feeds: New York, 1975; 2: 305-18.
[39]
Chirinang P, Intarapichet KO. Sci Asia 2009; 35(4): 326-31.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.326]
[40]
Khan MA. Nutritional composition and Hypocholesterolemic effect of mushroom: Pleurotus sajor-caju and Pleurotus florida. Saarbrucken, Germany: LAP Lambert Academic publishing Gmbh &co. KG: Saarbrucken 2010; pp. 1-11.
[41]
Xu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv 2011; 29(6): 667-74.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.003] [PMID: 21605654]
[42]
Kim Y, Nandakumar MP, Marten MR. Proteomics of filamentous fungi. Trends Biotechnol 2007; 25(9): 395-400.
[http://dx.doi.org/10.1016/j.tibtech.2007.07.008] [PMID: 17681627]
[43]
Haili Li , Jianna W, Jianhua W, Guoxia G, Haocai J. Protein extraction methods for the two-dimensional gel electrophoresis analysis of the slow growing fungus Undifilum oxytropis. Afr J Microbiol Res 2012; 6(4): 757-63.
[http://dx.doi.org/10.5897/AJMR11.901]
[44]
Contreras L, Ritter A, Dennett G, et al. Two-dimensional gel electrophoresis analysis of brown algal protein extracts. J Phycol 2008; 44(5): 1315-21.
[http://dx.doi.org/10.1111/j.1529-8817.2008.00575.x] [PMID: 27041728]
[45]
Schuster AM, Davies E. Ribonucleic Acid and protein metabolism in pea epicotyls : I. The aging process. Plant Physiol 1983; 73(3): 809-16.
[http://dx.doi.org/10.1104/pp.73.3.809] [PMID: 16663305]
[46]
Kumar M, Tomar M, Potkule J, et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll 2021; 115: 106595.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106595]
[47]
Wu Y, Liu H, Li Z, et al. Purification of polysaccharides from Phellinus linteus by using an aqueous two-phase system and evaluation of the physicochemical and antioxidant properties of polysaccharides in vitro. Prep Biochem Biotechnol 2022; 52(1): 89-98.
[http://dx.doi.org/10.1080/10826068.2021.1911815] [PMID: 33939578]
[48]
Yan JK, Ma HL, Pei JJ, Wang ZB, Wu JY. Facile and effective separation of polysaccharides and proteins from Cordyceps sinensis mycelia by ionic liquid aqueous two-phase system. Separation and Purification Technology 2014; 135: 278-84.
[http://dx.doi.org/10.1016/j.seppur.2014.03.020]
[49]
Poojary MM, Orlien V, Passamonti P, Olsen K. Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms. Food Chem 2017; 234: 236-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.157] [PMID: 28551231]
[50]
Askin Uzel R, Yaman ÜR. A novel method for food particle production using subcritical water extraction: Ganoderma mushroom as a case example. J Supercrit Fluids 2016; 111: 74-82.
[http://dx.doi.org/10.1016/j.supflu.2016.01.021]
[51]
Leong YK, Yang FC, Chang JS. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr Polym 2021; 251: 117006.
[http://dx.doi.org/10.1016/j.carbpol.2020.117006] [PMID: 33142573]
[52]
Qin P, Li T, Liu C, et al. Extraction and utilization of active substances from edible fungi substrate and residue: A review. Food Chem 2023; 398: 133872.
[http://dx.doi.org/10.1016/j.foodchem.2022.133872] [PMID: 35964566]
[53]
Prandi B, di Massimo M, Tedeschi T, Rodríguez-Turienzo L, Rodríguez Ó. Ultrasound and microwave-assisted extraction of proteins from coffee green beans: effects of process variables on the protein integrity. Food Bioproc Tech 2022; 15(12): 2712-2.
[54]
Aguiló-Aguayo I, Walton J, Viñas I, Tiwari BK. Ultrasound assisted extraction of polysaccharides from mushroom by-products. Lebensm Wiss Technol 2017; 77: 92-9.
[http://dx.doi.org/10.1016/j.lwt.2016.11.043]
[55]
Hildebrand G, Poojary MM, O’Donnell C, Lund MN, Garcia-Vaquero M, Tiwari BK. Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. J Appl Phycol 2020; 32(3): 1709-18.
[http://dx.doi.org/10.1007/s10811-020-02105-4]
[56]
Cheung YC, Siu KC, Liu YS, Wu JY. Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem 2012; 47(5): 892-5.
[http://dx.doi.org/10.1016/j.procbio.2012.02.004]
[57]
Xue D, Farid MM. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus). Innov Food Sci Emerg Technol 2015; 29: 178-86.
[http://dx.doi.org/10.1016/j.ifset.2015.03.012]
[58]
Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci Technol 2018; 80: 187-98.
[http://dx.doi.org/10.1016/j.tifs.2018.08.013]
[59]
Zhao RJ, Huo CY, Qian Y, Ren DF, Lu J. Ultra-high-pressure processing improves proteolysis and release of bioactive peptides with activation activities on alcohol metabolic enzymes in vitro from mushroom foot protein. Food Chem 2017; 231: 25-32.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.058] [PMID: 28450004]
[60]
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179: 239-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.015] [PMID: 33676978]
[61]
Ismaya WT, Tjandrawinata RR, Rachmawati H. Lectins from the edible mushroom Agaricus bisporus and their therapeutic potentials. Molecules 2020; 25(10): 1-16.
[PMID: 32443732]
[62]
Singh RS, Bhari R, Kaur HP. Mushroom lectins: Current status and future perspectives. Crit Rev Biotechnol 2010; 30(2): 99-126.
[http://dx.doi.org/10.3109/07388550903365048] [PMID: 20105049]
[63]
Singh S, Wang H, Chan Y, et al. Lectins from edible mushrooms. Molecules 2014; 20(1): 446-69.
[http://dx.doi.org/10.3390/molecules20010446] [PMID: 25558856]
[64]
Zhao S, Gao Q, Rong C, et al. Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. J Fungi (Basel) 2020; 6(4): 269.
[http://dx.doi.org/10.3390/jof6040269] [PMID: 33171663]
[65]
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151: 1340-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.180] [PMID: 31751693]
[66]
Hassan M, Rouf R, Tiralongo E, May T, Tiralongo J. Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16(12): 7802-38.
[http://dx.doi.org/10.3390/ijms16047802] [PMID: 25856678]
[67]
Yang N, Tong X, Xiang Y, Zhang Y, Sun H, Wang DC. Crystallization and preliminary crystallographic studies of the recombinant antitumour lectin from the edible mushroom Agrocybe aegerita. Biochim Biophys Acta Proteins Proteomics 2005; 1751(2): 209-12.
[http://dx.doi.org/10.1016/j.bbapap.2005.06.003] [PMID: 15996911]
[68]
Wang H, Ng TB, Liu Q. Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci 2002; 70(8): 877-85.
[http://dx.doi.org/10.1016/S0024-3205(01)01463-1] [PMID: 11853225]
[69]
Pemberton RT. Agglutinins (lectins) from some british higher fungi. Mycol Res 1994; 98(3): 277-90.
[http://dx.doi.org/10.1016/S0953-7562(09)80455-3]
[70]
Wang H, Gao J, Ng TB. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem Biophys Res Commun 2000; 275(3): 810-6.
[http://dx.doi.org/10.1006/bbrc.2000.3373] [PMID: 10973803]
[71]
Wang HX, Ng TB, Liu WK, Oou VEC, Chang ST. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int J Pept Protein Res 1995; 46(6): 508-13.
[http://dx.doi.org/10.1111/j.1399-3011.1995.tb01606.x] [PMID: 8748711]
[72]
She QB, Ng TB, Liu WK. A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom Volvariella volvacea. Biochem Biophys Res Commun 1998; 247(1): 106-11.
[http://dx.doi.org/10.1006/bbrc.1998.8744] [PMID: 9636663]
[73]
Ditamo Y, Rupil LL, Sendra VG, Nores GA, Roth GA, Irazoqui FJ. In vivo immunomodulatory effect of the lectin from edible mushroom Agaricus bisporus. Food Funct 2016; 7(1): 262-9.
[http://dx.doi.org/10.1039/C5FO00360A] [PMID: 26399519]
[74]
Chang H, Chien P, Tong M, Sheu F. Mushroom immunomodulatory proteins possess potential thermal/freezing resistance, acid/alkali tolerance and dehydration stability. Food Chem 2007; 105(2): 597-605.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.048]
[75]
El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 2013; 31(12): 668-77.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.003] [PMID: 24125745]
[76]
Wang Y, Zhang Y, Shao J, Wu B, Li B. Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus. Int J Biol Macromol 2019; 130: 399-406.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.150] [PMID: 30822473]
[77]
Li Y, Zhang G, Ng TB, Wang H. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed Biotechnol 2010; 2010: 716515.
[78]
Zhao JK, Wang HX, Ng TB. Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 2009; 53(3): 360-6.
[http://dx.doi.org/10.1016/j.toxicon.2008.12.009] [PMID: 19111567]
[79]
Zhang GQ, Sun J, Wang HX, Ng TB. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 2009; 56(3): 415-21.
[http://dx.doi.org/10.18388/abp.2009_2475] [PMID: 19636442]
[80]
Rouf R, Stephens AS, Spaan L, et al. G2/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora. Glycoconj J 2014; 31(1): 61-70.
[http://dx.doi.org/10.1007/s10719-013-9502-x] [PMID: 24072585]
[81]
Zhao C, Sun H, Tong X, Qi Y. An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem J 2003; 374(2): 321-7.
[http://dx.doi.org/10.1042/bj20030300] [PMID: 12757412]
[82]
Ho JCK, Sze SCW, Shen WZ, Liu WK. Mitogenic activity of edible mushroom lectins. Biochim Biophys Acta, Gen Subj 2004; 1671(1-3): 9-17.
[http://dx.doi.org/10.1016/j.bbagen.2003.12.009]
[83]
Feng K, Liu QH, Ng TB, et al. Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens. Biochem Biophys Res Commun 2006; 345(4): 1573-8.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.061] [PMID: 16730651]
[84]
Zheng S, Li C, Ng TB, Wang HX. A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem 2007; 42(12): 1620-4.
[http://dx.doi.org/10.1016/j.procbio.2007.09.004]
[85]
Jung EC, Kim KD, Bae CH, Kim JC, Kim DK, Kim HH. A mushroom lectin from ascomycete Cordyceps militaris. Biochim Biophys Acta, Gen Subj 2007; 1770(5): 833-8.
[http://dx.doi.org/10.1016/j.bbagen.2007.01.005] [PMID: 17306462]
[86]
Tsuda M. Purification and characterization of a lectin from the mushroom, Flammulina veltipes. J Biochem 1979; 86(5): 1463-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a132664] [PMID: 574868]
[87]
Suzuki T, Sugiyama K, Hirai H, et al. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 2012; 22(5): 616-29.
[http://dx.doi.org/10.1093/glycob/cwr187] [PMID: 22198564]
[88]
Li YR, Liu QH, Wang HX, Ng TB. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta, Gen Subj 2008; 1780(1): 51-7.
[http://dx.doi.org/10.1016/j.bbagen.2007.09.004] [PMID: 17961926]
[89]
Liu Q, Wang H, Ng TB. Isolation and characterization of a novel lectin from the wild mushroom Xerocomus spadiceus. Peptides 2004; 25(1): 7-10.
[http://dx.doi.org/10.1016/j.peptides.2003.11.013] [PMID: 15003350]
[90]
Ngai PHK, Ng TB. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun 2004; 314(4): 988-93.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.196] [PMID: 14751230]
[91]
Sze SCW, Ho JCK, Liu WK. Volvariella volvacea lectin activates mouse T lymphocytes by a calcium dependent pathway. J Cell Biochem 2004; 92(6): 1193-202.
[http://dx.doi.org/10.1002/jcb.20153] [PMID: 15258902]
[92]
Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75(3): 179-87.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[93]
Barre A, Bourne Y, Van Damme E, Rougé P. Overview of the structure–function relationships of mannose-specific lectins from plants, algae and fungi. Int J Mol Sci 2019; 20(2): 254.
[http://dx.doi.org/10.3390/ijms20020254] [PMID: 30634645]
[94]
Wong JH, Wang H, Ng TB. A haemagglutinin from the medicinal fungus Cordyceps militaris. Biosci Rep 2009; 29(5): 321-7.
[http://dx.doi.org/10.1042/BSR20080153] [PMID: 19093913]
[95]
Wang HX, Ng TB. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. Planta Med 2001; 67(7): 669-72.
[http://dx.doi.org/10.1055/s-2001-17359]
[96]
Han CH, Liu QH, Ng TB, Wang HX. A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune. Biochem Biophys Res Commun 2005; 336(1): 252-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.068] [PMID: 16143299]
[97]
bao ML, yang XB, Huang M, Sun L, Yang Q, Chen Y. Adjuvant effects mediated by the carbohydrate recognition domain of Agrocybe aegerita lectin interacting with avian influenza H9N2 viral surface glycosylated proteins. J Zhejiang Univ Sci B 2017; 18(8): 653-1.
[98]
He M, Su D, Liu Q, Gao W, Kang Y. Mushroom lectin overcomes hepatitis B virus tolerance via TLR6 signaling. Sci Rep 2017; 7(1): 5814.
[http://dx.doi.org/10.1038/s41598-017-06261-5] [PMID: 28724955]
[99]
Lagarda-Diaz I, Guzman-Partida A, Vazquez-Moreno L. Legume lectins: Proteins with diverse applications. Int J Mol Sci 2017; 18(6): 1242.
[http://dx.doi.org/10.3390/ijms18061242] [PMID: 28604616]
[100]
Alborés S, Mora P, Bustamante MJ, Cerdeiras MP, Franco Fraguas L. Purification and applications of a lectin from the mushroom Gymnopilus spectabilis. Appl Biochem Biotechnol 2014; 172(4): 2081-90.
[http://dx.doi.org/10.1007/s12010-013-0665-5] [PMID: 24338208]
[101]
Santi-Gadelha T, Rocha BAM, Gadelha CAA, et al. Effects of a lectin-like protein isolated from Acacia farnesiana seeds on phytopathogenic bacterial strains and root-knot nematode. Pestic Biochem Physiol 2012; 103(1): 15-22.
[http://dx.doi.org/10.1016/j.pestbp.2012.02.003]
[102]
Amano K, Katayama H, Saito A, Ando A, Nagata Y. Aleuria aurantia lectin exhibits antifungal activity against Mucor racemosus. Biosci Biotechnol Biochem 2012; 76(5): 967-70.
[http://dx.doi.org/10.1271/bbb.110982] [PMID: 22738968]
[103]
Chandrasekaran G, Lee YC, Park H, Wu Y, Shin HJ. Antibacterial and antifungal activities of lectin extracted from fruiting bodies of the Korean cauliflower medicinal mushroom, Sparassis latifolia (Agaricomycetes). Int J Med Mushrooms 2016; 18(4): 291-9.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i4.20] [PMID: 27481295]
[104]
Rana T, Das S, Bhattacharya D, et al. Mitigation of arsenic-mediated renal oxidative stress in rat by Pleurotus florida lectin. Hum Exp Toxicol 2011; 30(8): 940-51.
[http://dx.doi.org/10.1177/0960327110384521] [PMID: 20876158]
[105]
Rana T, Bera AK, Das S, et al. Pleurotus florida lectin normalizes duration dependent hepatic oxidative stress responses caused by arsenic in rat. Exp Toxicol Pathol 2012; 64(7-8): 665-71.
[http://dx.doi.org/10.1016/j.etp.2010.12.010] [PMID: 21227667]
[106]
Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. 3 Biotech 2018; 8(8): 1-20.
[107]
Ewart RBL, Kornfeld S, Kipnis DM. Effect of lectins on hormone release from isolated rat islets of langerhans. Diabetes 1975; 24(8): 705-14.
[http://dx.doi.org/10.2337/diab.24.8.705] [PMID: 1098948]
[108]
Wang Y, Liu Y, Wang H, Li C, Qi P, Bao J. Agaricus bisporus lectins mediates islet β -cell proliferation through regulation of cell cycle proteins. Exp Biol Med (Maywood) 2012; 237(3): 287-96.
[http://dx.doi.org/10.1258/ebm.2011.011251] [PMID: 22393165]
[109]
Tanaka S, Ko K, Kino K, et al. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). J Biol Chem 1989; 264(28): 16372-7.
[http://dx.doi.org/10.1016/S0021-9258(19)84715-4] [PMID: 2570780]
[110]
Wang PH, Hsu CI, Tang SC, Huang YL, Lin JY, Ko JL. Fungal immunomodulatory protein from Flammulina velutipes induces interferon-γ production through p38 mitogen-activated protein kinase signaling pathway. J Agric Food Chem 2004; 52(9): 2721-5.
[http://dx.doi.org/10.1021/jf034556s] [PMID: 15113182]
[111]
Hsu HC, Hsu CI, Lin RH, Kao CL, Lin JY. Fip- vvo, a new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem J 1997; 323(2): 557-65.
[http://dx.doi.org/10.1042/bj3230557] [PMID: 9163352]
[112]
Liu Y, Bastiaan-Net S, Wichers HJ. Current understanding of the structure and function of fungal immunomodulatory proteins. Front Nutr 2020; 7: 132.
[http://dx.doi.org/10.3389/fnut.2020.00132] [PMID: 33015115]
[113]
Li QZ, Zheng YZ, Zhou XW. Fungal immunomodulatory proteins: Characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov Today 2019; 24(1): 307-14.
[http://dx.doi.org/10.1016/j.drudis.2018.09.014] [PMID: 30266655]
[114]
Rezvani V, Pourianfar HR, Mohammadnejad S, Madjid Ansari A, Farahmand L. Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms. Appl Microbiol Biotechnol 2020; 104(16): 6855-71.
[http://dx.doi.org/10.1007/s00253-020-10707-8] [PMID: 32556413]
[115]
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019; 92(August): 94-110.
[http://dx.doi.org/10.1016/j.tifs.2019.08.009]
[116]
Gao Y, Wáng Y, Wāng Y, et al. Protective function of novel fungal immunomodulatory proteins fip-lti1 and fip-lti2 from Lentinus tigrinus in concanavalin a-induced liver oxidative injury. Oxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/3139689]
[117]
Cappadocia L, Lima CD. Ubiquitin-like protein conjugation: Structures, chemistry, and mechanism. Chem Rev 2018; 118(3): 889-918.
[http://dx.doi.org/10.1021/acs.chemrev.6b00737] [PMID: 28234446]
[118]
Ng TB. Peptides and proteins from fungi. Peptides 2004; 25(6): 1055-73.
[http://dx.doi.org/10.1016/j.peptides.2004.03.013] [PMID: 15203253]
[119]
Li DF, Feng L, Hou YJ, Liu W. The expression, purification and crystallization of a ubiquitin-conjugating enzyme E2 from Agrocybe aegerita underscore the impact of His-tag location on recombinant protein properties. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69(Pt 2): 153-7.
[120]
Ngai PHK, Wang HX, Ng TB. Purification and characterization of a ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides 2003; 24(5): 639-45.
[http://dx.doi.org/10.1016/S0196-9781(03)00136-0] [PMID: 12895648]
[121]
Ng TB, Lam SK, Chan SY. A ubiquitin-like peptide from the mushroom Pleurotus sajor-caju exhibits relatively potent translation-inhibitory and ribonuclease activities. Peptides 2002; 23(8): 1361-5.
[http://dx.doi.org/10.1016/S0196-9781(02)00073-6] [PMID: 12182936]
[122]
Zhou R, Han YJ, Zhang MH, Zhang KR, Ng TB, Liu F. Purification and characterization of a novel ubiquitin-like antitumour protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom Ramaria botrytis. AMB Express 2017; 7(1): 47.
[http://dx.doi.org/10.1186/s13568-017-0346-9] [PMID: 28229436]
[123]
Antunes F, Marçal S, Taofiq O, et al. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2020; 25(11): 1-43.
[http://dx.doi.org/10.3390/molecules25112672] [PMID: 32526879]
[124]
Ng TB, Wang HX. Flammin and velin: new ribosome inactivating polypeptides from the mushroom Flammulina velutipes. Peptides 2004; 25(6): 929-33.
[http://dx.doi.org/10.1016/j.peptides.2004.03.007] [PMID: 15203238]
[125]
Wang HX, Ng TB. Flammulin: A novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem Cell Biol 2000; 78(6): 699-702.
[http://dx.doi.org/10.1139/o00-087] [PMID: 11206581]
[126]
Wang HX, Ng TB. Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Biochem Biophys Res Commun 2001; 288(3): 718-21.
[http://dx.doi.org/10.1006/bbrc.2001.5816] [PMID: 11676502]
[127]
Pan WL, Wong JH, Fang EF, Chan YS, Ye XJ, Ng TB. Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells. Biochim Biophys Acta Mol Cell Res 2013; 1833(5): 987-96.
[http://dx.doi.org/10.1016/j.bbamcr.2012.12.013] [PMID: 23274857]
[128]
Yao QZ, Yu MM, Ooi LSM, et al. Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacea). J Agric Food Chem 1998; 46(2): 788-92.
[http://dx.doi.org/10.1021/jf970551h] [PMID: 10554316]
[129]
Lam SK, Ng TB. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Commun 2001; 285(4): 1071-5.
[http://dx.doi.org/10.1006/bbrc.2001.5279] [PMID: 11467862]
[130]
Fang EF, Ng TB. Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta 2011; 1815(1): 65-74.
[PMID: 20843477]
[131]
Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB. A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. Biochem Genet 2010; 48(7-8): 658-68.
[http://dx.doi.org/10.1007/s10528-010-9347-y] [PMID: 20495861]
[132]
Wang HX, Ng TB. A new ribonuclease from the black oyster mushroom Pleurotus ostreatus. Peptides 2004; 25(4): 685-7.
[http://dx.doi.org/10.1016/j.peptides.2004.01.017] [PMID: 15165725]
[133]
Xia L, Chu KT, Ng TB. A low-molecular mass ribonuclease from the brown oyster mushroom. J Pept Res 2005; 66(1): 1-8.
[http://dx.doi.org/10.1111/j.1399-3011.2005.00266.x] [PMID: 15946190]
[134]
Wang HX, Ng TB. Purification of a novel ribonuclease from dried fruiting bodies of the edible wild mushroom Thelephora ganbajun. Biochem Biophys Res Commun 2004; 324(2): 855-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.132] [PMID: 15474506]
[135]
Chen Y, Jiang S, Jin Y, et al. Purification and characterization of an antitumor protein with deoxyribonuclease activity from edible mushroom Agrocybe aegerita. Mol Nutr Food Res 2012; 56(11): 1729-38.
[http://dx.doi.org/10.1002/mnfr.201200316] [PMID: 23034893]
[136]
Citores L, Ragucci S, Ferreras JM, Di Maro A, Iglesias R. Ageritin, a Ribotoxin from Poplar Mushroom (Agrocybe aegerita) with defensive and antiproliferative activities. ACS Chem Biol 2019; 14(6): 1319-27.
[http://dx.doi.org/10.1021/acschembio.9b00291] [PMID: 31136705]
[137]
Dan X, Liu W, Wong JH, Ng TB. A Ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells. Front Pharmacol 2016; 7: 217.
[http://dx.doi.org/10.3389/fphar.2016.00217] [PMID: 27504094]
[138]
Ngai PHK, Ng TB. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 2004; 25(1): 11-7.
[http://dx.doi.org/10.1016/j.peptides.2003.11.012] [PMID: 15003351]
[139]
Wang HX, Ng TB. A novel ribonuclease from fresh fruiting bodies of the portabella mushroom Agaricus bisporus. Biochem Cell Biol 2006; 84(2): 178-83.
[http://dx.doi.org/10.1139/o06-033] [PMID: 16609698]
[140]
Wang H, Ng TB. Isolation of a new ribonuclease from fresh fruiting bodies of the straw mushroom. Biochem Biophys Res Commun 1999; 264(3): 714-8.
[http://dx.doi.org/10.1006/bbrc.1999.1571] [PMID: 10543997]
[141]
Wang H, Ng TB. A ribonuclease with distinctive features from the wild green-headed mushroom Russulus virescens. Biochem Biophys Res Commun 2003; 312(4): 965-8.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.201] [PMID: 14651965]
[142]
Wang H, Ng TB. Isolation of a ribonuclease from fruiting bodies of the wild mushroom Termitomyces globulus. Peptides 2003; 24(7): 973-7.
[http://dx.doi.org/10.1016/S0196-9781(03)00190-6] [PMID: 14499275]
[143]
Wang HX, Ng TB. Purification and characterization of a potent homodimeric guanine-specific ribonuclease from fresh mushroom (Pleurotus tuber-regium) sclerotia. Int J Biochem Cell Biol 2001; 33(5): 483-90.
[http://dx.doi.org/10.1016/S1357-2725(01)00038-3] [PMID: 11331203]
[144]
Guan GP, Wang HX, Ng TB. A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochim Biophys Acta, Gen Subj 2007; 1770(12): 1593-7.
[http://dx.doi.org/10.1016/j.bbagen.2007.07.014] [PMID: 17920201]
[145]
Wu Y, Wang H, Ng T. Purification and characterization of a novel RNase with antiproliferative activity from the mushroom Lactarius flavidulus. J Antibiot (Tokyo) 2012; 65(2): 67-72.
[http://dx.doi.org/10.1038/ja.2011.112] [PMID: 22186591]
[146]
Wu X, Zheng S, Cui L, Wang H, Ng TB. Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J Gen Appl Microbiol 2010; 56(3): 231-9.
[http://dx.doi.org/10.2323/jgam.56.231] [PMID: 20647680]
[147]
Wang HX, Ng TB. Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem Biophys Res Commun 2000; 276(2): 587-93.
[http://dx.doi.org/10.1006/bbrc.2000.3540] [PMID: 11027517]
[148]
Zhao YC, Zhang GQ, Ng TB, Wang HX. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune. J Microbiol 2011; 49(5): 803-8.
[http://dx.doi.org/10.1007/s12275-011-1098-x] [PMID: 22068498]
[149]
Zhao S, Zhao Y, Li S, Zhang G, Wang H, Ng TB. An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. J Microbiol Biotechnol 2010; 20(4): 693-9.
[http://dx.doi.org/10.4014/jmb.0911.11022] [PMID: 20467240]
[150]
Yike I. Fungal proteases and their pathophysiological effects. Mycopathologia 2011; 171(5): 299-323.
[http://dx.doi.org/10.1007/s11046-010-9386-2] [PMID: 21259054]
[151]
Nakamura M, Iketani A, Shioi Y. A survey of proteases in edible mushrooms with synthetic peptides as substrates. Mycoscience 2011; 52(4): 234-41.
[http://dx.doi.org/10.1007/S10267-010-0089-9]
[152]
Nishiwaki T, Asano S, Ohyama T. Properties and substrate specificities of proteolytic enzymes from the edible basidiomycete Grifola frondosa. J Biosci Bioeng 2009; 107(6): 605-9.
[http://dx.doi.org/10.1016/j.jbiosc.2009.01.008] [PMID: 19447335]
[153]
Burton KS, Smith JF, Wood DA, Thurston CF. Extracellular proteinases from the mycelium of the cultivated mushroom Agaricus bisporus. Mycol Res 1997; 101(11): 1341-7.
[http://dx.doi.org/10.1017/S0953756297004073]
[154]
Lee SY, Kim JS, Kim JE, et al. Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 2005; 43(1): 10-7.
[http://dx.doi.org/10.1016/j.pep.2005.05.004] [PMID: 16005640]
[155]
Park BT, Na KH, Jung EC, Park JW, Kim HH. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 2009; 13(1): 49-54.
[http://dx.doi.org/10.4196/kjpp.2009.13.1.49] [PMID: 19885026]
[156]
Shin HH, Choi HS. Purification and partial characterization of a metalloprotease in flammulina velutipes. J Microbiol 1998; 36(1): 20-5.
[157]
Zhang G, Wang H, Zhang X, Ng T. Helvellisin, a novel alkaline protease from the wild ascomycete mushroom Helvella lacunosa. J Biosci Bioeng 2010; 109(1): 20-4.
[http://dx.doi.org/10.1016/j.jbiosc.2009.06.022] [PMID: 20129076]
[158]
Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY. Molecular attributes and apoptosis-inducing activities of a putative serine protease isolated from Tiger Milk mushroom (Lignosus rhinocerus) sclerotium against breast cancer cells in vitro. PeerJ 2018; 6: e4940.
[http://dx.doi.org/10.7717/peerj.4940] [PMID: 29888137]
[159]
Yoshimoto T, Sattar AKMA, Hirose W, Tsuru D. Studies on prolyl endopeptidase from shakashimeji (Lyophyllum cinerascens): Purification and enzymatic properties. J Biochem 1988; 104(4): 622-7.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122522] [PMID: 3071534]
[160]
Wang H, Ng TB. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem Biophys Res Commun 2001; 289(3): 750-5.
[http://dx.doi.org/10.1006/bbrc.2001.6037] [PMID: 11726212]
[161]
Palmieri G, Bianco C, Cennamo G, et al. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl Environ Microbiol 2001; 67(6): 2754-9.
[http://dx.doi.org/10.1128/AEM.67.6.2754-2759.2001] [PMID: 11375191]
[162]
Cui L, Liu QH, Wang HX, Ng TB. An alkaline protease from fresh fruiting bodies of the edible mushroom Pleurotus citrinopileatus. Appl Microbiol Biotechnol 2007; 75(1): 81-5.
[http://dx.doi.org/10.1007/s00253-006-0801-z] [PMID: 17216442]
[163]
Mehra R, Muschiol J, Meyer AS, Kepp KP. A structural-chemical explanation of fungal laccase activity. Scientific Reports 2018; 8(1): 1-16.
[http://dx.doi.org/10.1038/s41598-018-35633-8]
[164]
Golak-Siwulska I, Kałużewicz A, Spiżewski T, Siwulski M, Sobieralski K. Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hortic 2018; 30(2): 191-201.
[http://dx.doi.org/10.2478/fhort-2018-0012]
[165]
Wang HX, Ng TB. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 2006; 69(5): 521-5.
[http://dx.doi.org/10.1007/s00253-005-0086-7] [PMID: 16075291]
[166]
Wu X, Huang C, Chen Q, Wang H, Zhang J. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed Chromatogr 2014; 28(4): 548-53.
[http://dx.doi.org/10.1002/bmc.3068] [PMID: 24136666]
[167]
Wong JH, Ng TB, Jiang Y, Liu F, Zhang SCWS. Purification and characterization of a laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Prot & Pept Lett 2010; 17: 1040-7.
[168]
Hu DD, Zhang RY, Zhang GQ, Wang HX, Ng TB. A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea. Phytomedicine 2011; 18(5): 374-9.
[http://dx.doi.org/10.1016/j.phymed.2010.07.004] [PMID: 20739163]
[169]
Zhao S, Rong CB, Kong C, Liu Y, Xu F, Miao QJ, et al. A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus. Biomed Res Int 2014; 2014
[170]
Wang HX, Ng TB. A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 2006; 72(3): 508-13.
[http://dx.doi.org/10.1007/s00253-006-0314-9] [PMID: 16636832]
[171]
de Faria RO, Moure VR, de Almeida Amazonas MAL, Krieger N, Mitchell DA. The biotechnological potential of mushroom tyrosinases. Food Technol Biotechnol 2007; 45(3): 287-94.
[172]
Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 2006; 100(2): 219-32.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02866.x] [PMID: 16430498]
[173]
Lv H, Kong Y, Yao Q, et al. Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine 2009; 16(2-3): 198-205.
[http://dx.doi.org/10.1016/j.phymed.2008.07.004] [PMID: 18722099]
[174]
Yuan B, Zhao L, Rakariyatham K, et al. Isolation of a novel bioactive protein from an edible mushroom Pleurotus eryngii and its anti-inflammatory potential. Food Funct 2017; 8(6): 2175-83.
[http://dx.doi.org/10.1039/C7FO00244K] [PMID: 28524200]
[175]
Araújo-Rodrigues H, Coscueta ER, Pereira MF, et al. Membrane fractionation of Cynara cardunculus swine blood hydrolysate: Ingredients of high nutritional and nutraceutical value. Food Res Int 2022; 158: 111549.
[http://dx.doi.org/10.1016/j.foodres.2022.111549] [PMID: 35840243]
[176]
Bah CSF, Bekhit AEDA, Carne A, McConnell MA. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem 2015; 176: 54-63.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.025] [PMID: 25624206]
[177]
Sun J, He H, Xie BJ. Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J Agric Food Chem 2004; 52(21): 6646-52.
[http://dx.doi.org/10.1021/jf0495136] [PMID: 15479035]
[178]
Shi Y, Sun J, He H, Guo H, Zhang S. Hepatoprotective effects of Ganoderma lucidum peptides against d-galactosamine-induced liver injury in mice. J Ethnopharmacol 2008; 117(3): 415-9.
[http://dx.doi.org/10.1016/j.jep.2008.02.023] [PMID: 18406549]
[179]
He H, He J-P, Sui Y-J, Zhou S-Q, Wang J. The hepatoprotective effects of Ganoderma lucidum peptides against carbon tetrachloride-induced liver injury in mice. J Food Biochem 2008; 32(5): 628-41.
[http://dx.doi.org/10.1111/j.1745-4514.2008.00191.x]
[180]
Mishra J, Rajput R, Singh K, et al. Antibacterial natural peptide fractions from Indian Ganoderma lucidum. Int J Pept Res Ther 2018; 24(4): 543-54.
[http://dx.doi.org/10.1007/s10989-017-9643-z]
[181]
Mishra J, Rajput R, Singh K, Bansal A, Misra K. Antioxidant-rich peptide fractions derived from high-altitude Chinese caterpillar medicinal mushroom Ophiocordyceps sinensis (Ascomycetes) inhibit bacterial pathogens. Int J Med Mushrooms 2019; 21(2): 155-68.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2019030013] [PMID: 30806222]
[182]
Farzaneh P, Khanahamadi M, Ehsani MR, Sharifan A. Bioactive properties of Agaricus bisporus and Terfezia claveryi proteins hydrolyzed by gastrointestinal proteases. Lebensm Wiss Technol 2018; 91: 322-9.
[http://dx.doi.org/10.1016/j.lwt.2018.01.044]
[183]
Zhang Q, Wu C, Fan G, Li T, Sun Y. Improvement of antioxidant activity of Morchella esculenta protein hydrolysate by optimized glycosylation reaction. CYTA J Food 2018; 16(1): 238-46.
[http://dx.doi.org/10.1080/19476337.2017.1389989]
[184]
Geng X, Tian G, Zhang W, et al. A Tricholoma matsutake peptide with angiotensin converting enzyme inhibitory and antioxidative activities and antihypertensive effects in spontaneously hypertensive rats. Sci Rep 2016; 6(1): 24130.
[http://dx.doi.org/10.1038/srep24130] [PMID: 27052674]
[185]
Sun Y, Hu X, Li W. Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int J Biol Macromol 2017; 97: 323-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.043] [PMID: 28093329]
[186]
Kimatu BM, Zhao L, Biao Y, et al. Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chem 2017; 230: 58-67.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.030] [PMID: 28407953]
[187]
Zhou J, Chen M, Wu S, et al. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Res Int 2020; 134: 109230.
[http://dx.doi.org/10.1016/j.foodres.2020.109230] [PMID: 32517923]
[188]
Wei JT, Chiang BH. Bioactive peptide production by hydrolysis of porcine blood proteins in a continuous enzymatic membrane reactor. J Sci Food Agric 2009; 89(3): 372-8.
[http://dx.doi.org/10.1002/jsfa.3451]
[189]
Ni H, Li L, Liu G, Hu SQ. Inhibition mechanism and model of an angiotensin I-converting enzyme (ACE)-inhibitory hexapeptide from yeast (Saccharomyces cerevisiae). PLoS One 2012; 7(5): e37077.
[190]
Lau CC, Abdullah N, Shuib AS. Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS. BMC Complement Altern Med 2013; 13(1): 313.
[http://dx.doi.org/10.1186/1472-6882-13-313] [PMID: 24215325]
[191]
Wu Q, Li Y, Peng K, et al. Isolation and characterization of three antihypertension peptides from the mycelia of Ganoderma lucidum (Agaricomycetes). J Agric Food Chem 2019; 67(29): 8149-59.
[http://dx.doi.org/10.1021/acs.jafc.9b02276] [PMID: 31246442]
[192]
Hyun KW, Jeong SC, Lee DH, Park JS, Lee JS. Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides 2006; 27(6): 1173-8.
[http://dx.doi.org/10.1016/j.peptides.2005.10.005] [PMID: 16289471]
[193]
Zhang Q, Wu C, Wang T, Sun Y, Li T, Fan G. Improvement of biological activity of Morchella esculenta protein hydrolysate by microwave-assisted selenization. J Food Sci 2019; 84(1): 73-9.
[http://dx.doi.org/10.1111/1750-3841.14411] [PMID: 30575032]
[194]
Manzi P, Gambelli L, Marconi S, Vivanti V, Pizzoferrato L. Nutrients in edible mushrooms: an inter-species comparative study. Food Chem 1999; 65(4): 477-82.
[http://dx.doi.org/10.1016/S0308-8146(98)00212-X]
[195]
Zhang Y, Venkitasamy C, Pan Z, Wang W. Recent developments on umami ingredients of edible mushrooms – A review. Trends Food Sci Technol 2013; 33(2): 78-92.
[http://dx.doi.org/10.1016/j.tifs.2013.08.002]
[196]
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42: 101868.
[http://dx.doi.org/10.1016/j.redox.2021.101868] [PMID: 33558182]
[197]
Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017; 233: 429-33.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.109] [PMID: 28530594]
[198]
Hong WK, Lippman SM. Cancer chemoprevention. J Natl Cancer Inst Monogr 2015; (17): 701-23.
[PMID: 8573453]
[199]
Weigand-Heller AJ, Kris-Etherton PM, Beelman RB. The bioavailability of ergothioneine from mushrooms (Agaricus bisporus) and the acute effects on antioxidant capacity and biomarkers of inflammation. Prev Med 2012; 54 (Suppl.): S75-8.
[http://dx.doi.org/10.1016/j.ypmed.2011.12.028] [PMID: 22230474]
[200]
Borodina I, Kenny LC, McCarthy CM, et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33(2): 190-217.
[http://dx.doi.org/10.1017/S0954422419000301]
[201]
Cheah IK, Halliwell B. Could ergothioneine aid in the treatment of coronavirus patients? Antioxidants 2020; 9(7): 595.
[http://dx.doi.org/10.3390/antiox9070595] [PMID: 32646061]
[202]
Zhang M, Zhang Y, Zhang L, Tian Q. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China.Prog Mol Biol Trans Sci. (1st ed.). Elsevier Inc. Amsterdam 2019; 163: pp. 297-328.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy