Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Therapeutic Challenges in COVID-19

Author(s): Amit K. Maiti*

Volume 24, Issue 1, 2024

Published on: 17 January, 2023

Page: [14 - 25] Pages: 12

DOI: 10.2174/1566524023666221222162641

Price: $65

Abstract

SARS-CoV2 is a novel respiratory coronavirus and, understanding its molecular mechanism is a prerequisite to developing effective treatment for COVID-19. This RNA genome-carrying virus has a protein coat with spikes (S) that attaches to the ACE2 receptor at the cell surface of human cells. Several repurposed drugs are used to treat COVID-19 patients that are proven to be largely unsuccessful or have limited success in reducing mortalities. Several vaccines are in use to reduce the viral load to prevent developing symptoms. Major challenges to their efficacy include the inability of antibody molecules to enter cells but remain effective in the bloodstream to kill the virus. The efficacy of vaccines also depends on their neutralizing ability to constantly evolve new virus strains due to novel mutations and evolutionary survival dynamics. Taken together, SARS-CoV2 antibody vaccines may not be very effective and other approaches based on genetic, genomic, and protein interactome could be fruitful to identify therapeutic targets to reduce disease-related mortalities.

[1]
Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020; 586(7830): 567-71.
[http://dx.doi.org/10.1038/s41586-020-2622-0] [PMID: 32756549]
[2]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[3]
Sadoff J, Le Gars M, Shukarev G, et al. Interim Results of a Phase 1–2a trial of Ad26.COV2.S COVID-19 vaccine. N Engl J Med 2021; 384(19): 1824-35.
[http://dx.doi.org/10.1056/NEJMoa2034201] [PMID: 33440088]
[4]
Caddy S. Russian SARS-CoV-2 vaccine. BMJ 2020; 370: m3270.
[http://dx.doi.org/10.1136/bmj.m3270] [PMID: 32839191]
[5]
Knoll MD, Wonodi C. Oxford-Astra Zeneca Covid-19 efficacy 2020.
[6]
Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020; 55102743.
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[7]
Islam A, Rafiq S, Karim S, Laher I, Rashid H. Convalescent plasma therapy in the treatment of COVID-19: Practical considerations: Correspondence. Int J Surg 2020; 79: 204-5.
[http://dx.doi.org/10.1016/j.ijsu.2020.05.079] [PMID: 32502707]
[8]
Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent plasma therapy for COVID-19: state of the art. Clin Microbiol Rev 2020; 33(4): e00072-20.
[http://dx.doi.org/10.1128/CMR.00072-20] [PMID: 32792417]
[9]
Altable M, de la Serna JM. Cerebrovascular disease in COVID-19: Is there a higher risk of stroke?. Brain, Behavior, & Immunity - Health 2020; p. 6100092.
[http://dx.doi.org/10.1016/j.bbih.2020.100092] [PMID: 32835295]
[10]
Cappannoli L, Scacciavillani R, Iannaccone G, et al. novel-coronavirus: Cardiovascular insights about risk factors, myocardial injury, therapy and clinical implications. Chronic Dis Transl Med 2020; 6(4): 246-50.
[PMID: 32837764]
[11]
Chan KH, Lee P, Chan CY, Lam KBH, Ho P. Monitoring respiratory infections in COVID-19 epidemics. BMJ 2020; 369: m1628.
[http://dx.doi.org/10.1136/bmj.m1628] [PMID: 32366507]
[12]
Fraser E. Long term respiratory complications of covid-19. BMJ 2020; 370: m3001.
[http://dx.doi.org/10.1136/bmj.m3001] [PMID: 32747332]
[13]
Fumagalli A, Misuraca C, Bianchi A, et al. Pulmonary function in patients surviving to COVID-19 pneumonia. Infection 2020.
[PMID: 32725597]
[14]
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-7.
[http://dx.doi.org/10.1016/j.thromres.2020.04.013] [PMID: 32291094]
[15]
Pujadas E, Chaudhry F, McBride R, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir Med 2020; 8(9): e70.
[http://dx.doi.org/10.1016/S2213-2600(20)30354-4] [PMID: 32771081]
[16]
Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chin Med J (Engl) 2020; 133(9): 1015-24.
[http://dx.doi.org/10.1097/CM9.0000000000000722] [PMID: 32004165]
[17]
Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten Scientific reasons in support of airbourne transmission of SARS-CoV2 2021. The Lancet
[18]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[19]
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181(5): 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[20]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[21]
Barral PM, Sarkar D, Su Z, et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity. Pharmacol Ther 2009; 124(2): 219-34.
[http://dx.doi.org/10.1016/j.pharmthera.2009.06.012] [PMID: 19615405]
[22]
Chistiakov DA. Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: A review. Viral Immunol 2010; 23(1): 3-15.
[http://dx.doi.org/10.1089/vim.2009.0071] [PMID: 20121398]
[23]
Loo YM, Fornek J, Crochet N, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008; 82(1): 335-45.
[http://dx.doi.org/10.1128/JVI.01080-07] [PMID: 17942531]
[24]
Novick D, Cohen B, Rubinstein M. The human interferon $alpha;/$beta; receptor: Characterization and molecular cloning. Cell 1994; 77(3): 391-400.
[http://dx.doi.org/10.1016/0092-8674(94)90154-6] [PMID: 8181059]
[25]
Initiative, C.-H.G. Mapping the human genetic architecture of COVID-19. Nature 2021. Available from: https://www.nature.com/articles/s41586-021-03767-x
[26]
Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011; 23(5): 564-72.
[http://dx.doi.org/10.1016/j.coi.2011.08.001] [PMID: 21865020]
[27]
Ghosh S, Dellibovi-Ragheb TA, Kerviel A, et al. β-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 2020; 183(6): 1520-1535.e14.
[http://dx.doi.org/10.1016/j.cell.2020.10.039] [PMID: 33157038]
[28]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[29]
Kaddoura M, AlIbrahim M, Hijazi G, et al. COVID-19 therapeutic options under investigation. Front Pharmacol 2020; 11: 1196.
[http://dx.doi.org/10.3389/fphar.2020.01196] [PMID: 32848795]
[30]
Nimgampalle M, Devanathan V, Saxena A. Screening of Chloroquine, Hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets. J Biomol Struct Dyn 2021; 39(14): 4949-61.
[PMID: 32579059]
[31]
Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Hydroxychloroquine in COVID-19 patients: pros and cons. Front Pharmacol 2020; 11597985.
[http://dx.doi.org/10.3389/fphar.2020.597985] [PMID: 33364965]
[32]
Rughiniş C, Dima L, Vasile S. Hydroxychloroquine and COVID-19: lack of efficacy and the social construction of plausibility. Am J Ther 2020; 27(6): e573-83.
[http://dx.doi.org/10.1097/MJT.0000000000001294] [PMID: 33136577]
[33]
Horby P, Mafham M, Linsell L, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med 2020; 383(21): 2030-40.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[34]
Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically Ill patients with COVID-19. JAMA 2020; 324(13): 1330-41.
[http://dx.doi.org/10.1001/jama.2020.17023] [PMID: 32876694]
[35]
Theoharides TC, Conti P. Dexamethasone for COVID-19? not so fast. J Biol Regul Homeost Agents 2020; 34(3): 1241-3.
[PMID: 32551464]
[36]
Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531(7594): 381-5.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[37]
Pan H, Peto R, Henao-Restrepo AM, et al. Repurposed antiviral drugs for COVID-19 — Interim WHO solidarity trial results. N Engl J Med 2021; 384(6): 497-511.
[http://dx.doi.org/10.1056/NEJMoa2023184] [PMID: 33264556]
[38]
Chen C, Zhang Y, Huang J, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. 2020.MedRxiv
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[39]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[40]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[41]
Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current evidence. Ecancermedicalscience 2020; 14: 1022.
[http://dx.doi.org/10.3332/ecancer.2020.1022] [PMID: 32256705]
[42]
Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in wuhan, China. Clin Infect Dis 2020; 71(15): 769-77.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[43]
Freedberg DE, Conigliaro J, Wang TC, et al. Famotidine use Is associated with improved clinical outcomes in hospitalized COVID-19 Patients: a propensity score matched retrospective cohort study. Gastroenterology 2020; 159(3): 1129-1131.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.05.053] [PMID: 32446698]
[44]
Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2021; 103: 214-6.
[http://dx.doi.org/10.1016/j.ijid.2020.11.191] [PMID: 33278625]
[45]
Guaraldi G, Milic J, Cozzi-Lepri A, Pea F, Mussini C. Tocilizumab in COVID-19: Finding the optimal route and dose – Authors’ reply. Lancet Rheumatol 2020; 2(12): e739-40.
[http://dx.doi.org/10.1016/S2665-9913(20)30333-7] [PMID: 32964210]
[46]
Callaway E. COVID rebound is surprisingly common — even without Paxlovid. Nature 2022.
[http://dx.doi.org/10.1038/d41586-022-02121-z] [PMID: 35953572]
[47]
Galasso V, Pons V, Profeta P, Becher M, Brouard S, Foucault M. Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proc Natl Acad Sci USA 2020; 117(44): 27285-91.
[http://dx.doi.org/10.1073/pnas.2012520117] [PMID: 33060298]
[48]
Falahi S, Kenarkoohi A. Sex and gender differences in the outcome of patients with COVID‐19. J Med Virol 2021; 93(1): 151-2.
[http://dx.doi.org/10.1002/jmv.26243] [PMID: 32603509]
[49]
Arnold CG, Libby A, Vest A, Hopkinson A, Monte AA. Immune mechanisms associated with sex-based differences in severe COVID-19 clinical outcomes. Biol Sex Differ 2022; 13(1): 7.
[http://dx.doi.org/10.1186/s13293-022-00417-3] [PMID: 35246245]
[50]
Dhindsa S, Zhang N, McPhaul MJ, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Netw Open 2021; 4(5): e2111398.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.11398] [PMID: 34032853]
[51]
Cruz R, Diz-de Almeida S, López de Heredia M, et al. Novel genes and sex differences in COVID-19 severity. Hum Mol Genet 2022; 31(22): 3789-806.
[http://dx.doi.org/10.1093/hmg/ddac132] [PMID: 35708486]
[52]
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ 2020; 11(1): 29.
[http://dx.doi.org/10.1186/s13293-020-00304-9] [PMID: 32450906]
[53]
Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clin Proc 2020; 95(6): 1213-21.
[http://dx.doi.org/10.1016/j.mayocp.2020.03.024] [PMID: 32359771]
[54]
Shiau S, Kuhn L, Strehlau R, et al. Sex differences in responses to antiretroviral treatment in South African HIV-infected children on ritonavir-boosted lopinavir- and nevirapine-based treatment. BMC Pediatr 2014; 14(1): 39.
[http://dx.doi.org/10.1186/1471-2431-14-39] [PMID: 24521425]
[55]
Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol 2016; 17: 104-9.
[http://dx.doi.org/10.1016/j.coviro.2016.02.010] [PMID: 26985884]
[56]
Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ 2020; 369: m1443.
[http://dx.doi.org/10.1136/bmj.m1443] [PMID: 32317267]
[57]
Dolgin E. COVID vaccine immunity is waning — how much does that matter? Nature 2021; 597(7878): 606-7.
[http://dx.doi.org/10.1038/d41586-021-02532-4] [PMID: 34548661]
[58]
Fung M, Babik JM. COVID-19 in immunocompromised hosts: what we know so far. Clin Infect Dis 2021; 72(2): 340-50.
[http://dx.doi.org/10.1093/cid/ciaa863] [PMID: 33501974]
[59]
Maiti AK. On The Origin of SARS-COV2 Virus 2020.SSRN
[http://dx.doi.org/10.2139/ssrn.3631469]
[60]
Kemp SA, Collier DA, Datir R, et al. Neutralising antibodies drive Spike mediated SARS-CoV-2 evasion. 2020.MedRXIV
[61]
Gresham LM, Marzario B, Dutz J, Kirchhof MG. An evidence-based guide to SARS-CoV-2 vaccination of patients on immunotherapies in dermatology. J Am Acad Dermatol 2021; 84(6): 1652-66.
[http://dx.doi.org/10.1016/j.jaad.2021.01.047]
[62]
Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021; 384(22): 2092-101.
[http://dx.doi.org/10.1056/NEJMoa2104840] [PMID: 33835769]
[63]
Theoharides TC, Conti P. Be aware of SARS-CoV-2 spike protein: There is more than meets the eye. J Biol Regul Homeost Agents 2021; 35(3): 833-8.
[PMID: 34100279]
[64]
Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics 2022; 74(5): 455-63.
[http://dx.doi.org/10.1007/s00251-022-01257-6] [PMID: 35303126]
[65]
Ruggiero E, Tassinari M, Perrone R, Nadai M, Richter SN. Stable and conserved G-quadruplexes in the long terminal repeat promoter of retroviruses. ACS Infect Dis 2019; 5(7): 1150-9.
[http://dx.doi.org/10.1021/acsinfecdis.9b00011] [PMID: 31081611]
[66]
Ohmori R, Tsuruyama T. In vitro HIV-1 LTR integration into T-cell activation gene CD27 segment and the decoy effect of modified-sequence DNA. PLoS One 2012; 7(11): e49960.
[http://dx.doi.org/10.1371/journal.pone.0049960] [PMID: 23209625]
[67]
Zhang L, et al. SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.12.12.422516]
[68]
Christensen J, Litherland K, Faller T, et al. Biodistribution and metabolism studies of lipid nanoparticle-formulated internally [3H]-labeled siRNA in mice. Drug Metab Dispos 2014; 42(3): 431-40.
[http://dx.doi.org/10.1124/dmd.113.055434] [PMID: 24389421]
[69]
Buchbinder SP, McElrath MJ, Dieffenbach C, Corey L. Use of adenovirus type-5 vectored vaccines: A cautionary tale. Lancet 2020; 396(10260): e68-9.
[http://dx.doi.org/10.1016/S0140-6736(20)32156-5] [PMID: 33091364]
[70]
Stern A, Yeh MT, Zinger T, et al. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 2017; 169(1): 35-46.e19.
[http://dx.doi.org/10.1016/j.cell.2017.03.013] [PMID: 28340348]
[71]
Li X, Giorgi EE, Marichannegowda MH, et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci Adv 2020; 6(27): eabb9153.
[http://dx.doi.org/10.1126/sciadv.abb9153] [PMID: 32937441]
[72]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[73]
Maiti AK. Evolutionary shift from purifying selection towards divergent selection of SARS-CoV2 favors its invasion into multiple human organs. Virus Res 2022; 313198712.
[http://dx.doi.org/10.1016/j.virusres.2022.198712] [PMID: 35176330]
[74]
Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372(6538): eabg3055.
[http://dx.doi.org/10.1126/science.abg3055] [PMID: 33658326]
[75]
Supasa, p and e al, Reduced neutralization of SARS-CoV-2 B117 variant by convalescent and vaccine sera. Cell 2021.
[76]
Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021; 27(5): 917-24.
[http://dx.doi.org/10.1038/s41591-021-01318-5] [PMID: 33772244]
[77]
Tada T, Dcosta BM, Samanovic-Golden M, et al. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.02.05.430003]
[78]
Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.07.21252647]
[79]
Dejnirattisai W, Huo J, Zhou D, et al. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.12.03.471045]
[80]
Narota A, Puri G, Singh VP, Kumar A, Naura AS. COVID-19 and ARDS: update on preventive and therapeutic venues. Curr Mol Med 2022; 22(4): 312-24.
[http://dx.doi.org/10.2174/1566524021666210408103921] [PMID: 33829971]
[81]
Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe covid-19 with respiratory failure. N Engl J Med 2020; 383(16): 1522-34.
[http://dx.doi.org/10.1056/NEJMoa2020283] [PMID: 32558485]
[82]
Langton DJ, Bourke SC, Lie BA, et al. The influence of hla genotype on susceptibility to, and severity of, covid-19 infection. HLA 2021; 98(1): 14-22. Available from: www.medrxiv.com
[83]
Wang F, Huang S, Gao R, et al. Initial Whole Genome Sequencing and Analysis of the HostGenetic Contribution to COVID-19 Severity and Susceptibility. Cell Discov 2020; 6(1): 83.
[84]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.22.002386]
[85]
Crunfli FVOPC. View ORCID Profile, V.V.O.P. Carregari, and F.V.O.P. Veras SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. 2020.medRxiv
[86]
Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon 2020; 6(8): e04639.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04639] [PMID: 32802980]
[87]
Ostaszewski M, Niarakis A, Mazein A, et al. COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Mol Syst Biol 2021; 17(10): e10387.
[http://dx.doi.org/10.15252/msb.202110387] [PMID: 34664389]
[88]
Gaziano L, Giambartolomei C, Pereira AC, et al. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat Med 2021; 27(4): 668-76.
[http://dx.doi.org/10.1038/s41591-021-01310-z] [PMID: 33837377]
[89]
Rambaut A, Loman N, Pybus O, et al. Preliminary genomic characterization of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations 2020.
[90]
Zhang L, Jackson CB, Mou H, et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 2020; 11(1): 6013.
[http://dx.doi.org/10.1038/s41467-020-19808-4] [PMID: 33243994]
[91]
Long SW, Olsen RJ, Christensen PA, et al. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. MBio 2020; 11(6): e02707-20.
[http://dx.doi.org/10.1128/mBio.02707-20] [PMID: 33127862]
[92]
Liu G, Lee JH, Parker ZM, et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 2021; 6(4): 467-78.
[http://dx.doi.org/10.1038/s41564-021-00884-1] [PMID: 33727702]
[93]
Wu J, Shi Y, Pan X, et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep 2021; 34(7): 108761.
[http://dx.doi.org/10.1016/j.celrep.2021.108761] [PMID: 33567255]
[94]
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 811-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[95]
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular insights into SARS COV-2 interaction with cardiovascular disease: role of RAAS and MAPK signaling. Front Pharmacol 2020; 11: 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[96]
Coto E, Avanzas P, Gómez J. The renin-angiotensin-aldosterone system and coronavirus disease 2019. Eur Cardiol 2021; 16: e07.
[http://dx.doi.org/10.15420/ecr.2020.30] [PMID: 33737961]
[97]
Domi E, Hoxha M, Kolovani E, Tricarico D, Zappacosta B. The importance of nutraceuticals in COVID-19: what’s the role of resveratrol? Molecules 2022; 27(8): 2376.
[http://dx.doi.org/10.3390/molecules27082376] [PMID: 35458574]
[98]
Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther 2020; 214107613.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107613] [PMID: 32562826]
[99]
Giordo R, Zinellu A, Eid AH, Pintus G. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders. Molecules 2021; 26(4): 856.
[http://dx.doi.org/10.3390/molecules26040856] [PMID: 33562030]
[100]
Liao MT, Wu CC, Wu SFV, et al. Resveratrol as an adjunctive therapy for excessive oxidative stress in aging COVID-19 patients. Antioxidants 2021; 10(9): 1440.
[http://dx.doi.org/10.3390/antiox10091440] [PMID: 34573071]
[101]
Maiti AK. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics 2020; 72(6-7): 387-91.
[http://dx.doi.org/10.1007/s00251-020-01174-6] [PMID: 32737579]
[102]
Trinschek B, Luessi F, Gross C, Wiendl H, Jonuleit H. Interferon-beta therapy of multiple sclerosis patients improves the responsiveness of T cells for immune suppression by regulatory T cells. Int J Mol Sci 2015; 16(7): 16330-46.
[http://dx.doi.org/10.3390/ijms160716330] [PMID: 26193267]
[103]
Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[104]
Monk PD, Marsden RJ, Tear VJ, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med 2021; 9(2): 196-206.
[http://dx.doi.org/10.1016/S2213-2600(20)30511-7] [PMID: 33189161]
[105]
Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis —A review of current methods. Biosens Bioelectron 2021; 172112752.
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[106]
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA 2020; 323(24): 2493-502.
[http://dx.doi.org/10.1001/jama.2020.8630] [PMID: 32392282]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy