Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Identification of Novel Zika Virus Inhibitors: A Screening using Thiosemicarbazones and Thiazoles Templates

Author(s): Paulo André Teixeira de Moraes Gomes, Luiz Alberto Barros Freitas, Luciana Rabelo Pessoa Siqueira, Juliana Maria da Conceição, Ignes Regina dos Santos, Aline Ferreira Pinto, Vanessa Gouveia de Melo Silva, Janine Siqueira Nunes, Marcos Veríssimo de Oliveira Cardoso, Lindomar José Pena and Ana Cristina Lima Leite*

Volume 23, Issue 6, 2023

Published on: 27 January, 2023

Page: [426 - 439] Pages: 14

DOI: 10.2174/1568026623666221222124433

Price: $65

Abstract

Background: Zika virus (ZIKV) remains an important cause of congenital infection, fetal microcephaly, and Guillain-Barré syndrome in the population. In 2016, WHO declared a cluster of microcephaly cases and other neurological disorders reported as a global public health emergency in Brazil. There is still no specific treatment for Zika virus fever, only palliative care. Therefore, there is a need for new therapies against this disease. According to the literature, thiosemicarbazone, phthalimide and thiazole are privileged structures with several biological activities, including antiviral activity against various viruses.

Objective: Based on this, this work presents an antiviral screening using previously synthesized compounds derived from thiosemicarbazone, phthalimide, and thiazole as new hits active against ZIKV.

Methods: After synthesis and characterization, all compounds were submitted to Cytotoxicity by MTT and Antiviral activity against ZIKV assays.

Results: Compounds 63, 64, 65, and 73 exhibited major reductions in the ZIKV title from this evaluation. Compounds 63 (99.74%), 64 (99.77%), 65 (99.92%), and 73 (99.21%) showed a higher inhibition than the standard 6MMPr (98.74%) at the CC20 dose. These results revealed new chemical entities with anti-ZIKV activity.

Conclusion: These derivatives are promising candidates for further assays. In addition, the current approach brings a new privileged scaffolding, which may drive future drug discovery for ZIKV.

Graphical Abstract

[1]
Fauci, A.S.; Morens, D.M. Zika Virus in the americas - yet another arbovirus threat. N. Engl. J. Med., 2016, 374(7), 601-604.
[http://dx.doi.org/10.1056/NEJMp1600297] [PMID: 26761185]
[2]
Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020, 543, 34-42.
[http://dx.doi.org/10.1016/j.virol.2020.01.015] [PMID: 32056845]
[3]
Yasri, S.; Wiwanitkit, V. New human pathogenic dengue like virus infections (Zika, Alkhumraand Mayaro viruses): a short review. Asian Pac. J. Trop. Dis., 2015, 5, S31-S32.
[http://dx.doi.org/10.1016/S2222-1808(15)60851-9]
[4]
Pastula, D.M.; Smith, D.E.; Beckham, J.D.; Tyler, K.L. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases. J. Neurovirol., 2016, 22(3), 257-260.
[http://dx.doi.org/10.1007/s13365-016-0428-5] [PMID: 26903031]
[5]
Liu, Z-Y.; Shi, W-F.; Qin, C-F. The evolution of zika firus from asia to the Americas. Nat. Rev. Microbiol., 2019, 17(3), 131-139.
[6]
Faye, O.; Freire, C.C.M.; Iamarino, A.; Faye, O.; de Oliveira, J.V.C.; Diallo, M.; Zanotto, P.M.A.; Sall, A.A. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl. Trop. Dis., 2014, 8(1), e2636.
[http://dx.doi.org/10.1371/journal.pntd.0002636] [PMID: 24421913]
[7]
Fonseca, K.; Drebot, M.; MacDonald, J.; Lindsay, R.; Pabbaraju, K.; Tellier, R.; Wong, S.; Meatherall, B.; Webster, P.; Zarra, D. First case of Zika virus infection in a returning Canadian traveler. Am. J. Trop. Med. Hyg., 2014, 91(5), 1035-1038.
[http://dx.doi.org/10.4269/ajtmh.14-0151] [PMID: 25294619]
[8]
Musso, D.; Nhan, T.; Robin, E.; Roche, C.; Bierlaire, D.; Zisou, K.; Shan Yan, A.; Cao-Lormeau, V.M.; Broult, J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill., 2014, 19(14), 20761.
[http://dx.doi.org/10.2807/1560-7917.ES2014.19.14.20761] [PMID: 24739982]
[9]
Schuler-Faccini, L.; Ribeiro, E.M.; Feitosa, I.M.L.; Horovitz, D.D.G.; Cavalcanti, D.P.; Pessoa, A.; Doriqui, M.J.R.; Neri, J.I.; Neto, J.M.P.; Wanderley, H.Y.C.; Cernach, M.; El-Husny, A.S.; Pone, M.V.S.; Serao, C.L.C.; Sanseverino, M.T.V. Possible association between zika virus infection and microcephaly - Brazil, 2015. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(3), 59-62.
[http://dx.doi.org/10.15585/mmwr.mm6503e2] [PMID: 26820244]
[10]
Chan, J.F.W.; Choi, G.K.Y.; Yip, C.C.Y.; Cheng, V.C.C.; Yuen, K.Y. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J. Infect., 2016, 72(5), 507-524.
[http://dx.doi.org/10.1016/j.jinf.2016.02.011] [PMID: 26940504]
[11]
WHO - World Health Organization. Statement on the First Meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations. 2005.
[12]
Kok, W.M. New developments in flavivirus drug discovery. Expert Opin. Drug Discov., 2016, 11(5), 433-445.
[http://dx.doi.org/10.1517/17460441.2016.1160887] [PMID: 26966889]
[13]
Lai, H.; Sridhar Prasad, G.; Padmanabhan, R. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro. Antiviral Res., 2013, 97(1), 74-80.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.009] [PMID: 23127365]
[14]
Jadav, S.S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V.N.; Ganesan, R.; Sinha, B.N.; Neyts, J.; Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1747-1752.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.059] [PMID: 25791449]
[15]
Singh Jadav, S.; Nayan Sinha, B.; Pastorino, B.; de Lamballerie, X.; Hilgenfeld, R.; Jayaprakash, V. Identification of pyrazole derivative as an antiviral agent against chikungunya through HTVS. Lett. Drug Des. Discov., 2015, 12(4), 292-301.
[http://dx.doi.org/10.2174/1570180811666141001005402]
[16]
Behnam, M.A.M.; Nitsche, C.; Boldescu, V.; Klein, C.D. The medicinal chemistry of dengue virus. J. Med. Chem., 2016, 59(12), 5622-5649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01653] [PMID: 26771861]
[17]
Freitas, L.A.B. Santos, A.C. da S.; Silva, G. de C.; Albuquerque, F.N. do N.; Silva, E.D.; Simone, C.A. de; Pereira, V.R.A.; Alves, L.C.; Brayner, F.A.; Leite, A.C.; Gomes, P.A.T. de M. Structural improvement of new thiazolyl-isatin derivatives produces potent and selective trypanocidal and leishmanicidal compounds. Chem. Biol. Interact., 2021, 345, 109561.
[18]
Teixeira de Moraes Gomes, P.A.; Veríssimo de Oliveira Cardoso, M.; Santos, I.R.; Amaro de Sousa, F.; Conceição, J.M.; Gouveia de Melo Silva, V.; Duarte, D.; Pereira, R.; Oliveira, R.; Nogueira, F.; Alves, L.C.; Brayner, F.A.; Silva Santos, A.C.; Rêgo Alves Pereira, V.; Lima Leite, A.C. Dual parasiticidal activities of phthalimides: synthesis and biological profile against Trypanosoma cruzi and Plasmodium falciparum. ChemMedChem, 2020, 15(22), 2164-2175.
[http://dx.doi.org/10.1002/cmdc.202000331] [PMID: 32813331]
[19]
Micewicz, E.D.; Khachatoorian, R.; French, S.W.; Ruchala, P. Identification of novel small-molecule inhibitors of Zika virus infection. Bioorg. Med. Chem. Lett., 2018, 28(3), 452-458.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.019] [PMID: 29258771]
[20]
Sharma, N.; Prosser, O.; Kumar, P.; Tuplin, A.; Giri, R. Small molecule inhibitors possibly targeting the rearrangement of Zika virus envelope protein. Antiviral Res., 2020, 182, 104876.
[http://dx.doi.org/10.1016/j.antiviral.2020.104876] [PMID: 32783901]
[21]
Espíndola, J.W.P.; De Oliveira Cardoso, M.V.; De Oliveira Filho, G.B.; Oliveira, E. Silva, D.A.; Moreira, D.R.M.; Bastos, T.M.; De Simone, C.A.; Soares, M.B.P.; Villela, F.S.; Ferreira, R.S.; De Castro, M.C.A.B.; Pereira, V.R.A.; Murta, S.M.F.; Sales Junior, P.A.; Romanha, A.J.; Leite, A.C.L. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835.
[PMID: 26231082]
[22]
Carvalho, D.C.M.; da Silva, P.G.; Dantas, W.M.; da Silva, S.J.R.; da Silva, C.T.A.; Chaves, E.J.F.; de Araújo, D.A.M.; de Oliveira, R.N.; Rodrigues-Mascarenhas, S.; Pena, L.J. Antiviral activity of ouabain against a Brazilian Zika virus strain. Sci. Rep., 2022, 12(1), 12598.
[http://dx.doi.org/10.1038/s41598-022-14243-5] [PMID: 35871157]
[23]
Hernandes, M.Z.; Rabello, M.M.; Leite, A.C.L.; Cardoso, M.V.O.; Moreira, D.R.M.; Brondani, D.J.; Simone, C.A.; Reis, L.C.; Souza, M.A.; Pereira, V.R.A.; Ferreira, R.S.; McKerrow, J.H. Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg. Med. Chem., 2010, 18(22), 7826-7835.
[http://dx.doi.org/10.1016/j.bmc.2010.09.056] [PMID: 20961766]
[24]
de Carvalho, O.V.; Félix, D.M.; de Mendonça, L.R.; de Araújo, C.M.C.S.; de Oliveira Franca, R.F.; Cordeiro, M.T.; Silva Júnior, A.; Pena, L.J. The thiopurine nucleoside analogue 6-methylmercaptopurine riboside (6MMPr) effectively blocks Zika virus replication. Int. J. Antimicrob. Agents, 2017, 50(6), 718-725.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.016] [PMID: 28803932]
[25]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[26]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[27]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[28]
Meanwell, N.A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol., 2011, 24(9), 1420-1456.
[http://dx.doi.org/10.1021/tx200211v] [PMID: 21790149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy