Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

MicroRNAs as Potential Biomarkers in Coronary Artery Disease

Author(s): Maria Bergami, Natalia Fabin, Edina Cenko*, Raffaele Bugiardini and Olivia Manfrini

Volume 23, Issue 6, 2023

Published on: 09 January, 2023

Page: [454 - 469] Pages: 16

DOI: 10.2174/1568026623666221221124530

Price: $65

Abstract

Coronary artery disease (CAD) is the leading cause of mortality globally. Although substantial advances have been made in the diagnosis, management, and risk stratification of CAD, there is still a need for novel diagnostic biomarkers and new therapeutic targets to prevent the epidemic of the disease. Recently, growing evidence has linked dysregulated microRNAs (miRNAs) to cardiovascular diseases, including CAD. miRNAs are endogenous, stable, single-stranded, short, non-coding RNAs, and may have utility as diagnostic and prognostic biomarkers for CAD. Dysregulated miRNAs are involved in regulating lipid and glucose homeostasis pathways, reninangiotensin- aldosterone pathways, inflammation, endothelial and vascular smooth cell phenotypes promoting atherosclerotic plaque development, progression, and instability. Additionally, miRNAs are stable and easily accessible in the extracellular space, may reside in microvesicles, and are detectable in serum or plasma, making them attractive biomarkers for the diagnosis and prognosis of cardiovascular disease. Accumulating studies suggest that miRNAs could be useful biomarkers for early discrimination of patients presenting with myocarditis or Takotsubo syndrome from those with a diagnosis of acute myocardial infarction, early prognostication of patients presenting with acute coronary syndromes, and accurate detection of left ventricular remodeling after a chronic or acute ischemic event. Moreover, miRNAs represent potential novel therapeutic targets for CAD or other cardiovascular diseases. This review provides an overview of the effects of the entire spectrum of CAD, its major risk factors, and complications on levels of circulating miRNAs, as well as the limitations and challenges of their potential clinical applications.

Graphical Abstract

[1]
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[2]
Kaur, A.; Mackin, S.T.; Schlosser, K.; Wong, F.L.; Elharram, M.; Delles, C.; Stewart, D.J.; Dayan, N.; Landry, T.; Pilote, L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res., 2020, 116(6), 1113-1124.
[http://dx.doi.org/10.1093/cvr/cvz302] [PMID: 31782762]
[3]
Feinberg, M.W.; Moore, K.J. MicroRNA Regulation of Atherosclerosis. Circ. Res., 2016, 118(4), 703-720.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[4]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[5]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[6]
Bagga, S.; Bracht, J.; Hunter, S.; Massirer, K.; Holtz, J.; Eachus, R.; Pasquinelli, A.E. Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation. Cell, 2005, 122(4), 553-563.
[http://dx.doi.org/10.1016/j.cell.2005.07.031] [PMID: 16122423]
[7]
Ulitsky, I. Interactions between short and long noncoding RNAs. FEBS Lett., 2018, 592(17), 2874-2883.
[http://dx.doi.org/10.1002/1873-3468.13085] [PMID: 29749606]
[8]
Hill, M.; Tran, N. MicroRNAs regulating microRNAs in cancer. Trends Cancer, 2018, 4(7), 465-468.
[http://dx.doi.org/10.1016/j.trecan.2018.05.002] [PMID: 29937044]
[9]
Zampetaki, A.; Willeit, P.; Drozdov, I.; Kiechl, S.; Mayr, M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc. Res., 2012, 93(4), 555-562.
[http://dx.doi.org/10.1093/cvr/cvr266] [PMID: 22028337]
[10]
Tsui, N.B.Y.; Ng, E.K.O.; Lo, Y.M.D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem., 2002, 48(10), 1647-1653.
[http://dx.doi.org/10.1093/clinchem/48.10.1647] [PMID: 12324479]
[11]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[12]
Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res., 2011, 39(16), 7223-7233.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[13]
Friedländer, M.R.; Lizano, E.; Houben, A.J.S.; Bezdan, D.; Báñez-Coronel, M.; Kudla, G.; Mateu-Huertas, E.; Kagerbauer, B.; González, J.; Chen, K.C.; LeProust, E.M.; Martí, E.; Estivill, X. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol., 2014, 15(4), R57.
[http://dx.doi.org/10.1186/gb-2014-15-4-r57] [PMID: 24708865]
[14]
Kozomara, A.; Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 2014, 42(D1), D68-D73.
[http://dx.doi.org/10.1093/nar/gkt1181] [PMID: 24275495]
[15]
Griffiths-Jones, S.; Saini, H.K.; van Dongen, S.; Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res., 2008, 36, D154-D158.
[http://dx.doi.org/10.1093/nar/gkm952] [PMID: 17991681]
[16]
Visseren, F.L.J. Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; Cosyns, B.; Crawford, C.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco, O.H.; Halvorsen, S.; Hobbs, F.D.R.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; van Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B.; De Backer, G.; Regitz-Zagrosek, V.; Aamodt, A.H.; Abdelhamid, M.; Aboyans, V.; Albus, C.; Asteggiano, R.; Bäck, M.; Borger, M.A.; Brotons, C.; Čelutkienė J.; Cifkova, R.; Cikes, M.; Cosentino, F.; Dagres, N.; De Backer, T.; De Bacquer, D.; Delgado, V.; Den Ruijter, H.; Dendale, P.; Drexel, H.; Falk, V.; Fauchier, L.; Ference, B.A.; Ferrières, J.; Ferrini, M.; Fisher, M.; Fliser, D.; Fras, Z.; Gaita, D.; Giampaoli, S.; Gielen, S.; Graham, I.; Jennings, C.; Jorgensen, T.; Kautzky-Willer, A.; Kavousi, M.; Koenig, W.; Konradi, A.; Kotecha, D.; Landmesser, U.; Lettino, M.; Lewis, B.S.; Linhart, A.; Løchen, M-L.; Makrilakis, K.; Mancia, G.; Marques-Vidal, P.; McEvoy, J.W.; McGreavy, P.; Merkely, B.; Neubeck, L.; Nielsen, J.C.; Perk, J.; Petersen, S.E.; Petronio, A.S.; Piepoli, M.; Pogosova, N.G.; Prescott, E.I.B.; Ray, K.K.; Reiner, Z.; Richter, D.J.; Rydén, L.; Shlyakhto, E.; Sitges, M.; Sousa-Uva, M.; Sudano, I.; Tiberi, M.; Touyz, R.M.; Ungar, A.; Verschuren, W.M.M.; Wiklund, O.; Wood, D.; Zamorano, J.L.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J-M.; Capodanno, D.; Cosyns, B.; Crawford, C.A.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco Duran, O.H.; Halvorsen, S.; Richard Hobbs, F.D.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J., 2021, 42(34), 3227-3337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[17]
Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; Gullans, S.; Kearney, P.; Sarnow, P.; Straarup, E.M.; Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189), 896-899.
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[18]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[19]
Khan, A.A.; Agarwal, H.; Reddy, S.S.; Arige, V.; Natarajan, B.; Gupta, V.; Kalyani, A.; Barthwal, M.K.; Mahapatra, N.R. MicroRNA 27a Is a key modulator of cholesterol biosynthesis. Mol. Cell. Biol., 2020, 40(9), e00470-e19.
[http://dx.doi.org/10.1128/MCB.00470-19] [PMID: 32071155]
[20]
Escate, R.; Padró, T.; Suades, R.; Camino, S.; Muñiz, O.; Diaz-Diaz, J.L.; Sionis, A.; Mata, P.; Badimon, L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc. Res., 2021, 117(1), 109-122.
[http://dx.doi.org/10.1093/cvr/cvaa039] [PMID: 32061123]
[21]
Kupper, N.; Ge, D.; Treiber, F.A.; Snieder, H. Emergence of novel genetic effects on blood pressure and hemodynamics in adolescence: the Georgia Cardiovascular Twin Study. Hypertension, 2006, 47(5), 948-954.
[http://dx.doi.org/10.1161/01.HYP.0000217521.79447.9a] [PMID: 16567584]
[22]
Wang, W.Y.S.; Zee, R.L.; Morris, B.J. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin. Genet., 1997, 51(1), 31-34.
[http://dx.doi.org/10.1111/j.1399-0004.1997.tb02410.x] [PMID: 9084931]
[23]
Sethupathy, P.; Borel, C.; Gagnebin, M.; Grant, G.R.; Deutsch, S.; Elton, T.S.; Hatzigeorgiou, A.G.; Antonarakis, S.E. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet., 2007, 81(2), 405-413.
[http://dx.doi.org/10.1086/519979] [PMID: 17668390]
[24]
Jackson, K.L.; Gueguen, C.; Lim, K.; Eikelis, N.; Stevenson, E.R.; Charchar, F.J.; Lambert, G.W.; Burke, S.L.; Paterson, M.R.; Marques, F.Z.; Head, G.A. Neural suppression of miRNA-181a in the kidney elevates renin expression and exacerbates hypertension in Schlager mice. Hypertens. Res., 2020, 43(11), 1152-1164.
[http://dx.doi.org/10.1038/s41440-020-0453-x] [PMID: 32427944]
[25]
Jusic, A.; Devaux, Y.; Action, E.U-C.C. Noncoding RNAs in Hypertension. Hypertension, 2019, 74(3), 477-492.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13412] [PMID: 31352819]
[26]
Li, X.; Wei, Y.; Wang, Z. microRNA-21 and hypertension. Hypertens. Res., 2018, 41(9), 649-661.
[http://dx.doi.org/10.1038/s41440-018-0071-z] [PMID: 29973661]
[27]
Biancardi, V.C.; Sharma, N.M. Connecting sympathetic and renin–angiotensin system overdrive in neurogenic hypertension through miRNA-181a. Hypertens. Res., 2020, 43(11), 1309-1310.
[http://dx.doi.org/10.1038/s41440-020-0492-3] [PMID: 32555411]
[28]
Marques, F.Z.; Campain, A.E.; Tomaszewski, M.; Zukowska-Szczechowska, E.; Yang, Y.H.J.; Charchar, F.J.; Morris, B.J. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension, 2011, 58(6), 1093-1098.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.180729] [PMID: 22042811]
[29]
Jackson, K.L.; Marques, F.Z.; Watson, A.M.D.; Palma-Rigo, K.; Nguyen-Huu, T.P.; Morris, B.J.; Charchar, F.J.; Davern, P.J.; Head, G.A. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension, 2013, 62(4), 775-781.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01701] [PMID: 23897069]
[30]
Li, H.; Zhang, X.; Wang, F.; Zhou, L.; Yin, Z.; Fan, J.; Nie, X.; Wang, P.; Fu, X.D.; Chen, C.; Wang, D.W. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 2016, 134(10), 734-751.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023926] [PMID: 27542393]
[31]
Cengiz, M.; Yavuzer, S.; Kılıçkıran Avcı, B.; Yürüyen, M.; Yavuzer, H.; Dikici, S.A.; Karataş, Ö.F.; Özen, M.; Uzun, H.; Öngen, Z. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin. Exp. Hypertens., 2015, 37(8), 643-649.
[http://dx.doi.org/10.3109/10641963.2015.1036064] [PMID: 26114349]
[32]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R.; Committee, I.D.F.D.A. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. , 2019; 157, . (107843)
[http://dx.doi.org/10.1016/j.diabres.2019.107843]] [PMID: 31518657]
[33]
Shantikumar, S.; Caporali, A.; Emanueli, C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc. Res., 2012, 93(4), 583-593.
[http://dx.doi.org/10.1093/cvr/cvr300] [PMID: 22065734]
[34]
Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; MacDonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014), 226-230.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[35]
Tsukita, S.; Yamada, T.; Takahashi, K.; Munakata, Y.; Hosaka, S.; Takahashi, H.; Gao, J.; Shirai, Y.; Kodama, S.; Asai, Y.; Sugisawa, T.; Chiba, Y.; Kaneko, K.; Uno, K.; Sawada, S.; Imai, J.; Katagiri, H. MicroRNAs 106b and 222 improve hyperglycemia in a mouse model of insulin-deficient diabetes via pancreatic β-cell proliferation. EBioMedicine, 2017, 15, 163-172.
[http://dx.doi.org/10.1016/j.ebiom.2016.12.002] [PMID: 27974246]
[36]
Xu, G.; Ji, C.; Song, G.; Zhao, C.; Shi, C.; Song, L.; Chen, L.; Yang, L.; Huang, F.; Pang, L.; Zhang, N.; Zhao, Y.; Guo, X. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. Int. J. Obes., 2015, 39(10), 1523-1530.
[http://dx.doi.org/10.1038/ijo.2015.95] [PMID: 25999046]
[37]
Amr, K.S.; Abdelmawgoud, H.; Ali, Z.Y.; Shehata, S.; Raslan, H.M. Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br. J. Biomed. Sci., 2018, 75(2), 82-87.
[http://dx.doi.org/10.1080/09674845.2017.1402404] [PMID: 29452547]
[38]
Jansen, F.; Wang, H.; Przybilla, D.; Franklin, B.S.; Dolf, A.; Pfeifer, P.; Schmitz, T.; Flender, A.; Endl, E.; Nickenig, G.; Werner, N. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc. Diabetol., 2016, 15(1), 49.
[http://dx.doi.org/10.1186/s12933-016-0367-8] [PMID: 27005938]
[39]
Sohrabifar, N.; Ghaderian, S.M.H.; Vakili, H.; Ghaedi, H.; Rouhani, B.; Jafari, H.; Heidari, L. MicroRNA-copy number variations in coronary artery disease patients with or without type 2 diabetes mellitus. Arch. Physiol. Biochem., 2021, 127(6), 497-503.
[http://dx.doi.org/10.1080/13813455.2019.1651340] [PMID: 31392905]
[40]
Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta, 2011, 412(1-2), 66-70.
[http://dx.doi.org/10.1016/j.cca.2010.09.029] [PMID: 20888330]
[41]
Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; Laaksonen, R.; Lehtimäki, T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis, 2011, 219(1), 211-217.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.020] [PMID: 21820659]
[42]
Eken, S.M.; Jin, H.; Chernogubova, E.; Li, Y.; Simon, N.; Sun, C.; Korzunowicz, G.; Busch, A.; Bäcklund, A.; Österholm, C.; Razuvaev, A.; Renné, T.; Eckstein, H.H.; Pelisek, J.; Eriksson, P.; González Díez, M.; Perisic Matic, L.; Schellinger, I.N.; Raaz, U.; Leeper, N.J.; Hansson, G.K.; Paulsson-Berne, G.; Hedin, U.; Maegdefessel, L. MicroRNA-210 enhances fibrous cap stability in advanced atherosclerotic lesions. Circ. Res., 2017, 120(4), 633-644.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309318] [PMID: 27895035]
[43]
Chipont, A.; Esposito, B.; Challier, I.; Montabord, M.; Tedgui, A.; Mallat, Z.; Loyer, X.; Potteaux, S. MicroRNA-21 deficiency alters the survival of Ly-6C lo monocytes in ApoE_/_ mice and reduces early-stage atherosclerosis—brief report. Arterioscler. Thromb. Vasc. Biol., 2019, 39(2), 170-177.
[http://dx.doi.org/10.1161/ATVBAHA.118.311942] [PMID: 30587001]
[44]
Gao, L.; Zeng, H.; Zhang, T.; Mao, C.; Wang, Y.; Han, Z.; Chen, K.; Zhang, J.; Fan, Y.; Gu, J.; Wang, C. MicroRNA-21 deficiency attenuated atherogenesis and decreased macrophage infiltration by targeting Dusp-8. Atherosclerosis, 2019, 291, 78-86.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.10.003] [PMID: 31704554]
[45]
Fichtlscherer, S.; Dimmeler, S.; Breuer, S.; Busse, R.; Zeiher, A.M.; Fleming, I. Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation, 2004, 109(2), 178-183.
[http://dx.doi.org/10.1161/01.CIR.0000105763.51286.7F] [PMID: 14662709]
[46]
Condorelli, G.; Latronico, M.V.G.; Cavarretta, E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol., 2014, 63(21), 2177-2187.
[http://dx.doi.org/10.1016/j.jacc.2014.01.050] [PMID: 24583309]
[47]
Adachi, T.; Nakanishi, M.; Otsuka, Y.; Nishimura, K.; Hirokawa, G.; Goto, Y.; Nonogi, H.; Iwai, N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin. Chem., 2010, 56(7), 1183-1185.
[http://dx.doi.org/10.1373/clinchem.2010.144121] [PMID: 20395621]
[48]
Sung, J.H.; Kim, S.H.; Yang, W.I.; Kim, W.J.; Moon, J.Y.; Kim, I.J.; Cha, D.H.; Cho, S.Y.; Kim, J.O.; Kim, K.A.; Kim, O.J.; Lim, S.W.; Kim, N.K. miRNA polymorphisms (miR-146a, miR-149, miR-196a2 and miR-499) are associated with the risk of coronary artery disease. Mol. Med. Rep., 2016, 14(3), 2328-2342.
[http://dx.doi.org/10.3892/mmr.2016.5495] [PMID: 27430349]
[49]
Gonzalo-Calvo, D.; Vilades, D.; Martínez-Camblor, P.; Vea, À.; Nasarre, L.; Sanchez Vega, J.; Leta, R.; Carreras, F.; Llorente-Cortés, V. Circulating micro RNAs in suspected stable coronary artery disease: A coronary computed tomography angiography study. J. Intern. Med., 2019, 286(3), 341-355.
[http://dx.doi.org/10.1111/joim.12921] [PMID: 31141242]
[50]
Zhao, Y.; Samal, E.; Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048), 214-220.
[http://dx.doi.org/10.1038/nature03817] [PMID: 15951802]
[51]
Bostjancic, E.; Zidar, N.; Stajner, D.; Glavac, D. MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol. (Praha), 2010, 56(1), 27-31.
[PMID: 20163779]
[52]
Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; Chen, G.; Wang, Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med., 2007, 13(4), 486-491.
[http://dx.doi.org/10.1038/nm1569] [PMID: 17401374]
[53]
Bergami, M.; Amaduzzi, P.L.; Bugiardini, R. Takotsubo Syndrome: Does the octopus trap hide dangers? Cardiovasc. Innov. Appl., 2017, 2(3), 311-324.
[http://dx.doi.org/10.15212/CVIA.2016.0042]
[54]
Jaguszewski, M.; Osipova, J.; Ghadri, J.R.; Napp, L.C.; Widera, C.; Franke, J.; Fijalkowski, M.; Nowak, R.; Fijalkowska, M.; Volkmann, I.; Katus, H.A.; Wollert, K.C.; Bauersachs, J.; Erne, P.; Lüscher, T.F.; Thum, T.; Templin, C. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur. Heart J., 2014, 35(15), 999-1006.
[http://dx.doi.org/10.1093/eurheartj/eht392] [PMID: 24046434]
[55]
Couch, L.S.; Fiedler, J.; Chick, G.; Clayton, R.; Dries, E.; Wienecke, L.M.; Fu, L.; Fourre, J.; Pandey, P.; Derda, A.A.; Wang, B.X.; Jabbour, R.; Shanmuganathan, M.; Wright, P.; Lyon, A.R.; Terracciano, C.M.; Thum, T.; Harding, S.E. Circulating microRNAs predispose to takotsubo syndrome following high-dose adrenaline exposure. Cardiovasc. Res., 2022, 118(7), 1758-1770.
[http://dx.doi.org/10.1093/cvr/cvab210] [PMID: 34155498]
[56]
Blanco-Domínguez, R.; Sánchez-Díaz, R.; de la Fuente, H.; Jiménez-Borreguero, L.J.; Matesanz-Marín, A.; Relaño, M.; Jiménez-Alejandre, R.; Linillos-Pradillo, B.; Tsilingiri, K.; Martín-Mariscal, M.L.; Alonso-Herranz, L.; Moreno, G.; Martín-Asenjo, R.; García-Guimaraes, M.M.; Bruno, K.A.; Dauden, E.; González-Álvaro, I.; Villar-Guimerans, L.M.; Martínez-León, A.; Salvador-Garicano, A.M.; Michelhaugh, S.A.; Ibrahim, N.E.; Januzzi, J.L.; Kottwitz, J.; Iliceto, S.; Plebani, M.; Basso, C.; Baritussio, A.; Seguso, M.; Marcolongo, R.; Ricote, M.; Fairweather, D.; Bueno, H.; Fernández-Friera, L.; Alfonso, F.; Caforio, A.L.P.; Pascual-Figal, D.A.; Heidecker, B.; Lüscher, T.F.; Das, S.; Fuster, V.; Ibáñez, B.; Sánchez-Madrid, F.; Martín, P. A novel circulating noncoding small RNA for the detection of acute myocarditis. N. Engl. J. Med., 2021, 384(21), 2014-2027.
[http://dx.doi.org/10.1056/NEJMoa2003608] [PMID: 34042389]
[57]
Liu, Z.; Tao, B.; Fan, S.; Cui, S.; Pu, Y.; Qiu, L.; Xia, H.; Xu, L. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging (Albany NY), 2020, 12(12), 11603-11622.
[http://dx.doi.org/10.18632/aging.103320] [PMID: 32554856]
[58]
Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Xu, H.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; Chen, Q.; Gao, Y.; Wang, Y.; Li, X.; Zhao, Y. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting smad7. Cell. Physiol. Biochem., 2017, 42(6), 2207-2219.
[http://dx.doi.org/10.1159/000479995] [PMID: 28817807]
[59]
Wang, Y.; Jin, B.J.; Chen, Q.; Yan, B.J.; Liu, Z.L. MicroRNA-29b upregulation improves myocardial fibrosis and cardiac function in myocardial infarction rats through targeting SH2B3. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(22), 10115-10122.
[PMID: 31799683]
[60]
Schulte, C.; Molz, S.; Appelbaum, S.; Karakas, M.; Ojeda, F.; Lau, D.M.; Hartmann, T.; Lackner, K.J.; Westermann, D.; Schnabel, R.B.; Blankenberg, S.; Zeller, T. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One, 2015, 10(12), e0145930.
[http://dx.doi.org/10.1371/journal.pone.0145930] [PMID: 26720041]
[61]
He, W.; Zhu, L.; Huang, Y.; Zhang, Y.; Shen, W.; Fang, L.; Li, J.; Wang, Z.; Xie, Q. The relationship of MicroRNA-21 and plaque stability in acute coronary syndrome. Medicine (Baltimore), 2019, 98(47), e18049.
[http://dx.doi.org/10.1097/MD.0000000000018049] [PMID: 31764830]
[62]
Soeki, T.; Yamaguchi, K.; Niki, T.; Uematsu, E.; Bando, S.; Matsuura, T.; Ise, T.; Kusunose, K.; Hotchi, J.; Tobiume, T.; Yagi, S.; Fukuda, D.; Taketani, Y.; Iwase, T.; Yamada, H.; Wakatsuki, T.; Shimabukuro, M.; Sata, M. Plasma microRNA-100 is associated with coronary plaque vulnerability. Circ. J., 2015, 79(2), 413-418.
[http://dx.doi.org/10.1253/circj.CJ-14-0958] [PMID: 25519160]
[63]
Singh, S.; de Ronde, M.W.J.; Kok, M.G.M.; Beijk, M.A.M.; De Winter, R.J.; van der Wal, A.C.; Sondermeijer, B.M.; Meijers, J.C.M.; Creemers, E.E.; Pinto-Sietsma, S.J. MiR-223-3p and miR-122-5p as circulating biomarkers for plaque instability. Open Heart, 2020, 7(1), e001223.
[http://dx.doi.org/10.1136/openhrt-2019-001223] [PMID: 32487772]
[64]
Knoka, E.; Trusinskis, K.; Mazule, M.; Briede, I.; Crawford, W.; Jegere, S.; Kumsars, I.; Narbute, I.; Sondore, D.; Lejnieks, A.; Erglis, A. Circulating plasma microRNA-126, microRNA-145, and microRNA-155 and their association with atherosclerotic plaque characteristics. J. Clin. Transl. Res., 2020, 5(2), 60-67.
[PMID: 32377580]
[65]
Taraldsen, M.D.; Wiseth, R.; Videm, V.; Bye, A.; Madssen, E. Associations between circulating microRNAs and coronary plaque characteristics: potential impact from physical exercise. Physiol. Genomics, 2022, 54(4), 129-140.
[http://dx.doi.org/10.1152/physiolgenomics.00071.2021] [PMID: 35226566]
[66]
Gao, J.; Liu, J.; Zhang, Y.; Guan, B.; Qu, H.; Chai, H.; Wang, W.; Ma, X.; Shi, D. PBMCs-Derived microRNA signature as a prethrombotic status discriminator in stable coronary artery disease. Thromb. Haemost., 2020, 120(1), 121-131.
[http://dx.doi.org/10.1055/s-0039-1700518] [PMID: 31715633]
[67]
Wei, T.; Folkersen, L.; Ehrenborg, E.; Gabrielsen, A. MicroRNA 486-3P as a stability marker in acute coronary syndrome. Biosci. Rep., 2016, 36(3), e00351.
[http://dx.doi.org/10.1042/BSR20160023] [PMID: 27190129]
[68]
Toutouzas, K.; Benetos, G.; Karanasos, A.; Chatzizisis, Y.S.; Giannopoulos, A.A.; Tousoulis, D. Vulnerable plaque imaging: updates on new pathobiological mechanisms. Eur. Heart J., 2015, 36(45), 3147-3154.
[http://dx.doi.org/10.1093/eurheartj/ehv508] [PMID: 26419623]
[69]
Koerselman, J.; van der Graaf, Y.; de Jaegere, P.P.T.; Grobbee, D.E. Coronary collaterals. Circulation, 2003, 107(19), 2507-2511.
[http://dx.doi.org/10.1161/01.CIR.0000065118.99409.5F] [PMID: 12756191]
[70]
Meier, P.; Hemingway, H.; Lansky, A.J.; Knapp, G.; Pitt, B.; Seiler, C. The impact of the coronary collateral circulation on mortality: a meta-analysis. Eur. Heart J., 2012, 33(5), 614-621.
[http://dx.doi.org/10.1093/eurheartj/ehr308] [PMID: 21969521]
[71]
Wang, J.; Yan, Y.; Song, D.; Liu, B. Reduced Plasma miR-146a is a predictor of poor coronary collateral circulation in patients with coronary artery disease. BioMed Res. Int., 2016, 2016, 4285942.
[http://dx.doi.org/10.1155/2016/4285942] [PMID: 28050558]
[72]
Fei, Y.; Hou, J.; Xuan, W.; Zhang, C.; Meng, X. The relationship of plasma miR-503 and coronary collateral circulation in patients with coronary artery disease. Life Sci., 2018, 207, 145-151.
[http://dx.doi.org/10.1016/j.lfs.2018.06.001] [PMID: 29870767]
[73]
Hakimzadeh, N.; Elias, J.; Wijntjens, G.W.M.; Theunissen, R.; van Weert, A.; Smulders, M.W.; van den Akker, N.; Moerland, P.D.; Verberne, H.J.; Hoebers, L.P.; Henriques, J.P.S.; van der Laan, A.M.; Ilhan, M.; Post, M.; Bekkers, S.C.A.M.; Piek, J.J. Monocytic microRNA profile associated with coronary collateral artery function in chronic total occlusion patients. Sci. Rep., 2017, 7(1), 1532.
[http://dx.doi.org/10.1038/s41598-017-01695-3] [PMID: 28484274]
[74]
Hakimzadeh, N.; Nossent, A.Y.; van der Laan, A.M.; Schirmer, S.H.; de Ronde, M.W.J.; Pinto-Sietsma, S.J.; van Royen, N.; Quax, P.H.A.; Hoefer, I.E.; Piek, J.J. Circulating microRNAs characterizing patients with insufficient coronary collateral artery function. PLoS One, 2015, 10(9), e0137035.
[http://dx.doi.org/10.1371/journal.pone.0137035] [PMID: 26331273]
[75]
McCartney, P.J.; Berry, C. Redefining successful primary PCI. Eur. Heart J. Cardiovasc. Imaging, 2019, 20(2), 133-135.
[PMID: 30476011]
[76]
Rezkalla, S.H.; Kloner, R.A. Coronary no-reflow phenomenon: From the experimental laboratory to the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv., 2008, 72(7), 950-957.
[http://dx.doi.org/10.1002/ccd.21715] [PMID: 19021281]
[77]
Cenko, E.; Ricci, B.; Kedev, S.; Kalpak, O.; Câlmâc, L.; Vasiljevic, Z.; Knežević,, B.; Dilic, M.; Dilic, D.; Manfrini, O.; Koller, A.; Dorobantu, M.; Badimon, L.; Bugiardini, R. The no-reflow phenomenon in the young and in the elderly. Int. J. Cardiol., 2016, 222, 1122-1128.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.209] [PMID: 27499222]
[78]
Cenko, E.; van der Schaar, M.; Yoon, J.; Kedev, S.; Valvukis, M.; Vasiljevic, Z.; Ašanin, M. Miličić, D.; Manfrini, O.; Badimon, L.; Bugiardini, R. Sex-specific treatment effects after primary percutaneous intervention: a study on coronary blood flow and delay to hospital presentation. J. Am. Heart Assoc., 2019, 8(4), e011190.
[http://dx.doi.org/10.1161/JAHA.118.011190] [PMID: 30764687]
[79]
Zhang, J.; He, L. Circulating miR-660-5p is associated with no-reflow phenomenon in patients with ST segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Anatol. J. Cardiol., 2021, 25(5), 323-329.
[PMID: 33960307]
[80]
Salama, A.M.; Khalil, W.A.; Al-Zaky, M.; Abdallah, S.H.; Kandil, N.T.; Abdelsabour, A.; Shaker, A.M.; Hasanein, M.T.; Luciani, G.B.; Azzazy, H.M.E. MicroRNA-208a: a good diagnostic marker and a predictor of no-reflow in STEMI patients undergoing primary percutaneuos coronary intervention. J. Cardiovasc. Transl. Res., 2020, 13(6), 988-995.
[http://dx.doi.org/10.1007/s12265-020-10020-9] [PMID: 32458401]
[81]
Zhou, Y.; Chen, Z.; Chen, A.; Ma, J.; Qian, J.; Ge, J. Elevated serum miR-133a predicts patients at risk of periprocedural myocardial injury after elective percutaneous coronary intervention. Cardiol. J., 2022, 29(2), 284-292.
[http://dx.doi.org/10.5603/CJ.a2020.0034] [PMID: 32207842]
[82]
Lv, W.; Jiang, J.; Li, Y.; Fu, L.; Meng, F.; Li, J. MiR-302a-3p aggravates myocardial ischemia-reperfusion injury by suppressing mitophagy via targeting FOXO3. Exp. Mol. Pathol., 2020, 117, 104522.
[http://dx.doi.org/10.1016/j.yexmp.2020.104522] [PMID: 32866521]
[83]
Zhang, M.; Cheng, Y.J.; Sara, J.D.S.; Liu, L.J.; Liu, L.P.; Zhao, X.; Gao, H. Circulating MicroRNA-145 is associated with acute myocardial infarction and heart failure. Chin. Med. J. (Engl.), 2017, 130(1), 51-56.
[http://dx.doi.org/10.4103/0366-6999.196573] [PMID: 28051023]
[84]
Lin, X.; Zhang, S.; Huo, Z. Serum Circulating miR-150 is a predictor of post-acute myocardial infarction heart failure. Int. Heart J., 2019, 60(2), 280-286.
[http://dx.doi.org/10.1536/ihj.18-306] [PMID: 30745540]
[85]
Devaux, Y.; Vausort, M.; McCann, G.P.; Kelly, D.; Collignon, O.; Ng, L.L.; Wagner, D.R.; Squire, I.B. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One, 2013, 8(8), e70644.
[http://dx.doi.org/10.1371/journal.pone.0070644] [PMID: 23967079]
[86]
Devaux, Y.; Vausort, M.; McCann, G.P.; Zangrando, J.; Kelly, D.; Razvi, N.; Zhang, L.; Ng, L.L.; Wagner, D.R.; Squire, I.B. MicroRNA-150. Circ. Cardiovasc. Genet., 2013, 6(3), 290-298.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000077] [PMID: 23547171]
[87]
Pilbrow, A.P.; Cordeddu, L.; Cameron, V.A.; Frampton, C.M.; Troughton, R.W.; Doughty, R.N.; Whalley, G.A.; Ellis, C.J.; Yandle, T.G.; Richards, A.M.; Foo, R.S.Y. Circulating miR-323-3p and miR-652: Candidate markers for the presence and progression of acute coronary syndromes. Int. J. Cardiol., 2014, 176(2), 375-385.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.068] [PMID: 25124998]
[88]
Widera, C.; Gupta, S.K.; Lorenzen, J.M.; Bang, C.; Bauersachs, J.; Bethmann, K.; Kempf, T.; Wollert, K.C.; Thum, T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol., 2011, 51(5), 872-875.
[http://dx.doi.org/10.1016/j.yjmcc.2011.07.011] [PMID: 21806992]
[89]
Eitel, I.; Adams, V.; Dieterich, P.; Fuernau, G.; de Waha, S.; Desch, S.; Schuler, G.; Thiele, H. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am. Heart J., 2012, 164(5), 706-714.
[http://dx.doi.org/10.1016/j.ahj.2012.08.004] [PMID: 23137501]
[90]
De Rosa, R.; De Rosa, S.; Leistner, D.; Boeckel, J.N.; Keller, T.; Fichtlscherer, S.; Dimmeler, S.; Zeiher, A.M. Transcoronary concentration gradient of microRNA-133a and outcome in patients with coronary artery disease. Am. J. Cardiol., 2017, 120(1), 15-24.
[http://dx.doi.org/10.1016/j.amjcard.2017.03.264] [PMID: 28511772]
[91]
Matsumoto, S.; Sakata, Y.; Nakatani, D.; Suna, S.; Mizuno, H.; Shimizu, M.; Usami, M.; Sasaki, T.; Sato, H.; Kawahara, Y.; Hamasaki, T.; Nanto, S.; Hori, M.; Komuro, I. A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem. Biophys. Res. Commun., 2012, 427(2), 280-284.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.039] [PMID: 22995291]
[92]
Lv, P.; Zhou, M.; He, J.; Meng, W.; Ma, X.; Dong, S.; Meng, X.; Zhao, X.; Wang, X.; He, F. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction. Int. J. Mol. Sci., 2014, 15(4), 5774-5788.
[http://dx.doi.org/10.3390/ijms15045774] [PMID: 24714087]
[93]
Alavi-Moghaddam, M.; Chehrazi, M.; Alipoor, S.D.; Mohammadi, M.; Baratloo, A.; Mahjoub, M.P.; Movasaghi, M.; Garssen, J.; Adcock, I.M.; Mortaz, E. A Preliminary Study of microRNA-208b after acute myocardial infarction: Impact on 6-month survival. Dis. Markers, 2018, 2018, 2410451.
[http://dx.doi.org/10.1155/2018/2410451] [PMID: 29977411]
[94]
Liu, X.; Yuan, L.; Chen, F.; Zhang, L.; Chen, X.; Yang, C.; Han, Z. Circulating miR-208b: A potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction. Clin. Lab., 2017, 63(01/2017), 101-109.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160632]] [PMID: 28164501]
[95]
He, F.; Lv, P.; Zhao, X.; Wang, X.; Ma, X.; Meng, W.; Meng, X.; Dong, S. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol. Cell. Biochem., 2014, 394(1-2), 137-144.
[http://dx.doi.org/10.1007/s11010-014-2089-0] [PMID: 24833470]
[96]
Karakas, M.; Schulte, C.; Appelbaum, S.; Ojeda, F.; Lackner, K.J.; Münzel, T.; Schnabel, R.B.; Blankenberg, S.; Zeller, T. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart J., 2017, 38(7), 516-523.
[PMID: 27357355]
[97]
Mayer, O., Jr Seidlerová, J.; Černá, V.; Kučerová, A.; Vaněk, J.; Karnosová, P.; Bruthans, J.; Wohlfahrt, P.; Cífková, R.; Pešta, M.; Filipovský, J. The low expression of circulating microRNA-19a represents an additional mortality risk in stable patients with vascular disease. Int. J. Cardiol., 2019, 289, 101-106.
[http://dx.doi.org/10.1016/j.ijcard.2019.05.008] [PMID: 31085080]
[98]
Xiao, S.; Xue, T.; Pan, Q.; Hu, Y.; Wu, Q.; Liu, Q.; Wang, X.; Liu, A.; Liu, J.; Zhu, H.; Zhou, Y.; Pan, D. MicroRNA-146a serves as a biomarker for adverse prognosis of ST-Segment elevation myocardial infarction. Cardiovasc. Ther., 2021, 2021, 2923441.
[http://dx.doi.org/10.1155/2021/2923441] [PMID: 34786024]
[99]
Liu, X.J.; Wan, Z.F.; Zhao, N.; Zhang, Y.P.; Mi, L.; Wang, X.H.; Zhou, D.; Wu, Y.; Yuan, Z.Y. Adjustment of the GRACE score by HemoglobinA1c enables a more accurate prediction of long-term major adverse cardiac events in acute coronary syndrome without diabetes undergoing percutaneous coronary intervention. Cardiovasc. Diabetol., 2015, 14(1), 110.
[http://dx.doi.org/10.1186/s12933-015-0274-4] [PMID: 26285575]
[100]
Yang, X.; Du, X.; Ma, K.; Li, G.; Liu, Z.; Rong, W.; Miao, H.; Zhu, F.; Cui, Q.; Wu, S.; Li, Y.; Du, J. Circulating miRNAs related to long-term adverse cardiovascular events in STEMI patients: A nested case-control study. Can. J. Cardiol., 2021, 37(1), 77-85.
[http://dx.doi.org/10.1016/j.cjca.2020.03.018] [PMID: 32735867]
[101]
Jakob, P.; Kacprowski, T.; Briand-Schumacher, S.; Heg, D.; Klingenberg, R.; Stähli, B.E.; Jaguszewski, M.; Rodondi, N.; Nanchen, D.; Räber, L.; Vogt, P.; Mach, F.; Windecker, S.; Völker, U.; Matter, C.M.; Lüscher, T.F.; Landmesser, U. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur. Heart J., 2017, 38(7), 511-515.
[PMID: 28011706]
[102]
Cortez-Dias, N.; Costa, M.C.; Carrilho-Ferreira, P.; Silva, D.; Jorge, C.; Calisto, C.; Pessoa, T.; Robalo Martins, S.; de Sousa, J.C.; da Silva, P.C.; Fiúza, M.; Diogo, A.N.; Pinto, F.J.; Enguita, F.J. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ. J., 2016, 80(10), 2183-2191.
[http://dx.doi.org/10.1253/circj.CJ-16-0568] [PMID: 27593229]
[103]
Li, Z.; Wu, J.; Wei, W.; Cai, X.; Yan, J.; Song, J.; Wang, C.; Wang, J. Association of Serum miR-186-5p with the prognosis of acute coronary syndrome patients after percutaneous coronary intervention. Front. Physiol., 2019, 10, 686.
[http://dx.doi.org/10.3389/fphys.2019.00686] [PMID: 31231239]
[104]
Takahashi, Y.; Satoh, M.; Minami, Y.; Tabuchi, T.; Itoh, T.; Nakamura, M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin–angiotensin system blockade and statins on miRNA-146a / b and Toll-like receptor 4 levels. Clin. Sci. (Lond.), 2010, 119(9), 395-405.
[http://dx.doi.org/10.1042/CS20100003] [PMID: 20524934]
[105]
Tang, Q.; Lei, H.; Wu, H.; Chen, J.; Deng, C.; Sheng, W.; Fu, Y.; Li, X.; Lin, Y.; Han, Y.; Zhong, S. Plasma miR-142 predicts major adverse cardiovascular events as an intermediate biomarker of dual antiplatelet therapy. Acta Pharmacol. Sin., 2019, 40(2), 208-215.
[http://dx.doi.org/10.1038/s41401-018-0041-7] [PMID: 29891858]
[106]
Guo, X.; Chen, Y.; Lu, Y.; Li, P.; Yu, H.; Diao, F.R.; Tang, W.D.; Hou, P.; Zhao, X.X.; Shi, C.Y. High level of circulating microRNA-142 is associated with acute myocardial infarction and reduced survival. Ir. J. Med. Sci., 2020, 189(3), 933-937.
[http://dx.doi.org/10.1007/s11845-020-02196-5] [PMID: 32064546]
[107]
Zhang, W.; Chang, G.; Cao, L.; Ding, G. Dysregulation of serum miR-361-5p serves as a biomarker to predict disease onset and short-term prognosis in acute coronary syndrome patients. BMC Cardiovasc. Disord., 2021, 21(1), 74.
[http://dx.doi.org/10.1186/s12872-021-01891-0] [PMID: 33546604]
[108]
Wang, W.; Li, T.; Gao, L.; Li, Y.; Sun, Y.; Yao, H.C. Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomarkers Med., 2020, 14(2), 87-95.
[http://dx.doi.org/10.2217/bmm-2019-0257] [PMID: 31789049]
[109]
Jansen, F.; Yang, X.; Proebsting, S.; Hoelscher, M.; Przybilla, D.; Baumann, K.; Schmitz, T.; Dolf, A.; Endl, E.; Franklin, B.S.; Sinning, J.M.; Vasa-Nicotera, M.; Nickenig, G.; Werner, N. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc., 2014, 3(6), e001249.
[http://dx.doi.org/10.1161/JAHA.114.001249] [PMID: 25349183]
[110]
Dong, Y.M.; Liu, X.X.; Wei, G.Q.; Da, Y.N.; Cha, L.; Ma, C.S. Prediction of long-term outcome after acute myocardial infarction using circulating miR-145. Scand. J. Clin. Lab. Invest., 2015, 75(1), 85-91.
[http://dx.doi.org/10.3109/00365513.2014.981855] [PMID: 25465803]
[111]
Yamac, A.H.; Huyut, M.A.; Yilmaz, E.; Celikkale, I.; Bacaksiz, A.; Demir, Y.; Demir, A.R.; Erturk, M.; Bakhshaliyev, N.; Ozdemir, R.; Kilic, U. MicroRNA 199a is downregulated in patients after coronary artery bypass graft surgery and is associated with increased levels of sirtuin 1 (SIRT 1) protein and major adverse cardiovascular events at 3-year follow-up. Med. Sci. Monit., 2018, 24, 6245-6254.
[http://dx.doi.org/10.12659/MSM.912065] [PMID: 30192743]
[112]
Shen, J.; Chang, C.; Ma, J.; Feng, Q. Potential of circulating proangiogenic MicroRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology, 2021, 146(3), 400-408.
[http://dx.doi.org/10.1159/000509275] [PMID: 33730720]
[113]
Gonzalo-Calvo, D.; Pérez-Boza, J.; Curado, J.; Devaux, Y. Challenges of microRNA-based biomarkers in clinical application for cardiovascular diseases. Clin. Transl. Med., 2022, 12(2), e585.
[http://dx.doi.org/10.1002/ctm2.585] [PMID: 35167732]
[114]
Yang, X.; Dai, R.; Qin, Z.; Cai, R.; Xu, Y.; Su, Q. LncRNA MALAT1 functions as a biomarker of no-reflow phenomenon in ST-segment elevation myocardial infarction patients receiving primary percutaneous coronary intervention. Sci. Rep., 2022, 12(1), 3294.
[http://dx.doi.org/10.1038/s41598-022-06923-z] [PMID: 35228564]
[115]
Liu, Z.H.; Sun, X.P.; Zhou, S.L.; Wang, H.X. Research on the relations between the variation of miRNA-184 before and after treatment of acute myocardial infarction and prognosis. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4), 843-847.
[PMID: 28272697]
[116]
Latet, S.C.; Van Herck, P.L.; Claeys, M.J.; Van Craenenbroeck, A.H.; Haine, S.E.; Vandendriessche, T.R.; Van Hoof, V.O.; Fransen, E.; De Winter, B.Y.; Van Craenenbroeck, E.M.; Heidbuchel, H.; Vrints, C.J.; Hoymans, V.Y. Failed downregulation of circulating microRNA-155 in the early phase after ST elevation myocardial infarction is associated with adverse left ventricular remodeling. Cardiology, 2017, 138(2), 91-96.
[http://dx.doi.org/10.1159/000477235] [PMID: 28618412]
[117]
Ma, Q.; Ma, Y.; Wang, X.; Li, S.; Yu, T.; Duan, W.; Wu, J.; Wen, Z.; Jiao, Y.; Sun, Z.; Hou, Y. Circulating miR-1 as a potential predictor of left ventricular remodeling following acute ST-segment myocardial infarction using cardiac magnetic resonance. Quant. Imaging Med. Surg., 2020, 10(7), 1490-1503.
[http://dx.doi.org/10.21037/qims-19-829] [PMID: 32676367]
[118]
Grabmaier, U.; Clauss, S.; Gross, L.; Klier, I.; Franz, W.M.; Steinbeck, G.; Wakili, R.; Theiss, H.D.; Brenner, C. Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction – The SITAGRAMI-miR analysis. Int. J. Cardiol., 2017, 244, 30-36.
[http://dx.doi.org/10.1016/j.ijcard.2017.06.054] [PMID: 28663047]
[119]
Maciejak, A.; Kostarska-Srokosz, E.; Gierlak, W.; Dluzniewski, M.; Kuch, M.; Marchel, M.; Opolski, G.; Kiliszek, M.; Matlak, K.; Dobrzycki, S.; Lukasik, A.; Segiet, A.; Sygitowicz, G.; Sitkiewicz, D.; Gora, M.; Burzynska, B. Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Sci. Rep., 2018, 8(1), 9883.
[http://dx.doi.org/10.1038/s41598-018-28118-1] [PMID: 29959359]
[120]
Yao, Y.; Song, T.; Xiong, G.; Wu, Z.; Li, Q.; Xia, H.; Jiang, X. Combination of peripheral blood mononuclear cell miR-19b-5p, miR- 221, miR-25-5p, and hypertension correlates with an increased heart failure risk in coronary heart disease patients. Anatol. J. Cardiol., 2018, 20(2), 100-109.
[PMID: 30088484]
[121]
Khanaghaei, M.; Tourkianvalashani, F.; Hekmatimoghaddam, S.; Ghasemi, N.; Rahaie, M.; Khorramshahi, V.; Sheikhpour, A.; Heydari, Z.; Pourrajab, F. Circulating miR-126 and miR-499 reflect progression of cardiovascular disease; correlations with uric acid and ejection fraction. Heart Int., 2016, 11(1), 5000226.
[http://dx.doi.org/10.5301/heartint.5000226] [PMID: 27924211]
[122]
Hromádka, M.; Černá, V.; Pešta, M.; Kučerová, A.; Jarkovský, J.; Rajdl, D.; Rokyta, R.; Moťovská, Z. Prognostic value of MicroRNAs in patients after myocardial infarction: a substudy of PRAGUE-18. Dis. Markers, 2019, 2019, 2925019.
[http://dx.doi.org/10.1155/2019/2925019] [PMID: 31781298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy