Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Role of Advanced Technologies against COVID-19: Prevention, Detection, and Treatments

Author(s): Elham Hasanzadeh, Adele Rafati, Seyedeh Masoumeh Seyed Hosseini Tamijani, Raheleh Rafaiee, Ali Golchin and Mozhgan Abasi*

Volume 18, Issue 6, 2023

Published on: 17 January, 2023

Page: [800 - 828] Pages: 29

DOI: 10.2174/1574888X18666221221123505

Price: $65

Abstract

Concurrent with the global outbreak of COVID-19, the race began among scientists to generate effective therapeutics for the treatment of COVID-19. In this regard, advanced technology such as nanotechnology, cell-based therapies, tissue engineering and regenerative medicine, nerve stimulation and artificial intelligence (AI) are attractive because they can offer new solutions for the prevention, diagnosis and treatment of COVID-19. Nanotechnology can design rapid and specific tests with high sensitivity for detecting infection and synthases new drugs and vaccines based on nanomaterials to directly deliver the intended antiviral agent to the desired site in the body and also provide new surfaces that do not allow virus adhesion. Mesenchymal stem cells and exosomes secreted from them apply in regenerative medicine and regulate inflammatory responses. Cell therapy and tissue engineering are combined to repair or substitute damaged tissues or cells. Tissue engineering using biomaterials, cells, and signaling molecules can develop new therapeutic and diagnostic platforms and help scientists fight viral diseases. Nerve stimulation technology can augment body's natural ability to modulate the inflammatory response and inhibit pro-inflammatory cytokines and consequently suppress cytokine storm. People can access free online health counseling services through AI and it helps very fast for screening and diagnosis of COVID-19 patients. This study is aimed first to give brief information about COVID-19 and the epidemiology of the disease. After that, we highlight important developments in the field of advanced technologies relevant to the prevention, detection, and treatment of the current pandemic.

Graphical Abstract

[1]
Sheervalilou R, Shirvaliloo M, Dadashzadeh N, et al. COVID‐19 under spotlight: A close look at the origin, transmission, diagnosis, and treatment of the 2019‐nCoV disease. J Cell Physiol 2020; 235(12): 8873-924.
[http://dx.doi.org/10.1002/jcp.29735] [PMID: 32452539]
[2]
Fang T, Dong Y, Zhang X, Xie K, Lin L, Wang H. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int J Pharm 2016; 512(1): 39-48.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.036] [PMID: 27544846]
[3]
Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): A clinical update. Front Med 2020; 14(2): 126-35.
[http://dx.doi.org/10.1007/s11684-020-0767-8] [PMID: 32240462]
[4]
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017; 25(1): 35-48.
[http://dx.doi.org/10.1016/j.tim.2016.09.001] [PMID: 27743750]
[5]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[6]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with covid-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[7]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[8]
Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. Appl Phys Rev 2019; 6(1): 011302.
[http://dx.doi.org/10.1063/1.5056188] [PMID: 33738018]
[9]
Tatara AM. Role of tissue engineering in covid-19 and future viral outbreaks. Tissue Eng Part A 2020; 26(9-10): 468-74.
[http://dx.doi.org/10.1089/ten.tea.2020.0094] [PMID: 32272857]
[10]
Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 2017; 13(1): 219-30.
[http://dx.doi.org/10.1016/j.nano.2016.08.016] [PMID: 27575283]
[11]
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4(4): 105-31.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[12]
Jackman JA, Lee J, Cho NJ. Nanomedicine for infectious disease applications: Innovation towards broad-spectrum treatment of viral infections. Small 2016; 12(9): 1133-9.
[http://dx.doi.org/10.1002/smll.201500854] [PMID: 26551316]
[13]
Adesina SK, Akala EO. Nanotechnology approaches for the delivery of exogenous sirna for HIV therapy. Mol Pharm 2015; 12(12): 4175-87.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00335] [PMID: 26524196]
[14]
Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. 2020; 14(6): 6383-406.
[http://dx.doi.org/10.1021/acsnano.0c03697]
[15]
Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci 2015; 112(47): 14452-9.
[http://dx.doi.org/10.1073/pnas.1508520112] [PMID: 26598661]
[16]
Wei W, Zarghami N, Abasi M, Ertas UN, Pilehvar Y. Implantable magnetic nanofibers with ON–OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. J Biomed Mater Res A 2022; 110(4): 851-60.
[PMID: 34786813]
[17]
Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: Immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009; 11(4): 377-91.
[http://dx.doi.org/10.1080/14653240903080367] [PMID: 19568970]
[18]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15(3): 4142-57.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[19]
Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus – a perspective. Expert Rev Clin Immunol 2020; 16(5): 465-70.
[http://dx.doi.org/10.1080/1744666X.2020.1750954] [PMID: 32237901]
[20]
Staats P, Giannakopoulos G, Blake J, Liebler E, Levy RM. The use of non‐invasive vagus nerve stimulation to treat respiratory symptoms associated with COVID‐19: A theoretical hypothesis and early clinical experience. Neuromodulation 2020; 23(6): 784-8.
[http://dx.doi.org/10.1111/ner.13172] [PMID: 32342609]
[21]
Niknam Z, Jafari A, Golchin A, et al. Potential therapeutic options for COVID-19: An update on current evidence. Eur J Med Res 2022; 27(1): 6.
[http://dx.doi.org/10.1186/s40001-021-00626-3] [PMID: 35027080]
[22]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[23]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[24]
Choi YH, Han HK. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 2018; 48(1): 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[25]
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2018; 15(1): 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[26]
Dhama K, Pawaiya RVS, Chakrabort S, Tiwari R, Saminathan M, Verma AK. Coronavirus infection in equines: A review. Asian J Anim Vet Adv 2014; 9(3): 164-76.
[http://dx.doi.org/10.3923/ajava.2014.164.176]
[27]
Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020; 91(1): 157-60.
[PMID: 32191675]
[28]
Shahzadi S, Zafar N, Sharif R. Antibacterial activity of metallic nanoparticles in bacterial-pathogenesis-and-antibacterial-control. IntechOpen 2018. Available from: https://www.intechopen.com/chapters/59058
[29]
Fathizadeh H, Maroufi P, Momen-Heravi M, et al. Protection and disinfection policies against SARS-CoV-2 (COVID-19). Infez Med 2020; 28(2): 185-91.
[PMID: 32275260]
[30]
Guo H, Wang C, Miyazawa K, Wang H, Masuda H, Fujita D. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask. Sci Rep 2016; 6(1): 38760.
[http://dx.doi.org/10.1038/srep38760] [PMID: 27991498]
[31]
Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 2011; 96A(3): 566-74.
[http://dx.doi.org/10.1002/jbm.a.33010] [PMID: 21254388]
[32]
Kizek R. Nanoscale virus biosensors: State of the art. NDD 2015; 4: 47-66.
[33]
Vashist SK. In vitro diagnostic assays for COVID-19: Recent advances and emerging trends. Diagnostics 2020; 10(4): 202.
[http://dx.doi.org/10.3390/diagnostics10040202] [PMID: 32260471]
[34]
World Health Organization (WHO). Global research and innovation forum: Towards a research roadmap. COVID 19 Public Health Emergency of International Concern (PHEIC). Available from: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum
[35]
Westlund O. A review and model of journalism in an age of mobile media. Digital Journalism 2013; 1(1): 6-26.
[http://dx.doi.org/10.1080/21670811.2012.740273]
[36]
Tang Y, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: Current issues and challenges. J Clin Microbiol 2020; 58(6): 10.1128.
[37]
Montesinos I, Gruson D, Kabamba B, et al. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol 2020; 128: 104413.
[http://dx.doi.org/10.1016/j.jcv.2020.104413] [PMID: 32403010]
[38]
Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020; 26(7): 1033-6.
[http://dx.doi.org/10.1038/s41591-020-0913-5] [PMID: 32398876]
[39]
Younes N, Al-Sadeq DW. AL-Jighefee H, et al. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses 2020; 12(6): 582.
[http://dx.doi.org/10.3390/v12060582] [PMID: 32466458]
[40]
Infantino M, Grossi V, Lari B, et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti‐SARS‐CoV‐2 IgM and IgG antibodies: An Italian experience. J Med Virol 2020; 92(9): 1671-5.
[http://dx.doi.org/10.1002/jmv.25932] [PMID: 32330291]
[41]
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. Artif Cells Nanomed Biotechnol 2018; 46(6): 1111-21.
[http://dx.doi.org/10.1080/21691401.2017.1379014] [PMID: 28933183]
[42]
Norouzi M, Yasamineh S, Montazeri M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Eng C 2019; 104: 110007.
[http://dx.doi.org/10.1016/j.msec.2019.110007] [PMID: 31500008]
[43]
Zavari-Nematabad A, Alizadeh-Ghodsi M, Hamishehkar H, Alipour E, Pilehvar-Soltanahmadi Y, Zarghami N. Development of quantum-dot-encapsulated liposome-based optical nanobiosensor for detection of telomerase activity without target amplification. Anal Bioanal Chem 2017; 409(5): 1301-10.
[http://dx.doi.org/10.1007/s00216-016-0058-z] [PMID: 27822647]
[44]
Nikbakht H, Gill P, Tabarraei A, Niazi A. Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-shaped gold nanoparticles. RSC Advances 2014; 4(26): 13575-80.
[http://dx.doi.org/10.1039/c3ra47398h]
[45]
Sheervalilou R, Shirvaliloo M, Sargazi S, et al. Application of nanobiotechnology for early diagnosis of SARS-CoV-2 infection in the covid-19 pandemic. Appl Microbiol Biotechnol 2021; 105(7): 2615-24.
[http://dx.doi.org/10.1007/s00253-021-11197-y] [PMID: 33710356]
[46]
Sheervalilou R, Shahraki O, Hasanifard L, et al. Electrochemical nano-biosensors as novel approach for the detection of lung cancer-related MicroRNAs. Curr Mol Med 2019; 20(1): 13-35.
[http://dx.doi.org/10.2174/1566524019666191001114941] [PMID: 31573884]
[47]
Huang C, Wen T, Shi FJ, Zeng XY, Jiao YJ. Rapid detection of igm antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 2020; 5(21): 12550-6.
[http://dx.doi.org/10.1021/acsomega.0c01554] [PMID: 32542208]
[48]
Lin Q, W D, Wu J, Liu L, Wu W, Fang X. Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/antigen of SARS-CoV-2 within 15 min. ACS 2020; 92(14): 9454-8.
[49]
Feng M, C J, Dai R, Zhao W, Lu H. Development of a sensitive immunochromatographic method using lanthanide fluorescent microsphere for rapid serodiagnosis of COVID-19. ACS 2020; 5(8): 2331-7.
[50]
Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 2021; 176: 112912.
[http://dx.doi.org/10.1016/j.bios.2020.112912] [PMID: 33358057]
[51]
Samadzadeh S, Babazadeh M, Zarghami N, Pilehvar-Soltanahmadi Y, Mousazadeh H. An implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug release: Possible application in prevention of cancer local recurrence. Mater Sci Eng C 2021; 118: 111384.
[http://dx.doi.org/10.1016/j.msec.2020.111384] [PMID: 33254991]
[52]
Couvreur P, Stella B, Reddy LH, et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett 2006; 6(11): 2544-8.
[http://dx.doi.org/10.1021/nl061942q] [PMID: 17090088]
[53]
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The signaling pathways, and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol 2019; 10: 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[54]
Kang S, Peng W, Zhu Y, et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: Detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55(5): 105950.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105950] [PMID: 32234465]
[55]
Firouzi-Amandi A, Dadashpour M, Nouri M, et al. Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Biomed Pharmacother 2018; 105: 773-80.
[http://dx.doi.org/10.1016/j.biopha.2018.06.037] [PMID: 29909345]
[56]
Rasouli S, Montazeri M, Mashayekhi S, et al. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. J Drug Deliv Sci Technol 2020; 55: 101402.
[http://dx.doi.org/10.1016/j.jddst.2019.101402]
[57]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[58]
Gera M, Sharma N, Ghosh M, et al. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017; 8(39): 66680-98.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[59]
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective properties of the golden spice curcumin. Front Microbiol 2019; 10: 912.
[http://dx.doi.org/10.3389/fmicb.2019.00912] [PMID: 31130924]
[60]
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol 2019; 10: 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[61]
Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics 2019; 11(10): 534.
[http://dx.doi.org/10.3390/pharmaceutics11100534] [PMID: 31615112]
[62]
Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007; 2(2): 108-13.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[63]
Xu Q, Kuang T, Liu Y, et al. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B Mater Biol Med 2016; 4(45): 7204-19.
[http://dx.doi.org/10.1039/C6TB02131J] [PMID: 32263722]
[64]
Carlos L, Pedersen BW, Ogilby PR, Mártire DO. The role of humic acid aggregation on the kinetics of photosensitized singlet oxygen production and decay. Photochem Photobiol Sci 2011; 10(6): 1080-6.
[http://dx.doi.org/10.1039/c1pp00003a] [PMID: 21431180]
[65]
Gregory AE, Williamson ED, Prior JL, et al. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 2012; 30(48): 6777-82.
[http://dx.doi.org/10.1016/j.vaccine.2012.09.021] [PMID: 23000121]
[66]
Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. In: Turksen, K Eds; Cell Biology and Translational Medicine: Vol 11, Springer, Cham.
[http://dx.doi.org/10.1007/5584_2020_592]
[67]
Golchin A, Shams F, Kangari P, Azari A, Hosseinzadeh S. Regenerative medicine: Injectable cell-based therapeutics and approved products. Adv Exp Med Biol 2019; 1237: 75-95.
[http://dx.doi.org/10.1007/5584_2019_412] [PMID: 31302869]
[68]
Franco SD, Alfieri A, Petrou S, et al. Current status of COVID-19 treatment: An opinion review. World J Virol 2020; 9(3): 27-37.
[http://dx.doi.org/10.5501/wjv.v9.i3.27] [PMID: 33024717]
[69]
Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med 2021; 27(2): 205-11.
[http://dx.doi.org/10.1038/s41591-021-01230-y] [PMID: 33469205]
[70]
Qu W, Wang Z, Hare JM, et al. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9(9): 1007-22.
[http://dx.doi.org/10.1002/sctm.20-0146] [PMID: 32472653]
[71]
Golchin A, Shams F, Karami F. Advancing mesenchymal stem cell therapy with crispr/cas9 for clinical trial studies. In: Cell Biology and Translational Medicine. Springer 2019; Vol. 8: pp. 89-100.
[http://dx.doi.org/10.1007/5584_2019_459]
[72]
Liu J, Jiao H, Yin X. Engineered human mesenchymal stem cells as new vaccine platform for COVID-19. bioRxiv 2020; 2020; 163030.
[http://dx.doi.org/10.1101/2020.06.20.163030]
[73]
Gholizadeh-Ghaleh Aziz S, Alipour S, Ranjbarvan P, Azari A, Babaei G, Golchin A. Critical roles of TLRs on the polarization of mesenchymal stem cells for cell therapy of viral infections: A notice for COVID-19 treatment. Comp Clin Pathol 2021; 30(2): 119-28.
[http://dx.doi.org/10.1007/s00580-021-03209-0] [PMID: 33551714]
[74]
Sharma A, Garcia G Jr, Wang Y, et al. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep Med 2020; 1(4): 100052.
[http://dx.doi.org/10.1016/j.xcrm.2020.100052] [PMID: 32835305]
[75]
Perez-Bermejo JA, Kang S, Rockwood SJ, et al. SARS-CoV-2 infection of human iPSC–derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med 2021; 13(590): eabf7872.
[http://dx.doi.org/10.1126/scitranslmed.abf7872] [PMID: 33723017]
[76]
Esmail S, Danter W. Viral pandemic preparedness: A pluripotent stem cell-based machine-learning platform for simulating SARS-CoV-2 infection to enable drug discovery and repurposing. Stem Cells Transl Med 2021; 10(2): 239-50.
[http://dx.doi.org/10.1002/sctm.20-0181] [PMID: 32961040]
[77]
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54.
[http://dx.doi.org/10.1089/scd.2020.0080] [PMID: 32380908]
[78]
Golchin A, Farahany TZ. Biological products: Cellular therapy and FDA approved products. Stem Cell Rev 2019; 15(2): 166-75.
[http://dx.doi.org/10.1007/s12015-018-9866-1] [PMID: 30623359]
[79]
Abasi M, Massumi M, Riazi G, Amini H. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells. Neuroscience 2012; 222: 404-16.
[http://dx.doi.org/10.1016/j.neuroscience.2012.07.009] [PMID: 22800564]
[80]
Massumi M, Abasi M, Babaloo H, et al. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Eng Part A 2012; 18(5-6): 609-20.
[http://dx.doi.org/10.1089/ten.tea.2011.0368] [PMID: 21981309]
[81]
Khan FA, Almohazey D, Alomari M, Almofty SA. Isolation, culture, and functional characterization of human embryonic stem cells: Current trends and challenges. Stem Cells Int 2018; 2018: 1429351.
[http://dx.doi.org/10.1155/2018/1429351]
[82]
Witwer KW, Van Balkom BWM, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8(1): 1609206.
[http://dx.doi.org/10.1080/20013078.2019.1609206] [PMID: 31069028]
[83]
Musavi M, Kohram F, Abasi M, et al. Rn7SK small nuclear RNA is involved in cellular senescence. J Cell Physiol 2019; 234(8): 14234-45.
[http://dx.doi.org/10.1002/jcp.28119] [PMID: 30637716]
[84]
Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytother Res 2017; 31(11): 1651-68.
[http://dx.doi.org/10.1002/ptr.5908] [PMID: 28857315]
[85]
Ju C, Li Y, Shen Y, et al. Transplantation of cardiac mesenchymal stem cell-derived exosomes for angiogenesis. J Cardiovasc Transl Res 2018; 11(5): 429-37.
[http://dx.doi.org/10.1007/s12265-018-9824-y] [PMID: 30276617]
[86]
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 2019; 200: 35-47.
[http://dx.doi.org/10.1016/j.biomaterials.2019.02.006] [PMID: 30771585]
[87]
Raza SS, Khan MA. Mesenchymal stem cells: A new front emerge in COVID19 treatment: Mesenchymal stem cells therapy for sars-cov2 viral infection. Cytotherapy 2022; 24(8): 755-66.
[88]
Nicodemou A, Danisovic L. Mesenchymal stromal/stem cell separation methods: Concise review. Cell Tissue Bank 2017; 18(4): 443-60.
[http://dx.doi.org/10.1007/s10561-017-9658-x] [PMID: 28821996]
[89]
Yadav P, Vats R, Bano A, Bhardwaj R. Mesenchymal stem cell immunomodulation and regeneration therapeutics as an ameliorative approach for COVID-19 pandemics. Life Sci 2020; 263: 118588.
[http://dx.doi.org/10.1016/j.lfs.2020.118588] [PMID: 33049279]
[90]
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: Current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11(1): 305.
[http://dx.doi.org/10.1186/s13287-020-01804-6] [PMID: 32698898]
[91]
Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS, Kadam S. Mesenchymal stem cells and exosome therapy for COVID-19: Current status and future perspective. Hum Cell 2020; 33(4): 907-18.
[http://dx.doi.org/10.1007/s13577-020-00407-w] [PMID: 32780299]
[92]
Tang L, Jiang Y, Zhu M, et al. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front Med 2020; 14(5): 664-73.
[http://dx.doi.org/10.1007/s11684-020-0810-9] [PMID: 32761491]
[93]
Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. In: Medicine in drug discovery Med Drug Discov. 2020; 5: p. 100019.
[94]
Zhao C. Combating covid-19 with mesenchymal stem cell therapy: Promise and challenges. Front Cell Dev Biol 2020; 8: 1733.
[95]
Lanzoni G, Linetsky E, Correa D. Umbilical cord-derived mesenchymal stem cells for COVID-19 patients with acute respiratory distress syndrome (ARDS). CellR4 2020; 8: e2839.
[96]
Inal JM. Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy. Clin Sci (Lond) 2020; 134(12): 1301-4.
[http://dx.doi.org/10.1042/CS20200623] [PMID: 32542396]
[97]
Gentile P, Sterodimas A. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia. Expert Opin Biol Ther 2020; 20(7): 711-6.
[http://dx.doi.org/10.1080/14712598.2020.1761322] [PMID: 32329380]
[98]
Wang HC, Wang X, Long X. Stem cell transplantation therapy: A potential method for treating cytokine storm syndromes induced by COVID-19. Cell Transplant 2020; 29: 0963689720965980.
[http://dx.doi.org/10.1177/0963689720965980] [PMID: 33040594]
[99]
Sahu KK, Siddiqui AD, Cerny J. Mesenchymal stem cells in COVID-19: A journey from bench to bedside. Lab Med 2021; 52(1): 24-35.
[http://dx.doi.org/10.1093/labmed/lmaa049] [PMID: 32729620]
[100]
Nasef A, Mathieu N, Chapel A, et al. Immunosuppressive effects of mesenchymal stem cells: Involvement of HLA-G. Transplantation 2007; 84(2): 231-7.
[http://dx.doi.org/10.1097/01.tp.0000267918.07906.08] [PMID: 17667815]
[101]
Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45(11): e54-4.
[http://dx.doi.org/10.1038/emm.2013.94] [PMID: 24232253]
[102]
McIntyre LA, Moher D, Fergusson DA, et al. Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: A systematic review. PLoS One 2016; 11(1): e0147170.
[http://dx.doi.org/10.1371/journal.pone.0147170] [PMID: 26821255]
[103]
Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use. Pain Physician 2020; 23(2): E71-83.
[PMID: 32214286]
[104]
Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol 2020; 85: 104422.
[http://dx.doi.org/10.1016/j.meegid.2020.104422] [PMID: 32544615]
[105]
Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2021; 39(15): 5831-42.
[PMID: 32643586]
[106]
Liu H, Li B. The functional role of exosome in hepatocellular carcinoma. J Cancer Res Clin Oncol 2018; 144(11): 2085-95.
[http://dx.doi.org/10.1007/s00432-018-2712-7] [PMID: 30062486]
[107]
Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic 2011; 12(12): 1659-68.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01225.x] [PMID: 21645191]
[108]
Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, et al. Defining the role of 17β‐estradiol in human endometrial stem cells differentiation into neuron‐like cells. Cell Biol Int 2021; 45(1): 140-53.
[http://dx.doi.org/10.1002/cbin.11478] [PMID: 33049079]
[109]
Mashayekhi S, Rasoulpoor S, Shabani S, et al. Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells. Int J Pharm 2020; 587: 119656.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119656] [PMID: 32687972]
[110]
Harikrishnan P, Krishnan A. Tissue engineering strategies in Covid-19 research. Trends Biomater Artif Organs 2020; 34: 6-7.
[111]
Chakhalian D, Shultz RB, Miles CE, Kohn J. Opportunities for biomaterials to address the challenges of COVID ‐19. J Biomed Mater Res A 2020; 108(10): 1974-90.
[http://dx.doi.org/10.1002/jbm.a.37059] [PMID: 32662571]
[112]
Farzin A, Hassan S, Ebrahimi-Barough S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C 2019; 105: 110009.
[http://dx.doi.org/10.1016/j.msec.2019.110009] [PMID: 31546356]
[113]
Abalymov A, Parakhonskiy B. Polymer- and hybrid-based biomaterials for interstitial, connective, vascular, nerve, visceral and musculoskeletal tissue engineering. Polymers (Basel) 2020; 12(3): 620.
[114]
Chen PP. Lung tissue engineering: In vitro synthesis of lung tissue from neonatal and fetal rat lung cells cultured in a threedimensional collagen matrix. Thesis, Massachusetts Institute of Technology, MA, USA 2004.
[115]
Lin YM, Boccaccini AR, Polak JM, Bishop AE, Maquet V. Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering. J Biomater Appl 2006; 21(2): 109-18.
[http://dx.doi.org/10.1177/0885328206057952] [PMID: 16443629]
[116]
Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2007; 292(2): L510-8.
[http://dx.doi.org/10.1152/ajplung.00175.2006] [PMID: 17028264]
[117]
Mondrinos MJ, Koutzaki S, Jiwanmall E, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 2006; 12(4): 717-28.
[http://dx.doi.org/10.1089/ten.2006.12.717] [PMID: 16674286]
[118]
Mondrinos MJ, Koutzaki S, Lelkes PI, Finck CM. A tissue-engineered model of fetal distal lung tissue. Am J Physiol Lung Cell Mol Physiol 2007; 293(3): L639-50.
[http://dx.doi.org/10.1152/ajplung.00403.2006] [PMID: 17526596]
[119]
Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM. In vivo pulmonary tissue engineering: Contribution of donor-derived endothelial cells to construct vascularization. Tissue Eng Part A 2008; 14(3): 361-8.
[http://dx.doi.org/10.1089/tea.2007.0041] [PMID: 18333788]
[120]
Lin YM, Zhang A, Rippon HJ, Bismarck A, Bishop AE. Tissue engineering of lung: The effect of extracellular matrix on the differentiation of embryonic stem cells to pneumocytes. Tissue Eng Part A 2010; 16(5): 1515-26.
[http://dx.doi.org/10.1089/ten.tea.2009.0232] [PMID: 20001250]
[121]
Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science 2010; 329(5991): 538-41.
[http://dx.doi.org/10.1126/science.1189345] [PMID: 20576850]
[122]
Radhakumary C, Nandkumar AM, Nair PD. Hyaluronic acid-g-poly(HEMA) copolymer with potential implications for lung tissue engineering. Carbohydr Polym 2011; 85(2): 439-45.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.007]
[123]
Nichols JE, Niles J, Riddle M, et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A 2013; 19(17-18): 2045-62.
[http://dx.doi.org/10.1089/ten.tea.2012.0250] [PMID: 23638920]
[124]
O’Neill JD, Anfang R, Anandappa A, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 2013; 96(3): 1046-56.
[http://dx.doi.org/10.1016/j.athoracsur.2013.04.022] [PMID: 23870827]
[125]
Kajbafzadeh A, Sabetkish N, Sabetkish S, et al. Lung tissue engineering and preservation of alveolar microstructure using a novel casting method. Biotech Histochem 2015; 90(2): 111-23.
[http://dx.doi.org/10.3109/10520295.2014.957724] [PMID: 25268847]
[126]
Dunphy SE, Bratt JAJ, Akram KM, Forsyth NR, El Haj AJ. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen–elastin constructs. J Mech Behav Biomed Mater 2014; 38: 251-9.
[http://dx.doi.org/10.1016/j.jmbbm.2014.04.005] [PMID: 24809968]
[127]
Ghaedi M, Le AV. Bioengineered lungs generated from human iPSCs-derived epithelial cells on native extracellular matrix. J Tissue Eng Regen Med 2018; 12(3): e1623-35.
[128]
Wang L, Zhao Y, Yang F, et al. Biomimetic collagen biomaterial induces in situ lung regeneration by forming functional alveolar. Biomaterials 2020; 236: 119825.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119825] [PMID: 32044576]
[129]
Nichols JE, La Francesca S. Production and transplantation of bioengineered lung into a large-animal model. Sci Transl Med 2018; 10(452): eaao3926.
[http://dx.doi.org/10.1126/scitranslmed.aao3926]
[130]
Choong YYC, Tan HW, Patel DC, et al. The global rise of 3D printing during the COVID-19 pandemic. Nat Rev Mater 2020; 5(9): 637-9.
[http://dx.doi.org/10.1038/s41578-020-00234-3] [PMID: 35194517]
[131]
Ishack S, Lipner SR. Applications of 3d printing technology to address covid-19–related supply shortages. Am J Med 2020; 133(7): 771-3.
[http://dx.doi.org/10.1016/j.amjmed.2020.04.002] [PMID: 32330492]
[132]
Hsiao WK, Lorber B, Paudel A. Can 3D printing of oral drugs help fight the current COVID-19 pandemic (and similar crisis in the future)? Expert Opin Drug Deliv 2020; 17(7): 899-902.
[http://dx.doi.org/10.1080/17425247.2020.1772229] [PMID: 32427004]
[133]
Jacob S, Nair AB, Patel V, Shah J. 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech 2020; 21(6): 220.
[http://dx.doi.org/10.1208/s12249-020-01771-4] [PMID: 32748243]
[134]
Hsiao WK, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: A new reality or hype? Expert Opin Drug Deliv 2018; 15(1): 1-4.
[http://dx.doi.org/10.1080/17425247.2017.1371698] [PMID: 28836459]
[135]
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: Study of different models and probes used in indentation experiments. Biophys J 2014; 107(3): 564-75.
[http://dx.doi.org/10.1016/j.bpj.2014.06.033] [PMID: 25099796]
[136]
Ali M, Haider M. Can Mechanical Stress Therapies be used in COVID-19 outbreak? Research Square 2020. Available from: https://assets.researchsquare.com/files/rs-25868/v1_covered.pdf?c=1631833695
[137]
Khodadadi M, Alijani S, Montazeri M, Esmaeilizadeh N, Sadeghi-Soureh S, Pilehvar-Soltanahmadi Y. Recent advances in electrospun nanofiber‐ mediated drug delivery strategies for localized cancer chemotherapy. J Biomed Mater Res A 2020; 108(7): 1444-58.
[http://dx.doi.org/10.1002/jbm.a.36912] [PMID: 32246745]
[138]
Primard C, Rochereau N, Luciani E, et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 2010; 31(23): 6060-8.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.021] [PMID: 20471085]
[139]
Jiang T, Singh B, Li HS, et al. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 2014; 35(7): 2365-73.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.073] [PMID: 24342722]
[140]
Ali OA, Doherty E, Mooney DJ, Emerich D. Relationship of vaccine efficacy to the kinetics of DC and T-cell responses induced by PLG-based cancer vaccines. Biomatter 2011; 1(1): 66-75.
[http://dx.doi.org/10.4161/biom.1.1.16277] [PMID: 23507728]
[141]
Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med 2009; 1(8): 8ra19.
[http://dx.doi.org/10.1126/scitranslmed.3000359] [PMID: 20368186]
[142]
Shafiee A, Moradi L, Lim M, Brown J. Coronavirus disease 2019: A tissue engineering and regenerative medicine perspective. Stem Cells Transl Med 2021; 10(1): 27-38.
[http://dx.doi.org/10.1002/sctm.20-0197] [PMID: 32820868]
[143]
Kohn J, Niemi SM, Albert EC, Murphy JC, Langer R, Fox JG. Single-step immunization using a controlled release, biodegradable polymer with sustained adjuvant activity. J Immunol Methods 1986; 95(1): 31-8.
[http://dx.doi.org/10.1016/0022-1759(86)90314-5] [PMID: 3782824]
[144]
Kim J, Li WA, Choi Y, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol 2015; 33(1): 64-72.
[http://dx.doi.org/10.1038/nbt.3071] [PMID: 25485616]
[145]
Wu Y, Wei W, Zhou M, et al. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials 2012; 33(7): 2351-60.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.068] [PMID: 22192540]
[146]
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64(14): 1547-68.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[147]
Yang T, Dai Y, Chen G, Cui S. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front Cell Neurosci 2020; 14: 78.
[http://dx.doi.org/10.3389/fncel.2020.00078] [PMID: 32317938]
[148]
Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020; 55: 102743.
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[149]
Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018; 129: 78-94.
[http://dx.doi.org/10.1016/j.addr.2017.12.013] [PMID: 29269274]
[150]
Lehmann M, Lehmann M, Buhl L, et al. Late-breaking abstract: Anti-fibrotic effects of nintedanib and pirfenidone in 2D versus 3D lung cultures. Eur Respiratory Soc 2016; 2016: 478.
[151]
Uhl FE, Vierkotten S, Wagner DE, et al. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur Respir J 2015; 46(4): 1150-66.
[http://dx.doi.org/10.1183/09031936.00183214] [PMID: 25929950]
[152]
Hansen NUB, Karsdal MA, Brockbank S, Cruwys S, Rønnow S, Leeming DJ. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir Res 2016; 17(1): 76.
[http://dx.doi.org/10.1186/s12931-016-0394-8] [PMID: 27411390]
[153]
Tatler AL, Barnes J, Habgood A, Goodwin A, McAnulty RJ, Jenkins G. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices. Thorax 2016; 71(6): 565-7.
[http://dx.doi.org/10.1136/thoraxjnl-2015-208215] [PMID: 26911575]
[154]
Burgstaller G, Vierkotten S, Lindner M, Königshoff M, Eickelberg O. Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue. Am J Physiol Lung Cell Mol Physiol 2015; 309(4): L323-32.
[http://dx.doi.org/10.1152/ajplung.00061.2015] [PMID: 26092995]
[155]
Gerckens M, Gerckens M, Alsafadi HN, et al. Generation of human 3d lung tissue cultures (3D-LTCs) for disease modeling. J Vis Exp 2019; 2019: 144.
[156]
Singh AK, Mishra G, Maurya A, Kulkarni GT, Awasthi R. Biofabrication: An interesting tool to create in vitro model for COVID-19 drug targets. Med Hypotheses 2020; 144: 110059.
[http://dx.doi.org/10.1016/j.mehy.2020.110059] [PMID: 32758895]
[157]
Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 2014; 207(2): 283-97.
[http://dx.doi.org/10.1083/jcb.201402006] [PMID: 25332161]
[158]
van der Slot-Verhoeven AJ, van Dura EA, Attema J, et al. The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta Mol Basis Dis 2005; 1740(1): 60-7.
[http://dx.doi.org/10.1016/j.bbadis.2005.02.007] [PMID: 15878742]
[159]
Liu F, Lagares D, Choi KM, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 2015; 308(4): L344-57.
[http://dx.doi.org/10.1152/ajplung.00300.2014] [PMID: 25502501]
[160]
Booth AJ, Hadley R, Cornett AM, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 2012; 186(9): 866-76.
[http://dx.doi.org/10.1164/rccm.201204-0754OC] [PMID: 22936357]
[161]
Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 2014; 124(4): 1622-35.
[http://dx.doi.org/10.1172/JCI71386] [PMID: 24590289]
[162]
Sun H, Calle E, Chen X, et al. Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. Am J Physiol Lung Cell Mol Physiol 2014; 306(6): L463-75.
[http://dx.doi.org/10.1152/ajplung.00100.2013] [PMID: 24337923]
[163]
Southern BD, Grove LM, Rahaman SO, et al. Matrix-driven myosin II mediates the pro-fibrotic fibroblast phenotype. J Biol Chem 2016; 291(12): 6083-95.
[http://dx.doi.org/10.1074/jbc.M115.712380] [PMID: 26763235]
[164]
Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 2010; 16(8): 2581-91.
[http://dx.doi.org/10.1089/ten.tea.2009.0659] [PMID: 20297903]
[165]
Surolia R, Li FJ, Wang Z, et al. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight 2017; 2(2): e91377.
[http://dx.doi.org/10.1172/jci.insight.91377] [PMID: 28138565]
[166]
Wilkinson DC, Alva-Ornelas JA, Sucre JMS, et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med 2017; 6(2): 622-33.
[http://dx.doi.org/10.5966/sctm.2016-0192] [PMID: 28191779]
[167]
Sucre JMS, Wilkinson D, Vijayaraj P, et al. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. Am J Physiol Lung Cell Mol Physiol 2016; 310(10): L889-98.
[http://dx.doi.org/10.1152/ajplung.00446.2015] [PMID: 26968771]
[168]
Henry E, Cores J, Hensley MT, et al. Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 2015; 4(11): 1265-74.
[http://dx.doi.org/10.5966/sctm.2015-0062] [PMID: 26359426]
[169]
Chen P, Marsilio E, Goldstein RH, Yannas IV, Spector M. Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro. Tissue Eng 2005; 11(9-10): 1436-48.
[http://dx.doi.org/10.1089/ten.2005.11.1436] [PMID: 16259599]
[170]
Wong AP, Bear CE, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 2012; 30(9): 876-82.
[http://dx.doi.org/10.1038/nbt.2328] [PMID: 22922672]
[171]
Huang SXL, Islam MN, O’Neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 2014; 32(1): 84-91.
[http://dx.doi.org/10.1038/nbt.2754] [PMID: 24291815]
[172]
Boda B, Benaoudia S, Huang S, et al. Antiviral drug screening by assessing epithelial functions and innate immune responses in human 3D airway epithelium model. Antiviral Res 2018; 156: 72-9.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.007] [PMID: 29890184]
[173]
Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. MBio 2019; 10(3): e00723-19.
[http://dx.doi.org/10.1128/mBio.00723-19] [PMID: 31064833]
[174]
Movia D, Prina-Mello A. Preclinical development of orally inhaled drugs (oids)-are animal models predictive or shall we move towards in vitro non-animal models? Animals (Basel) 2020; 10(8): 1259.
[175]
Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014; 2(5): 634-50.
[http://dx.doi.org/10.1039/C3BM60319A] [PMID: 25379176]
[176]
Derricks KE, Rich CB, Buczek-Thomas JA, Nugent MA. Ascorbate enhances elastin synthesis in 3D tissue-engineered pulmonary fibroblasts constructs. Tissue Cell 2013; 45(4): 253-60.
[http://dx.doi.org/10.1016/j.tice.2013.03.001] [PMID: 23648172]
[177]
Arora PD, Narani N, McCulloch CAG. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 1999; 154(3): 871-82.
[http://dx.doi.org/10.1016/S0002-9440(10)65334-5] [PMID: 10079265]
[178]
Grinnell F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 2010; 26(1): 335-61.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113318] [PMID: 19575667]
[179]
Travis JA, Hughes MG, Wong JM, Wagner WD, Geary RL. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: Role of CD44 and implications for constrictive remodeling. Circ Res 2001; 88(1): 77-83.
[http://dx.doi.org/10.1161/01.RES.88.1.77] [PMID: 11139477]
[180]
Peng HY, Gao W, Chong FR, Liu HY, Zhang J. Semaphorin 4A enhances lung fibrosis through activation of Akt via PlexinD1 receptor. J Biosci 2015; 40(5): 855-62.
[http://dx.doi.org/10.1007/s12038-015-9566-9] [PMID: 26648031]
[181]
Sundarakrishnan A, Zukas H, Coburn J, et al. Engineered in vitro tissue model of Idiopathic Pulmonary Fibrosis (IPF). ACS Biomater Sci Eng 2019; 5: 2417-29.
[182]
Ling TY, Kuo MD, Li CL, et al. Identification of pulmonary Oct-4 + stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006; 103(25): 9530-5.
[http://dx.doi.org/10.1073/pnas.0510232103] [PMID: 16772384]
[183]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[184]
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14(4): 248-60.
[http://dx.doi.org/10.1038/nrd4539] [PMID: 25792263]
[185]
Galimov A. Lung-on-chip to study idiopathic pulmonary fibrosis. Biointerfaces Int Eur Cells Mater 2016; 2016: 6.
[186]
Sellgren KL, Butala EJ, Gilmour BP, Randell SH, Grego S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 2014; 14(17): 3349-58.
[http://dx.doi.org/10.1039/C4LC00552J] [PMID: 25000964]
[187]
Huh D, Leslie DC, Matthews BD, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 2012; 4(159): 159ra147.
[http://dx.doi.org/10.1126/scitranslmed.3004249] [PMID: 23136042]
[188]
Si L. Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics. bioRxiv 2020; 2020; 039917.
[189]
Jain A, Barrile R, van der Meer AD, et al. Primary human lung alveolus‐on‐a‐chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther 2018; 103(2): 332-40.
[http://dx.doi.org/10.1002/cpt.742] [PMID: 28516446]
[190]
Olteanu AE, Cîrnu MI. A comparison of some new methods for solving algebraic equations. Thesis, Editura Universitara Bucuresti Romania. 2013; p. 422.
[191]
Bhowmick R, Derakhshan T, Liang Y, Ritchey J, Liu L, Gappa-Fahlenkamp H. A three-dimensional human tissue-engineered lung model to study influenza a infection. Tissue Eng Part A 2018; 24(19-20): 1468-80.
[http://dx.doi.org/10.1089/ten.tea.2017.0449] [PMID: 29732955]
[192]
Gardner J, Herbst-Kralovetz M. Three-dimensional rotating wall vessel-derived cell culture models for studying virus-host interactions. Viruses 2016; 8(11): 304.
[http://dx.doi.org/10.3390/v8110304] [PMID: 27834891]
[193]
Li X, Chang S, Du G, et al. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method. Int J Pharm 2012; 433(1-2): 79-88.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.081] [PMID: 22583850]
[194]
Wang Q, Mi G, Hickey D, et al. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 2018; 160: 107-23.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.022] [PMID: 29407340]
[195]
Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9(1): 382-5.
[http://dx.doi.org/10.1080/22221751.2020.1729069]
[196]
Miller PG, Chen CY, Wang YI. Multiorgan microfluidic platform with breathable lung chamber for inhalation or intravenous drug screening and development. Biotechnol Bioeng 2020; 117(2): 486-97.
[http://dx.doi.org/10.1002/bit.27188]
[197]
Ainslie GR, Davis M, Ewart L, et al. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective. Lab Chip 2019; 19(19): 3152-61.
[http://dx.doi.org/10.1039/C9LC00492K] [PMID: 31469131]
[198]
Felder M, Trueeb B, Stucki AO, et al. Impaired wound healing of alveolar lung epithelial cells in a breathing lung-on-a-chip. Front Bioeng Biotechnol 2019; 7: 3.
[http://dx.doi.org/10.3389/fbioe.2019.00003] [PMID: 30746362]
[199]
Bovard D, Sandoz A, Luettich K, et al. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip 2018; 18(24): 3814-29.
[http://dx.doi.org/10.1039/C8LC01029C] [PMID: 30460365]
[200]
Zhang M, Xu C, Jiang L. A 3D human lung-on-a-chip model for nanotoxicity testing. 2018; 7(6): 1048-60.
[http://dx.doi.org/10.1039/C8TX00156A]
[201]
Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 2016; 13(2): 151-7.
[http://dx.doi.org/10.1038/nmeth.3697] [PMID: 26689262]
[202]
Pandey LM. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev Proteomics 2020; 17(6): 425-32.
[http://dx.doi.org/10.1080/14789450.2020.1794831] [PMID: 32654533]
[203]
Pandey LM, Pattanayek SK, Delabouglise D. Properties of adsorbed bovine serum albumin and fibrinogen on self-assembled monolayers. J Phys Chem C 2013; 117(12): 6151-60.
[http://dx.doi.org/10.1021/jp309483p]
[204]
Deng T, Li JS, Huan SY, et al. Quartz crystal microbalance bioaffinity sensor for biotin based on mixed self-assembled monolayers and metastable molecular complex receptor. Biosens Bioelectron 2006; 21(8): 1545-52.
[http://dx.doi.org/10.1016/j.bios.2005.07.001] [PMID: 16085409]
[205]
Disley DM, Cullen DC, You HX, Lowe CR. Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasmon resonance immunosensor. Biosens Bioelectron 1998; 13(11): 1213-25.
[http://dx.doi.org/10.1016/S0956-5663(98)00059-1] [PMID: 9871977]
[206]
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34(34): 8533-54.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.089] [PMID: 23953781]
[207]
Li Y, Pi Q, You H, et al. A smart multi-functional coating based on anti-pathogen micelles tethered with copper nanoparticles via a biosynthesis method using l -vitamin C. RSC Advances 2018; 8(33): 18272-83.
[http://dx.doi.org/10.1039/C8RA01985A] [PMID: 35541145]
[208]
Ghosh SK. Anti-Viral Surface Coating to Prevent Spread of Novel Coronavirus (COVID-19). Focus Powder Coat 2020; 2020(7): 5.
[209]
Malmsten M. Antimicrobial and antiviral hydrogels. Soft Matter 2011; 7(19): 8725-36.
[http://dx.doi.org/10.1039/c1sm05809f]
[210]
Park D, Larson AM, Klibanov AM, Wang Y. Antiviral and antibacterial polyurethanes of various modalities. Appl Biochem Biotechnol 2013; 169(4): 1134-46.
[http://dx.doi.org/10.1007/s12010-012-9999-7] [PMID: 23306899]
[211]
Tuladhar E, de Koning MC, Fundeanu I, Beumer R, Duizer E. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol 2012; 78(7): 2456-8.
[http://dx.doi.org/10.1128/AEM.07738-11] [PMID: 22287007]
[212]
Wong SY, Li Q, Veselinovic J, Kim BS, Klibanov AM, Hammond PT. Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 2010; 31(14): 4079-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.119] [PMID: 20163855]
[213]
Dolez P, Mlynarek J. Smart materials for personal protective equipment: Tendencies and recent developments. Smart textiles and their applications. Elsevier 2016; pp. 497-517.
[http://dx.doi.org/10.1016/B978-0-08-100574-3.00022-9]
[214]
Yu ZJ, Weller RA, Sandidge K, Weller EB. Vagus nerve stimulation: Can it be used in adolescents or children with treatment-resistant depression? Curr Psychiatry Rep 2008; 10(2): 116-22.
[http://dx.doi.org/10.1007/s11920-008-0021-6] [PMID: 18474201]
[215]
Kaniusas E, Szeles JC, Kampusch S, et al. Non-invasive auricular vagus nerve stimulation as a potential treatment for Covid19-originated acute respiratory distress syndrome. Front Physiol 2020; 11: 890.
[http://dx.doi.org/10.3389/fphys.2020.00890] [PMID: 32848845]
[216]
Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology 2010; 35(5): 653-62.
[http://dx.doi.org/10.1016/j.psyneuen.2009.10.004] [PMID: 19910123]
[217]
Koopman FA, Tang MW, Vermeij J, et al. Autonomic dysfunction precedes development of rheumatoid arthritis: A prospective cohort study. EBioMedicine 2016; 6: 231-7.
[http://dx.doi.org/10.1016/j.ebiom.2016.02.029] [PMID: 27211565]
[218]
Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med 2020; 6(1): 15.
[http://dx.doi.org/10.1186/s42234-020-00051-7] [PMID: 32743022]
[219]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[220]
Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation 2020; 141(20): 1648-55.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941] [PMID: 32200663]
[221]
Andersson U. The cholinergic anti-inflammatory pathway alleviates acute lung injury. Mol Med 2020; 26(1): 64.
[http://dx.doi.org/10.1186/s10020-020-00184-0] [PMID: 32600316]
[222]
Bara GA, de Ridder D, Maciaczyk J. Can neuromodulation support the fight against the COVID19 pandemic? Transcutaneous non-invasive vagal nerve stimulation as a potential targeted treatment of fulminant acute respiratory distress syndrome. Med Hypotheses 2020; 143: 110093.
[http://dx.doi.org/10.1016/j.mehy.2020.110093] [PMID: 33017913]
[223]
Boezaart AP, Botha DA. Botha, treatment of stage 3 COVID-19 with transcutaneous auricular vagus nerve stimulation drastically reduces interleukin-6 blood levels: A report on two cases. Neuromodulation 2021; 24(1): 166-7.
[224]
Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non‐invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. Eur J Neurol 2015; 22(9): 1260-8.
[http://dx.doi.org/10.1111/ene.12629] [PMID: 25614179]
[225]
Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices 2018; 15(8): 527-39.
[http://dx.doi.org/10.1080/17434440.2018.1507732] [PMID: 30071175]
[226]
Conway CR, Gott BM, Azhar NH. Vagus nerve stimulation for treatment-refractory depression. Neuromodulati Psychiatry 2016; 2-16: 335-52.
[227]
Heck C, Helmers SL, DeGiorgio CM. Vagus nerve stimulation therapy, epilepsy, and device parameters: Scientific basis and recommendations for use. Neurology 2002; 59(6) (Suppl. 4): S31-7.
[http://dx.doi.org/10.1212/WNL.59.6_suppl_4.S31] [PMID: 12270966]
[228]
Tracey KJ. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
[http://dx.doi.org/10.1038/nature01321] [PMID: 12490958]
[229]
Harris GW. The hypothalamus and endocrine glands. Br Med Bull 1950; 6(4): 345-50.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a073628] [PMID: 15420401]
[230]
Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease. J Intern Med 2017; 282(1): 46-63.
[http://dx.doi.org/10.1111/joim.12611] [PMID: 28421634]
[231]
Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol 2002; 20(1): 125-63.
[http://dx.doi.org/10.1146/annurev.immunol.20.082401.104914] [PMID: 11861600]
[232]
Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol 2007; 293(4): G711-8.
[http://dx.doi.org/10.1152/ajpgi.00240.2007] [PMID: 17673544]
[233]
Truong LD, Trostel J, Garcia GE. Absence of nicotinic acetylcholine receptor α7 subunit amplifies inflammation and accelerates onset of fibrosis: An inflammatory kidney model. FASEB J 2015; 29(8): 3558-70.
[http://dx.doi.org/10.1096/fj.14-262493] [PMID: 25985801]
[234]
Krzyzaniak MJ, Peterson CY, Cheadle G, et al. Efferent vagal nerve stimulation attenuates acute lung injury following burn: The importance of the gut-lung axis. Surgery 2011; 150(3): 379-89.
[http://dx.doi.org/10.1016/j.surg.2011.06.008] [PMID: 21783215]
[235]
Huston JM. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007; 35(12): 2762-8.
[236]
Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2018; 315(5): R895-906.
[http://dx.doi.org/10.1152/ajpregu.00099.2018] [PMID: 30088946]
[237]
Fudim M, Qadri YJ, Ghadimi K, et al. Implications for neuromodulation therapy to control inflammation and related organ dysfunction in COVID-19. J Cardiovasc Transl Res 2020; 13(6): 894-9.
[http://dx.doi.org/10.1007/s12265-020-10031-6] [PMID: 32458400]
[238]
Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA 2008; 105(31): 11008-13.
[http://dx.doi.org/10.1073/pnas.0803237105] [PMID: 18669662]
[239]
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 324(8): 782-93.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[240]
Lu Y. Artificial intelligence: A survey on evolution, models, applications and future trends. J Manage Anal 2019; 6(1): 1-29.
[http://dx.doi.org/10.1080/23270012.2019.1570365]
[241]
Nadikattu RR. The emerging role of artificial intelligence in modern society. Int J Creative Res Thoughts 2016; 2016: 3652439.
[242]
Kose U. Artificial intelligence applications in distance education. Pennsylvania: IGI Global 2014.
[243]
Heath S. System and method for tracking, utilizing predicting, and implementing online consumer browsing behavior, buying patterns, social networking communications, advertisements and communications, for online coupons, products, goods and services, auctions, and service providers using geospatial mapping technology, and social networking. Patent no. US20130073473A1, 2018.
[244]
Musiał K, Kazienko P. Social networks on the Internet. World Wide Web (Bussum) 2013; 16(1): 31-72.
[http://dx.doi.org/10.1007/s11280-011-0155-z]
[245]
Taipale S. Intergenerational connections in digital families. Springer 2019.
[http://dx.doi.org/10.1007/978-3-030-11947-8]
[246]
Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health 2020; 20(1): 1193.
[http://dx.doi.org/10.1186/s12889-020-09301-4]
[247]
Murray E, Burns J, See TS, Lai R, Nazareth I. Interactive health communication applications for people with chronic disease. Cochrane Database Sys Rev 2004; 2004(4): CD004274.
[248]
Taiwo O, Ezugwu AE. Smart healthcare support for remote patient monitoring during covid-19 quarantine. Inform Med Unlocked 2020; 20: 100428.
[http://dx.doi.org/10.1016/j.imu.2020.100428] [PMID: 32953970]
[249]
Moazzami B, Razavi-Khorasani N, Dooghaie Moghadam A, Farokhi E, Rezaei N. COVID-19 and telemedicine: Immediate action required for maintaining healthcare providers well-being. J Clin Virol 2020; 126: 104345.
[http://dx.doi.org/10.1016/j.jcv.2020.104345] [PMID: 32278298]
[250]
Hamilton-Basich M. Radiologists Urge Use of Medical Imaging, AI to Manage COVID-19 Cases. AXIS Imaging News 2020.
[251]
Murphy K, Smits H, Knoops AJG, et al. COVID-19 on chest radiographs: A multireader evaluation of an artificial intelligence system. Radiology 2020; 296(3): E166-72.
[http://dx.doi.org/10.1148/radiol.2020201874] [PMID: 32384019]
[252]
Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: A review. Radiography 2021; 27(2): 682-7.
[PMID: 33008761]
[253]
Ozsahin I, Sekeroglu B, Musa MS, Mustapha MT, Uzun Ozsahin D. Review on diagnosis of COVID-19 from Chest CT images using artificial intelligence. Comput Math Methods Med 2020; 2020: 9756518.
[http://dx.doi.org/10.1155/2020/9756518] [PMID: 33014121]
[254]
Carotti M, Salaffi F, Sarzi-Puttini P, et al. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: Key points for radiologists. Radiol Med 2020; 125(7): 636-46.
[http://dx.doi.org/10.1007/s11547-020-01237-4] [PMID: 32500509]
[255]
Harmon SA, Sanford TH, Xu S, et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat Commun 2020; 11(1): 4080.
[http://dx.doi.org/10.1038/s41467-020-17971-2] [PMID: 32796848]
[256]
Vardhanabhuti V. CT scan AI-aided triage for patients with COVID-19 in China. Lancet Digit Health 2020; 2(10): e494-5.
[http://dx.doi.org/10.1016/S2589-7500(20)30222-3] [PMID: 32984793]
[257]
Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 2020; 296(2): E65-71.
[http://dx.doi.org/10.1148/radiol.2020200905] [PMID: 32191588]
[258]
Zhang H, Zhang J, Zhang H, et al. Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software. Eur J Nucl Med Mol Imaging 2020; 47(11): 2525-32.
[http://dx.doi.org/10.1007/s00259-020-04953-1] [PMID: 32666395]
[259]
Yao W, Shi L, Zhang Y, Dong H, Zhang Y. Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: Potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Res Ther 2022; 13(1): 124.
[http://dx.doi.org/10.1186/s13287-022-02810-6] [PMID: 35321737]
[260]
Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis 2020; 11(2): 462-4.
[http://dx.doi.org/10.14336/AD.2020.0301] [PMID: 32257554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy