Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

A Multidisciplinary and a Comprehensive Approach to Reducing Fragility Fractures in Preterm Infants

Author(s): Saif Al Saif, Mohammad Maghoula, Amir Babiker, Mashael Abanmi, Fiona Nichol, Modhi Al Enazi, Elenor Guevarra, Faisal Sehlie, Hesham Al Shaalan and Zulf Mughal*

Volume 20, Issue 4, 2024

Published on: 01 March, 2023

Page: [434 - 443] Pages: 10

DOI: 10.2174/1573396319666221221122013

Price: $65

Abstract

With advances in neonatal care, bone fractures prior to discharge from the hospital in preterm infants receiving contemporary neonatal care, are rare. Nevertheless, such fractures do occur in very low birth weight and extremely low birth weight infants who go on to develop metabolic bone disease of prematurity (MBDP), with or without secondary hyperparathyroidism. MBDP is a multifactorial disorder arising from the disruption of bone mass accrual due to premature birth, postnatal immobilisation, and loss of placental oestrogen resulting in bone loss, inadequate provision of bone minerals from enteral and parenteral nutrition, and medications that leach out bone minerals from the skeleton. All of these factors lead to skeletal demineralisation and a decrease in bone strength and an increased risk of fractures of the long bones and ribs. Secondary hyperparathyroidism resulting from phosphate supplements, or enteral/parenteral feeds with a calcium-tophosphate ratio of < 1.3:1.0 leads to subperiosteal bone resorption, cortical thinning, and further skeletal weakening. Such fractures may occur from routine handling and procedures such as cannulation. Most fractures are asymptomatic and often come to light incidentally on radiographs performed for other indications. In 2015, we instituted a comprehensive and multidisciplinary Neonatal Bone Health Programme (NBHP), the purpose of which was to reduce fragility fractures in highrisk neonates, by optimising enteral and parenteral nutrition, including maintaining calcium-tophosphate ratio ≥1.3:1, milligram to milligram, biochemical monitoring of MBDP, safe-handling of at-risk neonates, without compromising passive physiotherapy and skin-to-skin contact with parents. The at-risk infants in the programme had radiographs of the torso and limbs at 4 weeks and after 8 weeks from enrolment into the program or before discharge. Following the introduction of the NBHP, the bone fracture incidence reduced from 12.5% to zero over an 18-month period.

Graphical Abstract

[1]
Jones S, Bell MJ. Distal radius fracture in a premature infant with osteopenia caused by handling during intravenous cannulation. Injury 2002; 33(3): 265-6.
[http://dx.doi.org/10.1016/S0020-1383(00)00234-5] [PMID: 12084646]
[2]
Amir J, Katz K, Grunebaum M, Yosipovich Z, Wielunsky E, Reisner SH. Fractures in premature infants. J Pediatr Orthop 1988; 8(1): 41-4.
[http://dx.doi.org/10.1097/01241398-198801000-00010] [PMID: 3121670]
[3]
Koo WWK, Sherman R, Succop P, et al. Fractures and rickets in very low birth weight infants: Conservative management and outcome. J Pediatr Orthop B 1989; 9(3): 326-30.
[http://dx.doi.org/10.1097/01202412-198909030-00012] [PMID: 2723052]
[4]
Viswanathan S, Khasawneh W, McNelis K, et al. Metabolic bone disease: A continued challenge in extremely low birth weight infants. JPEN J Parenter Enteral Nutr 2014; 38(8): 982-90.
[http://dx.doi.org/10.1177/0148607113499590] [PMID: 23963689]
[5]
Smurthwaite D, Wright NB, Russell S, Emmerson AJ, Mughal MZ. How common are rib fractures in extremely low birth weight preterm infants? Arch Dis Child Fetal Neonatal Ed 2009; 94(2): F138-9.
[http://dx.doi.org/10.1136/adc.2007.136853] [PMID: 18684749]
[6]
Lucas-Herald A, Butler S, Mactier H, McDevitt H, Young D, Ahmed SF. Prevalence and characteristics of rib fractures in ex-preterm in-fants. Pediatrics 2012; 130(6): 1116-9.
[http://dx.doi.org/10.1542/peds.2012-0462] [PMID: 23166339]
[7]
Mercy J, Dillon B, Morris J, Emmerson AJ, Mughal MZ. Relationship of tibial speed of sound and lower limb length to nutrient intake in preterm infants. Arch Dis Child Fetal Neonatal Ed 2007; 92(5): F381-5.
[http://dx.doi.org/10.1136/adc.2006.105742] [PMID: 17369280]
[8]
Zenoni D, Loiacono S. Experience of compounding total parenteral nutrition admixtures for preterm infants in a hospital pharmacy: Evi-dence of calcium and phosphate compatibility problem. Eur J Hosp Pharm Sci Pract 2018; 25(1): 38-42.
[http://dx.doi.org/10.1136/ejhpharm-2016-001143] [PMID: 31156983]
[9]
Chacham S, Pasi R, Chegondi M, Ahmad N, Mohanty SB. Metabolic bone disease in premature neonates: an unmet challenge. J Clin Res Pediatr Endocrinol 2020; 12(4): 332-9.
[http://dx.doi.org/10.4274/jcrpe.galenos.2019.2019.0091] [PMID: 31674171]
[10]
Wagner K, Wagner S, Susi A, Gorman G, Hisle-Gorman E. Prematurity does not increase early childhood fracture risk. J Pediatr 2019; 207: 148-53.
[http://dx.doi.org/10.1016/j.jpeds.2018.11.017] [PMID: 30528571]
[11]
Frost HM. Perspectives: A proposed general model of the “mechanostat” (suggestions from a new skeletal‐biologic paradigm). Anat Rec 1996; 244: 139-47.
[12]
Rauch F, Schöenau E. The developing bone: Slave or master of its cells and molecules? Pediatr Res 2001; 50: 309-14.
[http://dx.doi.org/10.1203/00006450-200109000-00003]
[13]
Kaijser M, Granath F, Jacobsen G, et al. Maternal pregnancy estriol levels in relation to anamnestic and fetal anthropometric data. Epidemiology 2000; 11(3): 315-9.
[14]
Beyers N, Alheit B, Taljaard JF, Hall JM, Hough SF. High turnover osteopenia in preterm babies. Bone 1994; 15(1): 5-13.
[http://dx.doi.org/10.1016/8756-3282(94)90884-2] [PMID: 8024851]
[15]
Beyers N, Esser M, Alheit B, Roodt M, Wiggs B, Hough SF. Static bone histomorphometry in preterm and term babies. Bone 1994; 15(1): 1-4.
[http://dx.doi.org/10.1016/8756-3282(94)90883-4] [PMID: 8024842]
[16]
Moyer-Mileur L, Luetkemeier M, Boomer L, Chan GM. Effect of physical activity on bone mineralization in premature infants. J Pediatr 1995; 127(4): 620-5.
[http://dx.doi.org/10.1016/S0022-3476(95)70127-3] [PMID: 7562289]
[17]
Torró-Ferrero G, Fernández-Rego FJ, Gómez-Conesa A. Physical therapy to prevent osteopenia in preterm infants: a systematic review. Children (Basel) 2021; 8(8): 664.
[http://dx.doi.org/10.3390/children8080664] [PMID: 34438555]
[18]
Bandara S, Kariyawasam A. AO-45. Incidence of osteopenia of prematurity in preterm infants who were exclusively fed breast milk. Early Hum Dev 2010; 86: S18.
[http://dx.doi.org/10.1016/j.earlhumdev.2010.09.053]
[19]
Chin LK, Doan J, Teoh YSL, Stewart A, Forrest P, Simm PJ. Outcomes of standardised approach to metabolic bone disease of prematuri-ty. J Paediatr Child Health 2018; 54(6): 665-70.
[http://dx.doi.org/10.1111/jpc.13813] [PMID: 29292538]
[20]
Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity—National survey of current neonatal and paediatric endocrine approaches. Acta Paediatr 2021; 110(6): 1855-62.
[http://dx.doi.org/10.1111/apa.15654] [PMID: 33145793]
[21]
Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term con-sequences. Arch Dis Child Fetal Neonatal Ed 2019; 104(5): F560-6.
[http://dx.doi.org/10.1136/archdischild-2018-316330] [PMID: 31079069]
[22]
Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology 1936; 26(2): 165-77.
[http://dx.doi.org/10.1148/26.2.165]
[23]
Rosendahl K, Lundestad A, Bjørlykke JA, et al. Revisiting the radiographic assessment of osteoporosis—Osteopenia in children 0-2 years of age. A systematic review. PLoS One 2020; 15(11): e0241635.
[http://dx.doi.org/10.1371/journal.pone.0241635] [PMID: 33137162]
[24]
Koo WW, Gupta JM, Nayanar VV, Wilkinson M, Posen S. Skeletal changes in preterm infants. Arch Dis Child 1982; 57(6): 447-52.
[http://dx.doi.org/10.1136/adc.57.6.447] [PMID: 6979978]
[25]
Tong L, Gopal-Kothandapani JS, Offiah AC. Feasibility of quantitative ultrasonography for the detection of metabolic bone disease in preterm infants — systematic review. Pediatr Radiol 2018; 48(11): 1537-49.
[http://dx.doi.org/10.1007/s00247-018-4161-5] [PMID: 29907939]
[26]
Abrams SA, Bhatia JJS, Abrams SA, et al. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013; 131(5): e1676-83.
[http://dx.doi.org/10.1542/peds.2013-0420] [PMID: 23629620]
[27]
Rayannavar A, Calabria AC. Screening for Metabolic Bone Disease of prematurity. Semin Fetal Neonatal Med 2020; 25(1): 101086.
[http://dx.doi.org/10.1016/j.siny.2020.101086] [PMID: 32081592]
[28]
Moreira A, February M, Geary C. Parathyroid hormone levels in neonates with suspected osteopenia. J Paediatr Child Health 2013; 49(1): E12-6.
[http://dx.doi.org/10.1111/jpc.12052] [PMID: 23293851]
[29]
Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the european society of pae-diatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 2010; 50(1): 85-91.
[http://dx.doi.org/10.1097/MPG.0b013e3181adaee0] [PMID: 19881390]
[30]
Arslanoglu S, Moro GE, Ziegler EE. Optimization of human milk fortification for preterm infants: New concepts and recommendations. J Perinat Med 2010; 38(3): 233-8.
[http://dx.doi.org/10.1515/jpm.2010.073] [PMID: 20184400]
[31]
American Academy of the Pediatric (AAP) Committee on Nutrition. Nutritional needs of the preterm infant. Pediatric Nutrition 7. Kleinman RE, Ed. IL, USA: AAP 2014; pp. 83-121.
[32]
Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Sup-ported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005; 41 (Suppl. 2): S1-S87.
[http://dx.doi.org/10.1097/01.mpg.0000181841.07090.f4] [PMID: 16254497]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy