Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Dehydrogenation of Cyclohexanones to Phenols: A Mini Review

Author(s): Yueying Du, Dezhang Ren*, Chenxin Huang, Yang Li, Nahui Zhang and Zhibao Huo*

Volume 20, Issue 7, 2023

Published on: 22 February, 2023

Page: [716 - 733] Pages: 18

DOI: 10.2174/1570179420666221221105735

Price: $65

Abstract

Background: Phenol and its derivatives are important intermediates in the chemical industry, especially the pharmaceutical and electronic industries. The synthesis of phenols has attracted the attention of scientists due to their importance. Dehydrogenation of cyclohexanones is one of the promising aromatization strategies for phenols manufacture because the raw materials are low cost and stable. In recent years, some efficient and green methods with the use of H2, O2 and air, alkene, H2 and O2-free are described.

Objective: This mini-review will summarize some recent developments relating to the dehydrogenation of cyclohexanones to phenols, along with their interesting mechanism aspects. The challenges and future trends of the transformation will be prospected.

Conclusion: The synthesis of phenols from the dehydrogenation of cyclohexanones has recently attracted much attention. Some synthetic methods have been established, and interesting mechanisms have been proposed in some cases. Lots of catalysts were developed for the transformation to afford the corresponding product. Although the present methods still have drawbacks and limitations, it is supposed that many novel methods would probably be developed in the near future.

Graphical Abstract

[1]
Straathof, A.J.J.; Bampouli, A. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices. Biofuels Bioprod. Biorefin., 2017, 11(5), 798-810.
[http://dx.doi.org/10.1002/bbb.1786]
[2]
Liu, Y.; Murata, K.; Inaba, M. Liquid-phase oxidation of benzene to phenol by molecular oxygen over transition metal substituted polyoxometalate compounds. Catal. Commun., 2005, 6(10), 679-683.
[http://dx.doi.org/10.1016/j.catcom.2005.06.015]
[3]
Molinari, R.; Poerio, T. Remarks on studies for direct production of phenol in conventional and membrane reactors. Asia-Pac. J. Chem. Eng., 2010, 5(1), 191-206.
[http://dx.doi.org/10.1002/apj.369]
[4]
Izawa, Y.; Pun, D.; Stahl, S.S. Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science, 2011, 333(6039), 209-213.
[http://dx.doi.org/10.1126/science.1204183] [PMID: 21659567]
[5]
Andersson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B, 2002, 106(41), 10674-10679.
[http://dx.doi.org/10.1021/jp025715y]
[6]
Jin, Y.; Cheng, X.; Zheng, Z. Preparation and characterization of phenol–formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour. Technol., 2010, 101(6), 2046-2048.
[http://dx.doi.org/10.1016/j.biortech.2009.09.085] [PMID: 19854642]
[7]
Liptáková, B.; Báhidský, M.; Hronec, M. Preparation of phenol from benzene by one-step reaction. Appl. Catal. A Gen., 2004, 263(1), 33-38.
[http://dx.doi.org/10.1016/j.apcata.2003.12.002]
[8]
Schmidt, K.; Grunwald, D.; Pasch, H. Preparation of phenol–urea–formaldehyde copolymer adhesives under heterogeneous catalysis. J. Appl. Polym. Sci., 2006, 102(3), 2946-2952.
[http://dx.doi.org/10.1002/app.24441]
[9]
Fardis, M.; Mertzman, M.; Thomas, W.; Kirschberg, T.; Collins, N.; Polniaszek, R.; Watkins, W.J. Use of benzofuran for concomitant protection of aldehyde and phenol groups in the preparation of mycophenolic acid analogues. J. Org. Chem., 2006, 71(13), 4835-4839.
[http://dx.doi.org/10.1021/jo0605389] [PMID: 16776510]
[10]
Wang, J.; Lin, Y.; Chen, L. Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products. Analyst, 1993, 118(3), 277-280.
[http://dx.doi.org/10.1039/an9931800277] [PMID: 8480909]
[11]
Zhang, L.; Dong, L.; Yang, X. Phenol production technology progress and market analysis. Technol. Econ. Petrochem., 2019, 35(5), 24-28.
[12]
He, Z.; Ji, Z. Production situation and market analysis of phenol at home and abroad. Fine Spec. Chem., 2005, 013(018), 23-26.
[13]
Han, J.W.; Jung, J.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chem. Sci., 2017, 8(10), 7119-7125.
[http://dx.doi.org/10.1039/C7SC02495A] [PMID: 29147542]
[14]
Molinari, R.; Poerio, T.; Argurio, P. One-step production of phenol by selective oxidation of benzene in a biphasic system. Catal. Today, 2006, 118(1-2), 52-56.
[http://dx.doi.org/10.1016/j.cattod.2005.11.089]
[15]
Schmidt, R.J. Industrial catalytic processes—phenol production. Appl. Catal. A Gen., 2005, 280(1), 89-103.
[http://dx.doi.org/10.1016/j.apcata.2004.08.030]
[16]
Niwa, S.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science, 2002, 295(5552), 105-107.
[http://dx.doi.org/10.1126/science.1066527] [PMID: 11778042]
[17]
Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev., 2018, 118(2), 614-678.
[http://dx.doi.org/10.1021/acs.chemrev.7b00588] [PMID: 29337543]
[18]
Song, Z.; Ren, D.; Wang, T.; Jin, F.; Jiang, Q.; Huo, Z. Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder. Catal. Today, 2016, 274, 94-98.
[http://dx.doi.org/10.1016/j.cattod.2015.11.016]
[19]
Li, X.; Jiang, H.; Hou, M.; Liu, Y.; Xing, W.; Chen, R. Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion. Chem. Eng. J., 2020, 386, 120744.
[http://dx.doi.org/10.1016/j.cej.2019.01.023]
[20]
Wu, R.; Meng, Q.; Yan, J.; Liu, H.; Zhu, Q.; Zheng, L.; Zhang, J.; Han, B. Electrochemical strategy for the simultaneous production of cyclohexanone and benzoquinone by the reaction of phenol and water. J. Am. Chem. Soc., 2022, 144(4), 1556-1571.
[http://dx.doi.org/10.1021/jacs.1c09021] [PMID: 35060721]
[21]
Xue, G.; Yin, L.; Shao, S.; Li, G. Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology, 2022, 33(7), 072003.
[http://dx.doi.org/10.1088/1361-6528/ac385f] [PMID: 34757948]
[22]
Deng, K.; Huang, H.; Deng, G.J. Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Org. Biomol. Chem., 2021, 19(29), 6380-6391.
[http://dx.doi.org/10.1039/D1OB00908G] [PMID: 34212968]
[23]
Bamfield, P.; Gordon, P.F. Aromatic benzene compounds from acyclic precursors. Chem. Soc. Rev., 1984, 13(4), 441-488.
[http://dx.doi.org/10.1039/cs9841300441]
[24]
Horning, E.C.; Horning, M.G. Aromatization studies. IV. Palladium dehydrogenation of arylcyclohexenones to phenols. J. Am. Chem. Soc., 1947, 69(6), 1359-1361.
[http://dx.doi.org/10.1021/ja01198a035]
[25]
Fu, P.P.; Harvey, R.G. Dehydrogenation of polycyclic hydroaromatic compounds. Chem. Rev., 1978, 78(4), 317-361.
[http://dx.doi.org/10.1021/cr60314a001]
[26]
Schuda, P.F.; Price, W.A. Total synthesis of isoflavones: Jamaicin, calopogonium isoflavone-B, pseudobaptigenin, and maxima substance-B. Friedel-Crafts acylation reactions with acid-sensitive substrates. J. Org. Chem., 1987, 52(10), 1972-1979.
[http://dx.doi.org/10.1021/jo00386a014]
[27]
Muzart, J.; Pete, J.P. Dehydrogenation of cyclohexanones catalyzed by palladium(II) trifluoroacetate. J. Mol. Catal., 1982, 15(3), 373-376.
[http://dx.doi.org/10.1016/0304-5102(82)80029-1]
[28]
Swift, H.; Bozik, J.E. Metallic phases and activities of nickel-tin-silica catalysts: Dehydrogenation of cyclohexanone, cyclohexanol, and cyclohexane. J. Catal., 1968, 12(1), 5-14.
[http://dx.doi.org/10.1016/0021-9517(68)90067-5]
[29]
Masai, M.; Mori, K.; Muramoto, H.; Fujiwara, T.; Ohnaka, S. Dehydrogenation activity of nickel-tin-silica catalyst. J. Catal., 1975, 38(1-3), 128-134.
[http://dx.doi.org/10.1016/0021-9517(75)90070-6]
[30]
Hales, N.J.; Heaney, H.; Hollinshead, J.H.; Ley, S.V. The synthesis and assay of radiolabelled benzene derivatives. Tetrahedron, 1995, 51(28), 7741-7754.
[http://dx.doi.org/10.1016/0040-4020(95)00394-N]
[31]
Paál, Z.; Péter, A.; Tétényi, P. Radiotracer investigation of transformations of cyclohexanol in the presence of a nickel powder catalyst. Z. Phys. Chem, 1974, 91(1-4), 54-66.
[http://dx.doi.org/10.1524/zpch.1974.91.1-4.054]
[32]
Paál, Z.; Péter, A.; Tétényi, P. Dehydrogenation of cyclohexanol in the presence of different metal catalysts. React. Kinet. Catal. Lett., 1974, 1(2), 121-124.
[http://dx.doi.org/10.1007/BF02067528]
[33]
Kamiguchi, S.; Nishida, S.; Kodomari, M.; Chihara, T. Catalytic hydrodehydration of cyclohexanone, hydrogenation of 2-cyclohexen-1-one, and dehydrogenation of cyclohexene over a Mo chloride cluster with an octahedral metal framework. J. Cluster Sci., 2005, 16(1), 77-91.
[http://dx.doi.org/10.1007/s10876-005-2717-7]
[34]
Chihara, T.; Kamiguchi, S.; Yasumi, K. Method for reaction of cyclic ketone using metal cluter catalyst. Patent: JP2004091447(A), 2004.
[35]
Xu, T.; Gamble, G.H.; Dakka, J.M.; Decaul, L.C. Process for production phenol. patent: WO2012050665 (A1), 2012.
[36]
Stefan, K.; Peter, L.; Gerd, R. Catalyst with bimodal distribution of the particles of the catalytically active material, process for its production and its regeneration and use of the catalyst. patent: DE102005034004(A1), 2007.
[37]
Cai, C.; Lv, C.X. Process for synthesizing orthophenylphenol from cyclohexanone. patent: CN1371897(A), 2002.
[38]
Nimmanwudipong, T.; Runnebaum, R.C.; Tay, K.; Block, D.E.; Gates, B.C. Cyclohexanone conversion catalyzed by Pt/γ;-Al2O3: Evidence of oxygen removal and coupling reactions. Catal. Lett., 2011, 141(8), 1072-1078.
[http://dx.doi.org/10.1007/s10562-011-0659-2]
[39]
Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B.C.; Rahimpour, M.R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci., 2014, 7(1), 103-129.
[http://dx.doi.org/10.1039/C3EE43081B]
[40]
Kamiguchi, S.; Nagashima, S.; Chihara, T. Catalytic hydrogenation and dehydrogenation over solid-state rhenium sulfide clusters with an octahedral metal framework. Chem. Lett., 2007, 36(11), 1340-1341.
[http://dx.doi.org/10.1246/cl.2007.1340]
[41]
Zhang, J.; Jiang, Q.; Yang, D.; Zhao, X.; Dong, Y.; Liu, R. Reaction-activated palladium catalyst for dehydrogenation of substituted cyclohexanones to phenols and H 2 without oxidants and hydrogen acceptors. Chem. Sci., 2015, 6(8), 4674-4680.
[http://dx.doi.org/10.1039/C5SC01044F] [PMID: 29142706]
[42]
Runnebaum, R.C.; Nimmanwudipong, T.; Block, D.E.; Gates, B.C. Catalytic conversion of compounds representative of lignin-derived bio-oils: A reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ;-Al 2 O 3. Catal. Sci. Technol., 2012, 2(1), 113-118.
[http://dx.doi.org/10.1039/C1CY00169H]
[43]
Saidi, M.; Rostami, P.; Rahimpour, M.R.; Gates, B.C.; Raeissi, S. Upgrading of lignin-derived bio-oil components catalyzed by Pt/γ;-Al2O3: Kinetics and reaction pathways characterizing conversion of cyclohexanone with H2. Energy Fuels, 2015, 29(1), 191-199.
[http://dx.doi.org/10.1021/ef501890a]
[44]
Saidi, M.; Jahangiri, A. Refinery approach of bio-oils derived from fast pyrolysis of lignin to jet fuel range hydrocarbons: Reaction network development for catalytic conversion of cyclohexanone. Chem. Eng. Res. Des., 2017, 121, 393-406.
[http://dx.doi.org/10.1016/j.cherd.2017.03.029]
[45]
Zeng, C.Y.; Zhang, Y.H.; Qian, J.L.; You, B.G. Enyl phenol refining plant and method thereof. patent: CN101538192(A), 2009.
[46]
Moriuchi, T.; Kikushima, K.; Kajikawa, T.; Hirao, T. Vanadium-catalyzed oxidative aromatization of 2-cyclohexenones under molecular oxygen. Tetrahedron Lett., 2009, 50(52), 7385-7387.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.070]
[47]
Muzart, J. One-pot syntheses of αβ-unsaturated carbonyl compounds through palladium-mediated dehydrogenation of ketones, aldehydes, esters, lactones and amides. Eur. J. Org. Chem., 2010, 2010(20), 3779-3790.
[http://dx.doi.org/10.1002/ejoc.201000278]
[48]
Tokunaga, M.; Harada, S.; Iwasawa, T.; Obora, Y.; Tsuji, Y. Palladium-catalyzed oxidation of cyclohexanones to conjugated enones using molecular oxygen. Tetrahedron Lett., 2007, 48(39), 6860-6862.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.181]
[49]
Diao, T.; Wadzinski, T.J.; Stahl, S.S. Direct aerobic αβ-dehydrogenation of aldehydes and ketones with a Pd(TFA)2/4,5-diazafluorenone catalyst. Chem. Sci., 2012, 3(3), 887-891.
[http://dx.doi.org/10.1039/C1SC00724F] [PMID: 22690316]
[50]
Wenzel, T.T. Cationic palladium nitro complexes as catalysts for the oxygen-based oxidation of alkenes to ketones, and for the oxydehydrogenation of ketones and aldehydes to the α β-unsaturated analogues. J. Chem. Soc. Chem. Commun., 1989, (14), 932-933.
[http://dx.doi.org/10.1039/C39890000932]
[51]
Pun, D.; Diao, T.; Stahl, S.S. Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: Evidence for the role of Pd nanoparticles. J. Am. Chem. Soc., 2013, 135(22), 8213-8221.
[http://dx.doi.org/10.1021/ja403165u] [PMID: 23662607]
[52]
Popp, B.V.; Stahl, S.S. Insertion of molecular oxygen into a palladium-hydride bond: Computational evidence for two nearly isoenergetic pathways. J. Am. Chem. Soc., 2007, 129(14), 4410-4422.
[http://dx.doi.org/10.1021/ja069037v] [PMID: 17371024]
[53]
Konnick, M.M.; Stahl, S.S. Reaction of molecular oxygen with a Pd(II)-hydride to produce a Pd(II)-hydroperoxide: Experimental evidence for an HX-reductive-elimination pathway. J. Am. Chem. Soc., 2008, 130(17), 5753-5762.
[http://dx.doi.org/10.1021/ja7112504] [PMID: 18393426]
[54]
Popp, B.V.; Stahl, S.S. Mechanism of Pd(OAc)2/pyridine catalyst reoxidation by O2: Influence of labile monodentate ligands and identification of a biomimetic mechanism for O2 activation. Chemistry, 2009, 15(12), 2915-2922.
[http://dx.doi.org/10.1002/chem.200802311] [PMID: 19191243]
[55]
Decharin, N.; Popp, B.V.; Stahl, S.S. Reaction of O2 with [(-)-sparteine]Pd(H)Cl: Evidence for an intramolecular [H-L]+ “reductive elimination” pathway. J. Am. Chem. Soc., 2011, 133(34), 13268-13271.
[http://dx.doi.org/10.1021/ja204989p] [PMID: 21790197]
[56]
Konnick, M.M.; Decharin, N.; Popp, B.V.; Stahl, S.S. O2 insertion into a palladium (II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways. Chem. Sci., 2011, 2(2), 326-330.
[http://dx.doi.org/10.1039/C0SC00392A]
[57]
Zhang, Z.; Hashiguchi, T.; Ishida, T.; Hamasaki, A.; Honma, T.; Ohashi, H.; Yokoyama, T.; Tokunaga, M. Aerobic oxidation of cyclohexanones to phenols and aryl ethers over supported Pd catalysts. Org. Chem. Front., 2015, 2(6), 654-660.
[http://dx.doi.org/10.1039/C4QO00354C]
[58]
Simon, M.O.; Girard, S.A.; Li, C.J. Catalytic aerobic synthesis of aromatic ethers from non-aromatic precursors. Angew. Chem. Int. Ed., 2012, 51(30), 7537-7540.
[http://dx.doi.org/10.1002/anie.201200698] [PMID: 22700524]
[59]
Girard, S.A.; Hu, X.; Knauber, T.; Zhou, F.; Simon, M.O.; Deng, G.J.; Li, C.J. Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. Org. Lett., 2012, 14(21), 5606-5609.
[http://dx.doi.org/10.1021/ol3027279] [PMID: 23067013]
[60]
Qiu, Z.; Zeng, H.; Li, C.J. Coupling without coupling reactions: En route to developing phenols as sustainable coupling partners via dearomatization-rearomatization processes. Acc. Chem. Res., 2020, 53(10), 2395-2413.
[http://dx.doi.org/10.1021/acs.accounts.0c00479] [PMID: 32941014]
[61]
Shah, M.; Zhang, F.; Ahmad, A. Catalytic conversion of substituted and un-substituted cyclohexanone into corresponding enones and phenols by nanocatalysts under acid or base-free reaction conditions. Appl. Catal. A Gen., 2017, 531, 161-168.
[http://dx.doi.org/10.1016/j.apcata.2016.10.031]
[62]
Shah, M.; Guo, Q.X.; Fu, Y. Aerobic dehydrogenation of cyclic ketones into corresponding phenols catalyzed by heterogeneous Pd nanocatalysts. Catal. Commun., 2017, 89, 60-63.
[http://dx.doi.org/10.1016/j.catcom.2016.10.019]
[63]
Xiao, J.; Huo, Z.; Ren, D.; Zhang, S.; Luo, J.; Yao, G.; Jin, F. A novel approach for 1,2-propylene glycol production from biomass-derived lactic acid. Process Biochem., 2015, 50(5), 793-798.
[http://dx.doi.org/10.1016/j.procbio.2015.02.004]
[64]
Zhang, S.; Huo, Z.; Ren, D.; Luo, J.; Fu, J.; Li, L.; Jin, F. Catalytic conversion of ethyl lactate to 1,2-propanediol over CuO. Chin. J. Chem. Eng., 2016, 24(1), 126-131.
[http://dx.doi.org/10.1016/j.cjche.2015.06.006]
[65]
Song, Z.; Ren, D.; Fu, J.; Liu, Y.; Wang, T.; Jin, F.; Huo, Z. Selective phenol production by hydrothermal dehydrogenation of cyclohexanone over Pd/C without external oxygen and hydrogen. Chem. Select, 2016, 1(11), 2778-2782.
[http://dx.doi.org/10.1002/slct.201600527]
[66]
Miyagawa, A.; Nakagawa, Y.; Tamura, M.; Tomishige, K. Demethoxylation of hydrogenated derivatives of guaiacol without external hydrogen over platinum catalyst. Mole. Cataly., 2019, 471, 60-70.
[http://dx.doi.org/10.1016/j.mcat.2019.03.019]
[67]
Xu, L.; Huo, Z.; Fu, J.; Jin, F. Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water. Chem. Commun., 2014, 50(45), 6009-6012.
[http://dx.doi.org/10.1039/C3CC49439J] [PMID: 24769741]
[68]
Li, W.; Fan, G.; Yang, L.; Li, F. Highly efficient synchronized production of phenol and 2,5-dimethylfuran through a bimetallic Ni–Cu catalyzed dehydrogenation–hydrogenation coupling process without any external hydrogen and oxygen supply. Green Chem., 2017, 19(18), 4353-4363.
[http://dx.doi.org/10.1039/C7GC01387F]
[69]
Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev., 2002, 102(8), 2725-2750.
[http://dx.doi.org/10.1021/cr000668w] [PMID: 12175266]
[70]
Helling, R.K.; Tester, J.W. Oxidation kinetics of carbon monoxide in supercritical water. Energy Fuels, 1987, 1(5), 417-423.
[http://dx.doi.org/10.1021/ef00005a008]
[71]
Webley, P.A.; Tester, J.W. Fundamental kinetics of methane oxidation in supercritical water. Energy Fuels, 1991, 5(3), 411-419.
[http://dx.doi.org/10.1021/ef00027a009]
[72]
Agrawal, S.; Mantri, K.; Sharma, V.; Jasra, R.V.; Munshi, P. Catalytic dehydrogenation of cyclohexanone to phenol over the Ru, Rh, Pd and Pt surfaces in sub-critical water. Catal. Lett., 2022, 152.
[http://dx.doi.org/10.1007/s10562-021-03789-0.]
[73]
Yi, C.S.; Lee, D.W. Efficient dehydrogenation of amines and carbonyl compounds catalyzed by a tetranuclear ruthenium-µ-oxo-µ-hydroxo-hydride complex. Organometallics, 2009, 28(4), 947-949.
[http://dx.doi.org/10.1021/om8010883] [PMID: 20119477]
[74]
El-Deeb, I.Y.; Tian, M.; Funakoshi, T.; Matsubara, R.; Hayashi, M. Conversion of cyclohexanones to alkyl aryl ethers by using a Pd/C-ethylene system. Eur. J. Org. Chem., 2017, 2017(2), 409-413.
[http://dx.doi.org/10.1002/ejoc.201601362]
[75]
Chitwood, H.C.; Fitzpatrick, J.T.; Fowler, G.W.; Freure, B.T. Phenols by Dehydrogenation. Ind. Eng. Chem., 1952, 44(7), 1696-1698.
[http://dx.doi.org/10.1021/ie50511a057]
[76]
Jin, X.; Taniguchi, K.; Yamaguchi, K.; Mizuno, N. Au–Pd alloy nanoparticles supported on layered double hydroxide for heterogeneously catalyzed aerobic oxidative dehydrogenation of cyclohexanols and cyclohexanones to phenols. Chem. Sci., 2016, 7(8), 5371-5383.
[http://dx.doi.org/10.1039/C6SC00874G] [PMID: 30155190]
[77]
Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem., 2013, 15(10), 2636-2654.
[http://dx.doi.org/10.1039/c3gc41360h]
[78]
Wang, J.; Kondrat, S.A.; Wang, Y.; Brett, G.L.; Giles, C.; Bartley, J.K.; Lu, L.; Liu, Q.; Kiely, C.J.; Hutchings, G.J. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal., 2015, 5(6), 3575-3587.
[http://dx.doi.org/10.1021/acscatal.5b00480]
[79]
Liu, X.; Li, H.Q.; Ye, S.; Liu, Y.M.; He, H.Y.; Cao, Y. Gold-catalyzed direct hydrogenative coupling of nitroarenes to synthesize aromatic azo compounds. Angew. Chem. Int. Ed., 2014, 53(29), 7624-7628.
[http://dx.doi.org/10.1002/anie.201404543] [PMID: 24909452]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy