Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

DNA Vaccines to Improve Immunogenicity and Effectiveness in Cancer Vaccinations: Advancement and Developments

Author(s): Arun Kumar Singh and Rishabha Malviya*

Volume 23, Issue 3, 2023

Published on: 20 January, 2023

Page: [170 - 183] Pages: 14

DOI: 10.2174/1566523223666221219094849

Price: $65

Abstract

DNA vaccine is a creative and promising method for cancer treatment. As part of cancer immunotherapy, one or more antigen-specific immune responses are triggered or strengthened using DNA vaccines for cancer immunotherapy, which convey one or more genes encoded by tumour antigens to the immune system. Vaccine efficacy may be greatly increased by new delivery routes, the incorporation of molecular active ingredients and immunomodulatory signals, the modification of prime-boost protocols, or the inhibition of immunological checkpoints. It is possible to overcome the self-tolerance of many tumour antigens by using a mix of adaptive immune system and vaccine design strategies to generate protective adaptive immune responses. Both preventative and therapeutic vaccinations are being developed using this technology in several clinical investigations on DNA cancer immunotherapy. This study examines the immunogenicity and efficacy of DNA vaccines for immunotherapy.

Graphical Abstract

[1]
Abdulhaqq SA, Weiner DB. DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 2008; 42(1-3): 219-32.
[http://dx.doi.org/10.1007/s12026-008-8076-3] [PMID: 19066740]
[2]
Aggarwal P, Kumar S, Vajpayee M, Seth P. Adjuvant action of murine IL-2/Ig plasmid after intramuscular immunization with Indian HIV-1 subtype C recombinant env.gp 120 construct. Viral Immunol 2005; 18(4): 649-56.
[http://dx.doi.org/10.1089/vim.2005.18.649] [PMID: 16359231]
[3]
Ahmad S, Casey G, Sweeney P, Tangney M, O’Sullivan GC. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer. Genet Vaccines Ther 2010; 8(1): 1.
[http://dx.doi.org/10.1186/1479-0556-8-1] [PMID: 20181099]
[4]
Al-Deen FN, Selomulya C, Ma C, Coppel RL. Superparamagnetic nanoparticle delivery of DNA vaccine. Methods Mol Biol 2014; 1143: 181-94.
[http://dx.doi.org/10.1007/978-1-4939-0410-5_12] [PMID: 24715289]
[5]
Amato RJ. Heat-shock protein–peptide complex-96 for the treatment of cancer. Expert Opin Biol Ther 2007; 7(8): 1267-73.
[http://dx.doi.org/10.1517/14712598.7.8.1267] [PMID: 17696824]
[6]
Aravindaram K, Yang NS. Gene gun delivery systems for cancer vaccine approaches. Methods Mol Biol 2009; 542: 167-78.
[http://dx.doi.org/10.1007/978-1-59745-561-9_9] [PMID: 19565902]
[7]
Aravindaram K, Yu H-H, Lan C-W, et al. Transgenic expression of human gp100 and RANTES at specific time points for suppression of melanoma. Gene Ther 2009; 16(11): 1329-39.
[http://dx.doi.org/10.1038/gt.2009.90] [PMID: 19626052]
[8]
Arlen PM, Pazdur M, Skarupa L, Rauckhorst M, Gulley JL. A randomized phase II study of docetaxel alone or in combination with PANVAC-V (vaccinia) and PANVAC-F (fowlpox) in patients with metastatic breast cancer (NCI 05-C-0229). Clin Breast Cancer 2006; 7(2): 176-9.
[http://dx.doi.org/10.3816/CBC.2006.n.032] [PMID: 16800982]
[9]
Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther 2012; 12(8): 1043-58.
[http://dx.doi.org/10.1517/14712598.2012.689279] [PMID: 22577875]
[10]
Aurisicchio L, Peruzzi D, Koo G, Wei WZ, La Monica N, Ciliberto G. Immunogenicity and therapeutic efficacy of a dual-component genetic cancer vaccine cotargeting carcinoembryonic antigen and HER2/neu in preclinical models. Hum Gene Ther 2014; 25(2): 121-31.
[http://dx.doi.org/10.1089/hum.2013.103] [PMID: 24195644]
[11]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[12]
Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol, 35(2):88-93. Baxevanis, C.N., Voutsas, I.F., Gritzapis, A.D., Perez, S.A., Papamichail, M. (2010). HER-2/neu as a target for cancer vaccines. Immunotherapy 2014; 2(2): 213-26.
[13]
Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother 2010; 33(6): 639-47.
[http://dx.doi.org/10.1097/CJI.0b013e3181dda23e] [PMID: 20551832]
[14]
Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, Hardt SE. Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology 2007; 69(2): 386-9.
[http://dx.doi.org/10.1016/j.urology.2006.12.004] [PMID: 17320694]
[15]
Berger E, Soldati R, Huebener N, et al. Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma. Cancer Lett 2013; 331(2): 167-73.
[http://dx.doi.org/10.1016/j.canlet.2012.12.026] [PMID: 23337288]
[16]
Bernstein HG, Smalla KH, Bogerts B, et al. The immunolocalization of the synaptic glycoprotein neuroplastin differs substantially between the human and the rodent brain. Brain Res 2007; 1134(1): 107-12.
[http://dx.doi.org/10.1016/j.brainres.2006.11.090] [PMID: 17196182]
[17]
Bharat A, Benshoff N, Fleming TP, Dietz JR, Gillanders WE, Mohanakumar T. Characterization of the role of CD8+T cells in breast cancer immunity following mammaglobin-A DNA vaccination using HLA-class-I tetramers. Breast Cancer Res Treat 2008; 110(3): 453-63.
[http://dx.doi.org/10.1007/s10549-007-9741-2] [PMID: 17874294]
[18]
Bloy N, Buqué A, Aranda F, et al. Trial watch: Naked and vectored DNA-based anticancer vaccines. OncoImmunology 2015; 4(5): e1026531.
[http://dx.doi.org/10.1080/2162402X.2015.1026531] [PMID: 26155408]
[19]
Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011; 10(4): 499-511.
[http://dx.doi.org/10.1586/erv.10.174] [PMID: 21506647]
[20]
Bot A. DNA vaccination and the immune responsiveness of neonates. Int Rev Immunol 2000; 19(2-3): 221-45.
[http://dx.doi.org/10.3109/08830180009088506] [PMID: 10763710]
[21]
Bot A, Qiu Z, Wong R, Obrocea M, Smith KA. Programmed cell death-1 (PD-1) at the heart of heterologous prime-boost vaccines and regulation of CD8+ T cell immunity. J Transl Med 2010; 8(1): 132.
[http://dx.doi.org/10.1186/1479-5876-8-132] [PMID: 21144062]
[22]
Bråve A, Hallengärd D, Gudmundsdotter L, et al. Late administration of plasmid DNA by intradermal electroporation efficiently boosts DNA-primed T and B cell responses to carcinoembryonic antigen. Vaccine 2009; 27(28): 3692-6.
[http://dx.doi.org/10.1016/j.vaccine.2009.04.013] [PMID: 19428161]
[23]
Brode S, Macary PA. Cross-presentation: dendritic cells and macrophages bite off more than they can chew! Immunology 2004; 112(3): 345-51.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01920.x] [PMID: 15196201]
[24]
Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta 2010; 1805(1): 25-34.
[PMID: 19782720]
[25]
Bureau MF, Naimi S, Torero Ibad R, et al. Intramuscular plasmid DNA electrotransfer. Biochim Biophys Acta Gene Struct Expr 2004; 1676(2): 138-48.
[http://dx.doi.org/10.1016/j.bbaexp.2003.11.005] [PMID: 14746908]
[26]
Butterfield LH, Economou JS, Gamblin T, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med 2014; 12(1): 86.
[http://dx.doi.org/10.1186/1479-5876-12-86] [PMID: 24708667]
[27]
Caballero OL, Chen YT. Cancer/testis (CT) antigens: Potential targets for immunotherapy. Cancer Sci 2009; 100(11): 2014-21.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01303.x] [PMID: 19719775]
[28]
Calvet CY, André FM, Mir LM. Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo. OncoImmunology 2014; 3(4): e28540.
[http://dx.doi.org/10.4161/onci.28540] [PMID: 25050220]
[29]
Cambridge CD, Singh SR, Waffo AB, Fairley SJ, Dennis VA. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine 2013; 8: 1759-71.
[PMID: 23690681]
[30]
Cassaday RD, Sondel PM, King DM, et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res 2007; 13(2): 540-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2039] [PMID: 17255276]
[31]
Castaldello A, Sgarbanti M, Marsili G, et al. Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination. J Cell Physiol 2010; 224(3): 702-9.
[http://dx.doi.org/10.1002/jcp.22169] [PMID: 20432465]
[32]
Castro F, Leal B, Denny A, et al. Vaccination with Mage-b DNA induces CD8 T-cell responses at young but not old age in mice with metastatic breast cancer. Br J Cancer 2009; 101(8): 1329-37.
[http://dx.doi.org/10.1038/sj.bjc.6605329] [PMID: 19826426]
[33]
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14(10): 1427-42.
[http://dx.doi.org/10.1517/14712598.2014.927433] [PMID: 25023219]
[34]
Chakrabarti R, Zhou ZF, Chang Y, Prud’homme GJ. A mutant B7-1/Ig fusion protein that selectively binds to CTLA-4 ameliorates anti-tumor DNA vaccination and counters regulatory T cell activity. Vaccine 2005; 23(37): 4553-64.
[http://dx.doi.org/10.1016/j.vaccine.2005.05.002] [PMID: 15919138]
[35]
Chang SY, Lee KC, Ko SY, Ko HJ, Kang CY. Enhanced efficacy of DNA vaccination against Her-2/neu tumor antigen by genetic adjuvants. Int J Cancer 2004; 111(1): 86-95.
[http://dx.doi.org/10.1002/ijc.20232] [PMID: 15185348]
[36]
Chattergoon MA, Kim JJ, Yang JS, et al. Targeted antigen delivery to antigen–presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 2000; 18(9): 974-9.
[http://dx.doi.org/10.1038/79470] [PMID: 10973219]
[37]
Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15(17): 5323-37.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0737] [PMID: 19723653]
[38]
Chen HM, Wang PH, Aravindaram K, et al. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES. J Biomed Sci 2012; 19(1): 42.
[http://dx.doi.org/10.1186/1423-0127-19-42] [PMID: 22494696]
[39]
Chen C-A, Chang M-C, Sun W-Z, et al. Noncarrier naked antigen-specific DNA vaccine generates potent antigen-specific immunologic responses and antitumor effects. Gene Ther 2009; 16(6): 776-87.
[http://dx.doi.org/10.1038/gt.2009.31] [PMID: 19357714]
[40]
Chlichlia K, Schirrmacher V, Sandaltzopoulos R. Cancer Immunotherapy: Battling tumors with gene vaccines. Curr Med Chem Anti Inflamm Anti Allergy Agents 2005; 4(4): 353-65.
[http://dx.doi.org/10.2174/1568014054546290]
[41]
Climent N, Munier S, Piqué N, et al. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses. Vaccine 2014; 32(47): 6266-76.
[http://dx.doi.org/10.1016/j.vaccine.2014.09.010] [PMID: 25240755]
[42]
Coban C, Kobiyama K, Aoshi T, et al. Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 2011; 11(6): 479-84.
[http://dx.doi.org/10.2174/156652311798192815] [PMID: 22023477]
[43]
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14(2): 135-46.
[http://dx.doi.org/10.1038/nrc3670] [PMID: 24457417]
[44]
Criscitiello C, Curigliano G. Immunotherapeutics for breast cancer. Curr Opin Oncol 2013; 25(6): 602-8.
[http://dx.doi.org/10.1097/CCO.0000000000000020] [PMID: 24076578]
[45]
Curcio C, Khan AS, Amici A, et al. DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther 2008; 15(2): 108-14.
[http://dx.doi.org/10.1038/sj.cgt.7701106] [PMID: 17992201]
[46]
Dai MS, Vassaux G, Xu M, et al. Early Treg suppression by a listeriolysin-O-expressing E. coli vaccine in heterologous prime–boost vaccination against cancer. Vaccine 2012; 30(48): 6903-11.
[http://dx.doi.org/10.1016/j.vaccine.2012.09.001] [PMID: 22982404]
[47]
De Filette M, Soehle S, Ulbert S, et al. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. PLoS One 2014; 9(2): e87837.
[http://dx.doi.org/10.1371/journal.pone.0087837] [PMID: 24503579]
[48]
Dean DA, Strong DD, Zimmer WE. Nuclear entry of nonviral vectors. Gene Ther 2005; 12(11): 881-90.
[http://dx.doi.org/10.1038/sj.gt.3302534] [PMID: 15908994]
[49]
DeMuth PC, Min Y, Huang B, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 2013; 12(4): 367-76.
[http://dx.doi.org/10.1038/nmat3550] [PMID: 23353628]
[50]
Diaz CM, Chiappori A, Aurisicchio L, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 2013; 11(1): 62.
[http://dx.doi.org/10.1186/1479-5876-11-62] [PMID: 23497415]
[51]
Dupuis M, Denis-Mize K, Woo C, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165(5): 2850-8.
[http://dx.doi.org/10.4049/jimmunol.165.5.2850] [PMID: 10946318]
[52]
El Bissati K, Zhou Y, Dasgupta D, et al. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine 2014; 32(26): 3243-8.
[http://dx.doi.org/10.1016/j.vaccine.2014.03.092] [PMID: 24736000]
[53]
Elsabahy M, Foldvari M. Needle-free gene delivery through the skin: an overview of recent strategies. Curr Pharm Des 2013; 19(41): 7301-15.
[http://dx.doi.org/10.2174/13816128113199990369] [PMID: 23489207]
[54]
Erikçi E, Gursel M. Gürsel İ. Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials 2011; 32(6): 1715-23.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.054] [PMID: 21112627]
[55]
Eriksson F. Tِötterman T, Maltais AK, Pisa P, Yachnin J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013; 31(37): 3843-8.
[http://dx.doi.org/10.1016/j.vaccine.2013.06.063] [PMID: 23831327]
[56]
Fang J, Lu Y, Ouyang K, et al. Specific antibodies elicited by a novel DNA vaccine targeting gastrin-releasing peptide inhibit murine melanoma growth in vivo. Clin Vaccine Immunol 2009; 16(7): 1033-9.
[http://dx.doi.org/10.1128/CVI.00046-09] [PMID: 19458203]
[57]
Farzanehpour M, Soleimanjahi H, Hassan ZM, Amanzadeh A, Ghaemi A, Fazeli M. HSP70 modified response against HPV based tumor. Eur Rev Med Pharmacol Sci 2013; 17(2): 228-34.
[PMID: 23377813]
[58]
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010; 28(23): 3888-95.
[http://dx.doi.org/10.1016/j.vaccine.2010.03.040] [PMID: 20371391]
[59]
Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8(4): e61135.
[http://dx.doi.org/10.1371/journal.pone.0061135] [PMID: 23637790]
[60]
Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5(1): 25-44.
[http://dx.doi.org/10.1517/17425247.5.1.25] [PMID: 18095927]
[61]
Ferraro B, Cisper NJ, Talbott KT, et al. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses Hum Vaccin 2011; 7((sup1)(Suppl.)): 120-7.
[http://dx.doi.org/10.4161/hv.7.0.14574] [PMID: 21266849]
[62]
Ferrone CR, Perales MA, Goldberg SM, et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res 2006; 12(18): 5511-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0979] [PMID: 17000687]
[63]
Fest S, Huebener N, Bleeke M, et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer 2009; 125(1): 104-14.
[http://dx.doi.org/10.1002/ijc.24291] [PMID: 19291796]
[64]
Finn OJ. Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunol Res 2014; 2(8): 708-13.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0110] [PMID: 25092812]
[65]
Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Patents Anticancer Drug Discov 2013; 9(1): 66-82.
[http://dx.doi.org/10.2174/1574891X113089990037] [PMID: 23444943]
[66]
Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010: 1-16.
[http://dx.doi.org/10.1155/2010/174378] [PMID: 20368780]
[67]
Flacher V, Sparber F, Tripp CH, Romani N, Stoitzner P. Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy. Cancer Immunol Immunother 2009; 58(7): 1137-47.
[http://dx.doi.org/10.1007/s00262-008-0563-9] [PMID: 18677477]
[68]
Fló J, Tisminetzky S, Baralle F. Modulation of the immune response to DNA vaccine by co-delivery ofcostimulatory molecules. Immunology 2000; 100(2): 259-67.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00041.x] [PMID: 10886404]
[69]
Förg P, von Hoegen P, Dalemans W, Schirrmacher V. Superiority of the ear pinna over muscle tissue as site for DNA vaccination. Gene Ther 1998; 5(6): 789-97.
[http://dx.doi.org/10.1038/sj.gt.3300628] [PMID: 9747459]
[70]
Fu C, Lin L, Shi H, et al. Hydrophobic poly (amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. Biomaterials 2012; 33(18): 4589-96.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.057] [PMID: 22445251]
[71]
Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006; 40(1): 86-97.
[http://dx.doi.org/10.1016/j.ymeth.2006.05.022] [PMID: 16997717]
[72]
Furugaki K, Cui L, Kunisawa Y, et al. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS One 2014; 9(7): e101854.
[http://dx.doi.org/10.1371/journal.pone.0101854] [PMID: 25013909]
[73]
Gabai VL, Shifrin VI. Feasibility analysis of p62 (SQSTM1)-encoding DNA vaccine as a novel cancer immunotherapy. Int Rev Immunol 2014; 33(5): 375-82.
[http://dx.doi.org/10.3109/08830185.2014.954699] [PMID: 25277339]
[74]
Gamazo C, Bussmann H, Giemsa S, et al. Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties. Int J Pharm 2015; 496(2): 922-30.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.030] [PMID: 26468037]
[75]
Gan N, Jia L, Zheng L. A sandwich electrochemical immunosensor using magnetic DNA nanoprobes for carcinoembryonic antigen. Int J Mol Sci 2011; 12(11): 7410-23.
[http://dx.doi.org/10.3390/ijms12117410] [PMID: 22174606]
[76]
Gardlik R, Fruehauf JH. Bacterial vectors and delivery systems in cancer therapy. IDrugs 2010; 13(10): 701-6.
[PMID: 20878592]
[77]
Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res 2008; 14(11): 3536-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4025] [PMID: 18519787]
[78]
Geng H, Zhang GM, Xiao H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006; 118(11): 2657-64.
[http://dx.doi.org/10.1002/ijc.21795] [PMID: 16425224]
[79]
Ginsberg BA, Gallardo HF, Rasalan TS, et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res 2010; 16(15): 4057-65.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1093] [PMID: 20647477]
[80]
Gomez DE. Vلzquez AM, Alonso DF. Cancer antigen prioritization: a road map to work in defining vaccines against specific targets. A point of view. Front Oncol 2012; 2: 66.
[http://dx.doi.org/10.3389/fonc.2012.00066] [PMID: 22754871]
[81]
Su B, Wang J, Zhao G, Wang XJ, Li J, Wang B. Sequential administration of cytokine genes to enhance cellular immune responses and CD4 + T memory cells during DNA vaccination. Hum Vaccin Immunother 2012; 8(11): 1659-67.
[http://dx.doi.org/10.4161/hv.22105] [PMID: 23151452]
[82]
Gravekamp C, Leal B, Denny A, et al. In vivo responses to vaccination with Mage-b, GM-CSF and thioglycollate in a highly metastatic mouse breast tumor model, 4T1. Cancer Immunol Immunother 2008; 57(7): 1067-77.
[http://dx.doi.org/10.1007/s00262-007-0438-5] [PMID: 18094967]
[83]
Grosenbaugh DA, Leard AT, Bergman PJ, et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res 2011; 72(12): 1631-8.
[http://dx.doi.org/10.2460/ajvr.72.12.1631] [PMID: 22126691]
[84]
Gulley JL, Arlen PM, Tsang KY, et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 2008; 14(10): 3060-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0126] [PMID: 18483372]
[85]
Gupta S, Termini JM, Kanagavelu S, Stone GW. Design of vaccine adjuvants incorporating TNF superfamily ligands and TNF superfamily molecular mimics. Immunol Res 2013; 57(1-3): 303-10.
[http://dx.doi.org/10.1007/s12026-013-8443-6] [PMID: 24198065]
[86]
Haensler J, Verdelet C, Sanchez V, et al. Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 1999; 17(7-8): 628-38.
[http://dx.doi.org/10.1016/S0264-410X(98)00242-4] [PMID: 10067667]
[87]
Hallermalm K, Johansson S. Bråve A, et al. Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand J Immunol 2007; 66(1): 43-51.
[http://dx.doi.org/10.1111/j.1365-3083.2007.01945.x] [PMID: 17587345]
[88]
Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63(10-11): 943-55.
[http://dx.doi.org/10.1016/j.addr.2011.05.021] [PMID: 21679733]
[89]
a) Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.;
b) Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine (Lond) 2014; 9(16): 2511-29.
[90]
Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 2003; 170(5): 2302-9.
[http://dx.doi.org/10.4049/jimmunol.170.5.2302] [PMID: 12594251]
[91]
He P, Takeshima S, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014; 32(47): 6199-205.
[http://dx.doi.org/10.1016/j.vaccine.2014.09.032] [PMID: 25261380]
[92]
Herd KA, Wiethe C, Tindle RW. Co-immunisation with DNA encoding DNA vaccine. Vaccine 2007; 25(28): 5209-19.
[http://dx.doi.org/10.1016/j.vaccine.2007.04.083] [PMID: 17544551]
[93]
Herrada AA, Rojas-Colonelli N. González-Figueroa P, et al. Harnessing DNA-induced immune responses for improving cancer vaccines. Hum Vaccin Immunother 2012; 8(11): 1682-93.
[http://dx.doi.org/10.4161/hv.22345] [PMID: 23111166]
[94]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[95]
Huang CF, Monie A, Weng WH, Wu T. DNA vaccines for cervical cancer. Am J Transl Res 2010; 2(1): 75-87.
[PMID: 20182584]
[96]
Huang EH, Kaufman HL. CEA-based vaccines. Expert Rev Vaccines 2002; 1(1): 49-63.
[http://dx.doi.org/10.1586/14760584.1.1.49] [PMID: 12908512]
[97]
Jia ZC, Zou LY, Ni B, et al. Effective induction of antitumor immunity by immunization with plasmid DNA encoding TRP-2 plus neutralization of TGF-? Cancer Immunol Immunother 2005; 54(5): 446-52.
[http://dx.doi.org/10.1007/s00262-004-0619-4] [PMID: 15750831]
[98]
Johansen P, Kündig TM. Intralymphatic immunotherapy and vaccination in mice. J Vis Exp 2014; (84): e51031.
[PMID: 24513675]
[99]
Kalariya M, Amiji MM. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems. Int J Pharm 2013; 453(2): 400-7.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.028] [PMID: 23702000]
[100]
Kang TH, Kim KW, Bae HC, Seong SY, Kim TW. Enhancement of DNA vaccine potency by antigen linkage to IFN-γ-inducible protein-10. Int J Cancer 2011; 128(3): 702-14.
[http://dx.doi.org/10.1002/ijc.25391] [PMID: 20473881]
[101]
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34(5): 637-50.
[http://dx.doi.org/10.1016/j.immuni.2011.05.006] [PMID: 21616434]
[102]
Vivo IRI, Yang JS, Montaner L, Lee DJ, Chalian AA, Weiner DB. Coimmunization with IFN-gamma or IL-2, but not IL-13 or IL-4 cDNA can enhance Th1-type DNA vaccine-induced immune responses in vivo. J Interferon Cytokine Res 2000; 20(3): 311-9.
[http://dx.doi.org/10.1089/107999000312450] [PMID: 10762079]
[103]
Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 2012; 30(3): 523-38.
[http://dx.doi.org/10.1016/j.vaccine.2011.11.020] [PMID: 22100637]
[104]
Knuschke T, Bayer W, Rotan O, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine 2014; 10(8): 1787-98.
[http://dx.doi.org/10.1016/j.nano.2014.06.014] [PMID: 25014891]
[105]
Köchling J, Rott Y, Arndt S, et al. Prevention and synergistic control of Ph+ ALL by a DNA vaccine and 6-mercaptopurine. Vaccine 2012; 30(41): 5949-55.
[http://dx.doi.org/10.1016/j.vaccine.2012.07.037] [PMID: 22841975]
[106]
Kondo E, Saito K, Tashiro Y, et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun 2012; 3(1): 951.
[http://dx.doi.org/10.1038/ncomms1952] [PMID: 22805558]
[107]
Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20(1): 709-60.
[http://dx.doi.org/10.1146/annurev.immunol.20.100301.064842] [PMID: 11861616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy