Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Non-coding RNA in the Pathogenesis of Intestinal Ischemia- Reperfusion Injury

Author(s): Jianmin Zhang, Zhenzhen Liu, Yongqiang Liu, Yajing Shi, Feng Chen and Yufang Leng*

Volume 30, Issue 36, 2023

Published on: 13 January, 2023

Page: [4130 - 4148] Pages: 19

DOI: 10.2174/0929867330666221219094145

Price: $65

Abstract

Intestinal ischemia-reperfusion injury is a relatively common clinical condition that seriously threatens the prognosis of patients; however, the exact mechanism of intestinal ischemia-reperfusion injury has not been clarified. Recent studies have found that noncoding RNAs, including but not limited to lncRNA, circRNA, and miRNA, play an important role in the pathogenesis of intestinal ischemia-reperfusion. The findings cited in this paper reveal the expression, function, and mechanism of noncoding RNAs during intestinal ischemia-reperfusion. The mechanistic roles of noncoding RNAs in the occurrence and development of intestinal ischemia-reperfusion are discussed, including cell proliferation, autophagy, oxidative stress, apoptosis, oxidative stress, iron death, and many other aspects. However, many unknown mechanisms of association between noncoding RNAs and intestinal ischemia-reperfusion remain to be investigated.

[1]
Kong, D.; Hu, Y.; Li, X.; Yu, D.; Li, H.; Zhao, Y.; Qin, Y.; Jin, W.; Zhang, B.; Wang, B.; Wang, H.; Li, G.; Wang, H. IL-37 gene modification enhances the protective effects of mesenchymal stromal cells on intestinal ischemia reperfusion injury. Stem Cells Int., 2020, 2020, 8883636.
[http://dx.doi.org/10.1155/2020/8883636] [PMID: 32849879]
[2]
Acosta, S.; Björck, M. Modern treatment of acute mesenteric ischaemia. Br. J. Surg., 2013, 101(1), e100-e108.
[http://dx.doi.org/10.1002/bjs.9330] [PMID: 24254428]
[3]
Hu, Y.; Tao, X.; Han, X.; Xu, L.; Yin, L.; Sun, H.; Qi, Y.; Xu, Y.; Peng, J. MicroRNA-351-5p aggravates intestinal ischaemia/reperfusion injury through the targeting of MAPK13 and Sirtuin-6. Brit. J. Pharmacol., 2018, 175(17), 3594-3609.
[http://dx.doi.org/10.1111/bph.14428]
[4]
Jiang, Y.; Zhou, Z.; Meng, Q.; Sun, Q.; Su, W.; Lei, S.; Xia, Z.; Xia, Z. Ginsenoside Rb1 treatment attenuates pulmonary inflammatory cytokine release and tissue injury following intestinal ischemia reperfusion injury in mice. Oxid. Med. Cell. Longev., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/843721] [PMID: 26161243]
[5]
Xue, R.; Du, M.; Zhou, T.Y.; Ai, W.Z.; Zhang, Z.S.; Xiang, X.W.; Zhou, Y.F.; Wen, Z.S. Polysaccharides from hemp seed protect against cyclophosphamide-induced intestinal oxidative damage via Nrf2-Keap1 signaling pathway in mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/1813798] [PMID: 32908623]
[6]
Zhenzhen, L.; Wenting, L.; Jianmin, Z.; Guangru, Z.; Disheng, L.; Zhiyu, Z.; Feng, C.; Yajing, S.; Yingxiang, H.; Jipeng, L.; Zhanhai, W.; Yan, Z.; Xin, L.; Yongqiang, L.; Yufang, L. miR-146a-5p/TXNIP axis attenuates intestinal ischemia-reperfusion injury by inhibiting autophagy via the PRKAA/mTOR signaling pathway. Biochem. Pharmacol., 2021, 2021, 114839.
[http://dx.doi.org/10.1016/j.bcp.2021.114839] [PMID: 34774846]
[7]
Xie, K.; Xie, H.; Su, G.; Chen, D.; Yu, B.; Mao, X.; Huang, Z.; Yu, J.; Luo, J.; Zheng, P.; Luo, Y.; He, J. β-Defensin 129 attenuates bacterial endotoxin-induced inflammation and intestinal epithelial cell apoptosis. Front. Immunol., 2019, 10, 2333.
[http://dx.doi.org/10.3389/fimmu.2019.02333] [PMID: 31636641]
[8]
Wang, Z.; Sun, R.; Wang, G.; Chen, Z.; Li, Y.; Zhao, Y.; Liu, D.; Zhao, H.; Zhang, F.; Yao, J.; Tian, X. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol., 2020, 28, 101343.
[http://dx.doi.org/10.1016/j.redox.2019.101343] [PMID: 31655428]
[9]
Chen, R.; Zhang, Y. Y.; Lan, J. N.; Liu, H. M.; Li, W.; Wu, Y.; Leng, Y.; Tang, L. H.; Hou, J. B.; Sun, Q.; Sun, T.; Zeng, Z.; Xia, Z. Y.; Meng, Q. T. Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3 beta/Nrf2 pathway in mice. Oxid Med Cell Longev, 2020, 2020, 6954764.
[http://dx.doi.org/10.1155/2020/6954764]
[10]
Hang, C.H.; Shi, J-X.; Li, J-S.; Li, W-Q.; Yin, H-X. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J. Gastroenterol., 2005, 11(8), 1149-1154.
[http://dx.doi.org/10.3748/wjg.v11.i8.1149] [PMID: 15754395]
[11]
Ma, C. B.; Zu, X. Y.; Liu, K. D.; Bode, A. M.; Dong, Z. G.; Liu, Z. Z.; Kim, D. J. Knockdown of pyruvate kinase M inhibits cell growth and migration by reducing NF-kappa B activity in triple-negative breast cancer cells. Mol Cells, 2019, 42(9), 628-636.
[http://dx.doi.org/10.14348/molcells.2019.0038]
[12]
Almoiliqy, M.; Wen, J.; Qaed, E.; Sun, Y. C.; Lian, M. Q.; Mousa, H.; Al-Azab, M.; Zaky, M. Y.; Chen, D. P.; Wang, L. Protective effects of cinnamaldehyde against mesenteric ischemia-reperfusion-induced lung and liver injuries in rats. Oxid. Med. Cell Longev., 2020, 2020, 4196548.
[http://dx.doi.org/10.1155/2020/4196548]
[13]
Zhu, L. D.; Lu, X. X.; Liu, L.; Voglmeir, J.; Zhong, X.; Yu, Q. H. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet. Res., 2020, 51(1), 34.
[http://dx.doi.org/10.1186/s13567-020-00755-3]
[14]
Jiang, S.T.; Chang, A.N.; Han, L.T.; Guo, J.S.; Li, Y.H.; Liu, T.B. Autophagy regulates fungal virulence and sexual reproduction in Cryptococcus neoformans. Front. Cell Dev. Biol., 2020, 8, 374.
[http://dx.doi.org/10.3389/fcell.2020.00374] [PMID: 32528953]
[15]
Tusco, R.; Jacomin, A.C.; Jain, A.; Penman, B.S.; Larsen, K.B.; Johansen, T.; Nezis, I.P. Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses. Nat. Commun., 2017, 8(1), 1264.
[http://dx.doi.org/10.1038/s41467-017-01287-9] [PMID: 29097655]
[16]
Xie, Y.P.; Lai, S.; Lin, Q.Y.; Xie, X.; Liao, J.W.; Wang, H.X.; Tian, C.; Li, H.H. CDC20 regulates cardiac hypertrophy via targeting LC3-dependent autophagy. Theranostics, 2018, 8(21), 5995-6007.
[http://dx.doi.org/10.7150/thno.27706] [PMID: 30613277]
[17]
Li, Z.; Wang, G.; Feng, D.; Zu, G.; Li, Y.; Shi, X.; Zhao, Y.; Jing, H.; Ning, S.; Le, W.; Yao, J.; Tian, X. Targeting the miR-665-3p-ATG4B-autophagy axis relieves inflammation and apoptosis in intestinal ischemia/reperfusion. Cell Death Dis, 2018, 9, 483.
[http://dx.doi.org/10.1038/s41419-018-0518-9]
[18]
Li, B.; Yao, X.; Luo, Y.; Niu, L.; Lin, L.; Li, Y. Inhibition of autophagy attenuated intestinal injury after intestinal I/R via mTOR signaling. J. Surg. Res., 2019, 243, 363-370.
[http://dx.doi.org/10.1016/j.jss.2019.05.038] [PMID: 31277013]
[19]
Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; Li, Z.; Ming, L.; Xie, B.; Zhang, N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13), 1805-1814.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[20]
Kong, S.; Tao, M.; Shen, X.; Ju, S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett., 2020, 483, 59-65.
[http://dx.doi.org/10.1016/j.canlet.2020.04.006] [PMID: 32360179]
[21]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[22]
Marzi, M. J.; Ghini, F.; Cerruti, B.; de Pretis, S.; Bonetti, P.; Giacomelli, C.; Gorski, M. M.; Kress, T.; Pelizzola, M.; Muller, H.; Amati, B.; Nicassio, F. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res., 2016, 26(4), 554-565.
[http://dx.doi.org/10.1101/gr.198788.115]
[23]
Sheng, P. K.; Fields, C.; Aadland, K.; Wei, T. Q.; Kolaczkowski, O.; Gu, T. J.; Kolaczkowski, B.; Xie, M. Y. Dicer cleaves 5 '-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res., 2018, 46(11), 5737-5752.
[http://dx.doi.org/10.1093/nar/gky306]
[24]
Bose, M.; Bhattacharyya, S. N. Target-dependent biogenesis of cognate microRNAs in human cells. Nat Commun, 2016, 7, 12200.
[http://dx.doi.org/10.1038/ncomms12200]
[25]
Wang, D. G.; Wang, T. Z.; Gill, A.; Hilliard, T.; Chen, F. Q.; Karamyshev, A. L.; Zhang, F. Y. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and MicroRNA targeting activity. Nucleic Acids Res., 2020, 48(9), 4681-4697.
[http://dx.doi.org/10.1093/nar/gkaa209]
[26]
Van den Ackerveken, P.; Mounier, A.; Huyghe, A.; Sacheli, R.; Vanlerberghe, P. B.; Volvert, M. L.; Delacroix, L.; Nguyen, L.; Malgrange, B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ., 2017, 24(12), 2054-2065.
[http://dx.doi.org/10.1038/cdd.2017.127]
[27]
Lee, H. C.; Jung, S. H.; Hwang, H. J.; Kang, D.; De, S.; Dudekula, D. B.; Martindale, J. L.; Park, B.; Park, S. K.; Lee, E. K.; Lee, J. H.; Jeong, S.; Han, K.; Park, H. J.; Ko, Y. G.; Gorospe, M.; Lee, J. S. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. Nucleic Acids Res., 2017, 45(11), 6894-6910.
[http://dx.doi.org/10.1093/nar/gkx307]
[28]
Ma, L.; Li, Z. Y.; Li, W. H.; Ai, J.; Chen, X. X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol., 2019, 16(12), 1733-1748.
[http://dx.doi.org/10.1080/15476286.2019.1657352]
[29]
Inoue, K.; Ogonuki, N.; Kamimura, S.; Inoue, H.; Matoba, S.; Hirose, M.; Honda, A.; Miura, K.; Hada, M.; Hasegawa, A.; Watanabe, N.; Dodo, Y.; Mochida, K.; Ogura, A. Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nat. Commun., 2020, 11(1), 2150.
[http://dx.doi.org/10.1038/s41467-020-16044-8]
[30]
Guo, K.; Tang, X.; Ding, M.; Yuan, F.; Feng, H.; Deng, B.; Sun, W.; Hou, Y.; Gao, L.; Zheng, W. MiR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism. Drug Des. Devel. Ther., 2016, 10, 571-583.
[http://dx.doi.org/10.2147/DDDT.S90530] [PMID: 26966351]
[31]
Li, P.; Ma, R.; Dong, L.; Liu, L.; Zhou, G.; Tian, Z.; Zhao, Q.; Xia, T.; Zhang, S.; Wang, A. Autophagy impairment contributes to PBDE-47-induced developmental neurotoxicity and its relationship with apoptosis. Theranostics, 2019, 9(15), 4375-4390.
[http://dx.doi.org/10.7150/thno.33688] [PMID: 31285767]
[32]
Pengo, N.; Prak, K.; Costa, J.R.; Luft, C.; Agrotis, A.; Freeman, J.; Gewinner, C.A.; Chan, A.W.E.; Selwood, D.L.; Kriston-Vizi, J.; Ketteler, R. Identification of kinases and phosphatases that regulate ATG4B activity by siRNA and small molecule screening in cells. Front. Cell Dev. Biol., 2018, 6, 148.
[http://dx.doi.org/10.3389/fcell.2018.00148] [PMID: 30443548]
[33]
Li, W.; Yang, Y.; Ba, Z.; Li, S.; Chen, H.; Hou, X.; Ma, L.; He, P.; Jiang, L.; Li, L.; He, R.; Zhang, L.; Feng, D. MicroRNA-93 regulates hypoxia-induced autophagy by targeting ULK1. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/2709053] [PMID: 29109831]
[34]
Cabrera, S.; Fernández, Á.F.; Mariño, G.; Aguirre, A.; Suárez, M.F.; Español, Y.; Vega, J.A.; Laurà, R.; Fueyo, A.; Fernández-García, M.S.; Freije, J.M.P.; Kroemer, G.; López-Otín, C. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy, 2013, 9(8), 1188-1200.
[http://dx.doi.org/10.4161/auto.24797] [PMID: 23782979]
[35]
Jin, Z. G.; Liang, F.; Yang, J.; Mei, W. Y. nRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. Plos Genet, 2017, 13(3), 1-18.
[http://dx.doi.org/10.1371/journal.pgen.1006672]
[36]
Chassin, C.; Hempel, C.; Stockinger, S.; Dupont, A.; Kübler, J.F.; Wedemeyer, J.; Vandewalle, A.; Hornef, M.W. MicroRNA‐146a‐mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury. EMBO Mol. Med., 2012, 4(12), 1308-1319.
[http://dx.doi.org/10.1002/emmm.201201298] [PMID: 23143987]
[37]
Oh, J. G.; Watanabe, S.; Lee, A.; Gorski, P. A.; Lee, P.; Jeong, D.; Liang, L. F.; Liang, Y. X.; Baccarini, A.; Sahoo, S.; Brown, B. D.; Hajjar, R. J.; Kho, C. MiR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy. Circ Res, 2018, 123(6), 673-685.
[http://dx.doi.org/10.1371/journal.pgen.1006672]
[38]
Yu, H.J.; Shi, L.Y.; Qi, G.X.; Zhao, S.J.; Gao, Y.; Li, Y.Z. Gypenoside protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear factor Kappa B pathway in vitro and in vivo. Front. Pharmacol., 2016, 7, 148.
[http://dx.doi.org/10.3389/fphar.2016.00148]
[39]
Duan, J.L.; Cui, J.; Zheng, H.N.; Xi, M.M.; Guo, C.; Weng, Y.; Yin, Y.; Wei, G.; Cao, J.Y.; Wang, Y.H.; Wen, A.D.; Qiao, B.L. Aralia taibaiensis protects against I/R-induced brain cell injury through the Akt/SIRT1/FOXO3a pathway. Oxid. Med. Cell Longev., 2019, 2019, 7609765.
[http://dx.doi.org/10.1155/2019/7609765]
[40]
Ni, H.W.; Shirazi, F.; Baladandayuthapani, V.; Lin, H.; Kuiatse, I.; Wang, H.; Jones, R.J.; Berkova, Z.; Hitoshi, Y.; Ansell, S.M.; Treon, S.P.; Thomas, S.K.; Lee, H.C.; Wang, Z.Q.; Davis, R.E.; Orlowski, R.Z. Targeting myddosome signaling in waldenstrom's macroglobulinemia with the interleukin-1 receptor-associated Kinase 1/4 inhibitor R191. Clin. Cancer Res., 2018, 24(24), 6408-6420.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3265]
[41]
Pope, M.R.; Hoffman, S.M.; Tomlinson, S.; Fleming, S.D. Complement regulates TLR4-mediated inflammatory responses during intestinal ischemia reperfusion. Mol. Immunol., 2010, 48(1-3), 356-364.
[http://dx.doi.org/10.1016/j.molimm.2010.07.004]
[42]
Qiang, J.; Tao, F.Y.; He, J.; Sun, L.Y.; Xu, P.; Bao, W.J. Effects of exposure to Streptococcus iniae on microRNA expression in the head kidney of genetically improved farmed tilapia (Oreochromis niloticus). BMC Genom., 2017, 18, 190.
[http://dx.doi.org/10.1186/s12864-017-3591-z]
[43]
Wang, X.H.; Ha, T.Z.; Liu, L.; Hu, Y.P.; Kao, R.; Kalbfleisch, J.; Williams, D.; Li, C.F. TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell. Death Differ., 2018, 25(5), 966-982.
[http://dx.doi.org/10.1038/s41418-017-0036-9]
[44]
He, X.; Zheng, Y.; Liu, S.; Shi, S.; Liu, Y.; He, Y.; Zhang, C.; Zhou, X. MiR-146a protects small intestine against ischemia/reperfusion injury by down-regulating TLR4/TRAF6/NF-κB pathway. J. Cell. Physiol., 2018, 233(3), 2476-2488.
[http://dx.doi.org/10.1002/jcp.26124] [PMID: 28771774]
[45]
Su, C.J.; Shen, Z.; Cui, R.X.; Huang, Y.; Xu, D.L.; Zhao, F.L.; Pan, J.; Shi, A.M.; Liu, T.; Yu, Y.L. Thioredoxin-interacting protein (TXNIP) regulates parkin/pink1-mediated mitophagy in dopaminergic neurons under high-glucose conditions: Implications for molecular links between Parkinson’s disease and diabetes. Neurosci. Bull., 2020, 36(4), 346-358.
[http://dx.doi.org/10.1007/s12264-019-00459-5] [PMID: 31939095]
[46]
Du, S.Q.; Wang, X.R.; Zhu, W.; Ye, Y.; Yang, J.W.; Ma, S.M.; Ji, C.S.; Liu, C.Z. Acupuncture inhibits TXNIP-associated oxidative stress and inflammation to attenuate cognitive impairment in vascular dementia rats. CNS Neurosci. Ther., 2018, 24(1), 39-46.
[http://dx.doi.org/10.1111/cns.12773] [PMID: 29110407]
[47]
Liu, Y.; Lian, K.; Zhang, L.; Wang, R.; Yi, F.; Gao, C.; Xin, C.; Zhu, D.; Li, Y.; Yan, W.; Xiong, L.; Gao, E.; Wang, H.; Tao, L. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res. Cardiol., 2014, 109(5), 415.
[http://dx.doi.org/10.1007/s00395-014-0415-z] [PMID: 25015733]
[48]
Jia, Y.; Cui, R.; Wang, C.; Feng, Y.; Li, Z.; Tong, Y.; Qu, K.; Liu, C.; Zhang, J. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol., 2020, 32, 101534.
[http://dx.doi.org/10.1016/j.redox.2020.101534] [PMID: 32330868]
[49]
Cao, G.; Jiang, N.; Hu, Y.; Zhang, Y.; Wang, G.; Yin, M.; Ma, X.; Zhou, K.; Qi, J.; Yu, B.; Kou, J. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int. J. Mol. Sci., 2016, 17(9), 1418.
[http://dx.doi.org/10.3390/ijms17091418] [PMID: 27589720]
[50]
Su, C.J.; Feng, Y.; Liu, T.T.; Liu, X.; Bao, J.J.; Shi, A.M.; Hu, D.M.; Liu, T.; Yu, Y.L. Thioredoxin-interacting protein induced α-synuclein accumulation via inhibition of autophagic flux: Implications for Parkinson’s disease. CNS Neurosci. Ther., 2017, 23(9), 717-723.
[http://dx.doi.org/10.1111/cns.12721] [PMID: 28755477]
[51]
Alvarez-Garcia, O.; Olmer, M.; Akagi, R.; Akasaki, Y.; Fisch, K.M.; Shen, T.; Su, A.I.; Lotz, M.K. Suppression of REDD1 in osteoarthritis cartilage, a novel mechanism for dysregulated mTOR signaling and defective autophagy. Osteoarthritis Cartilage, 2016, 24(9), 1639-1647.
[http://dx.doi.org/10.1016/j.joca.2016.04.015] [PMID: 27118398]
[52]
Duan, Z.; Chen, Q.; Du, L.; Tong, J.; Xu, S.; Zeng, R.; Ma, Y.; Chen, X.; Li, M. Phagocytosis of Candida albicans inhibits autophagic flux in macrophages. Oxid. Med. Cell. Longev., 2018, 2018, 4938649.
[http://dx.doi.org/10.1155/2018/4938649] [PMID: 29887941]
[53]
Lee, E.J.; Ko, J.Y.; Oh, S.; Jun, J.; Mun, H.; Lim, C.J.; Seo, S.; Ko, H.W.; Kim, H.; Oh, Y.K.; Ahn, C.; Kang, M.; Kim, M.J.; Yoo, K.H.; Oh, G.T.; Park, J.H. Autophagy induction promotes renal cyst growth in polycystic kidney disease. EBioMedicine, 2020, 60, 102986.
[http://dx.doi.org/10.1016/j.ebiom.2020.102986] [PMID: 32949996]
[54]
Lin, G.; Huang, J.; Chen, Q.; Chen, L.; Feng, D.; Zhang, S.; Huang, X.; Huang, Y.; Lin, Q. MiR-146a-5p mediates intermittent hypoxia-induced injury in H9c2 cells by targeting XIAP. Oxid. Med. Cell. Longev., 2019, 2019, 6581217.
[http://dx.doi.org/10.1155/2019/6581217] [PMID: 31205587]
[55]
Luo, Y.; Duan, X.; Bian, L.; Chen, Z.; Kuang, L.; Li, Y. Ischemic preconditioning preventing downregulation of miR-182 protects intestine against ischemia/reperfusion injury by inhibiting apoptosis. Arch. Med. Res., 2019, 50(5), 241-248.
[http://dx.doi.org/10.1016/j.arcmed.2019.08.013] [PMID: 31593847]
[56]
Fu, B.; Zeng, Q.; Zhang, Z.; Qian, M.; Chen, J.; Dong, W.; Li, M. Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization. Oxid. Med. Cell. Longev., 2019, 2019, 7824684.
[http://dx.doi.org/10.1155/2019/7824684] [PMID: 30962864]
[57]
Zhou, J.; Jiang, Y.; Chen, H.; Wu, Y.; Zhang, L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif., 2020, 53(2), e12739.
[http://dx.doi.org/10.1111/cpr.12739] [PMID: 31820522]
[58]
González-Terán, B.; López, J.A.; Rodríguez, E.; Leiva, L.; Martínez-Martínez, S.; Bernal, J.A.; Jiménez-Borreguero, L.J.; Redondo, J.M.; Vazquez, J.; Sabio, G. p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun., 2016, 7(1), 10477.
[http://dx.doi.org/10.1038/ncomms10477] [PMID: 26795633]
[59]
Zhai, Y.; Lin, P.; Feng, Z.; Lu, H.; Han, Q.; Chen, J.; Zhang, Y.; He, Q.; Nan, G.; Luo, X.; Wang, B.; Feng, F.; Liu, F.; Chen, Z.; Zhu, P. TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy, 2018, 14(9), 1629-1643.
[http://dx.doi.org/10.1080/15548627.2018.1458804] [PMID: 29940800]
[60]
Wang, Q.; Zhou, Y.; Rychahou, P.; Harris, J.W.; Zaytseva, Y.Y.; Liu, J.; Wang, C.; Weiss, H.L.; Liu, C.; Lee, E.Y.; Evers, B.M. Deptor is a novel target of Wnt/β-Catenin/c-Myc and contributes to colorectal cancer cell growth. Cancer Res., 2018, 78(12), 3163-3175.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3107] [PMID: 29666061]
[61]
Li, Y.; Luo, Y.; Li, B.; Niu, L.; Liu, J.; Duan, X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J. Cell. Mol. Med., 2020, 24(14), 7873-7883.
[http://dx.doi.org/10.1111/jcmm.15420]
[62]
Hu, B.C.; Wu, G.H.; Shao, Z.Q.; Zheng, Y.; Liu, J.Q.; Zhang, R.; Hong, J.; Yang, X.H.; Sun, R.H.; Mo, S.J. Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI. Theranostics, 2020, 10(25), 11479-11496.
[http://dx.doi.org/10.7150/thno.49870] [PMID: 33052227]
[63]
Wei, R.; Zhang, L.; Hu, W.; Wu, J.; Zhang, W. Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp. Neurol., 2019, 314, 100-110.
[http://dx.doi.org/10.1016/j.expneurol.2019.01.009] [PMID: 30703362]
[64]
Jiang, T.; Liu, Y.; Chen, B.; Si, L. Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury. Braz. J. Med. Biol. Res., 2020, 53(9), S0100-879X2020000900604.
[http://dx.doi.org/10.1590/1414-431x20209717] [PMID: 32696819]
[65]
Zhou, B.; Zhang, W.; Yan, Z.; Zhao, B.; Zhao, J.; Feng, W.; Chen, X.; Li, C.; Liu, K-X. MicroRNA-26b-5p targets DAPK1 to reduce intestinal ischemia/reperfusion injury via inhibition of intestinal mucosal cell apoptosis. Dig. Dis. Sci., 2022, 67(5), 1794-1805.
[http://dx.doi.org/10.1007/s10620-021-06975-7] [PMID: 33839982]
[66]
Li, Y.; Wen, S.; Yao, X.; Liu, W.; Shen, J.; Deng, W.; Tang, J.; Li, C.; Liu, K. MicroRNA-378 protects against intestinal ischemia/reperfusion injury via a mechanism involving the inhibition of intestinal mucosal cell apoptosis. Cell Death Dis, 2017, 8(10), e3127.
[http://dx.doi.org/10.1038/cddis.2017.508]
[67]
Wei, X.; Li, H.; Zhang, B.; Li, C.; Dong, D.; Lan, X.; Huang, Y.; Bai, Y.; Lin, F.; Zhao, X.; Chen, H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol., 2016, 13(12), 1300-1309.
[http://dx.doi.org/10.1080/15476286.2016.1239008]
[68]
Lee, D. Y.; Deng, Z.; Wang, C.-H.; Yang, B. B. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. P Natl. Acad. Sci. USA, 2007, 104(51), 20350-20355.
[http://dx.doi.org/10.1073/pnas.0706901104]
[69]
Hyun, J.; Wang, S.; Kim, J.; Rao, K. M.; Park, S. Y.; Chung, I.; Ha, C.-S.; Kim, S.-W.; Yun, Y. H.; Jung, Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun., 2016, 7, 10993.
[http://dx.doi.org/10.1038/ncomms10993]
[70]
Liu, Z.; Geng, W.; Jiang, C.; Zhao, S.; Liu, Y.; Zhang, Y.; Qin, S.; Li, C.; Zhang, X.; Si, Y. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats. Exp. Biol. Med., 2017, 242(15), 1534-1541.
[http://dx.doi.org/10.1177/1535370217725249]
[71]
Li, Q.; Yu, P.; Zeng, Q.; Luo, B.; Cai, S.; Hui, K.; Yu, G.; Zhu, C.; Chen, X.; Duan, M.; Sun, X. Neuroprotective effect of hydrogen-rich saline in global cerebral ischemia/reperfusion rats: Up-regulated tregs and down-regulated miR-21, miR-210 and NF-kappa B expression. Neurochem. Res., 2016, 41(10), 2655-2665.
[http://dx.doi.org/10.1007/s11064-016-1978-x]
[72]
Yao, W.; Lin, X.; Han, X.; Zeng, L.; Guo, A.; Guan, Y.; Hei, Z.; Liu, J.; Huang, P. MicroRNA files in the prevention of intestinal ischemia/reperfusion injury by hydrogen rich saline. Biosci. Rep., 2020, 40, BSR20191043.
[http://dx.doi.org/10.1042/BSR20191043]
[73]
Eriksen, A.Z.; Eliasen, R.; Oswald, J.; Kempen, P.J.; Melander, F.; Andresen, T.L.; Young, M.; Baranov, P.; Urquhart, A.J. Multifarious biologic loaded liposomes that stimulate the mammalian target of rapamycin signaling pathway show retina neuroprotection after retina damage. ACS Nano, 2018, 12(8), 7497-7508.
[http://dx.doi.org/10.1021/acsnano.8b00596]
[74]
Gao, J.-X.; Li, Y.; Wang, S.-N.; Chen, X.-C.; Lin, L.-L.; Zhang, H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson's disease. Int. J. Mol. Med., 2019, 43(1), 209-220.
[http://dx.doi.org/10.3892/ijmm.2018.3982]
[75]
Zu, G.; Yao, J.; Ji, A.; Ning, S.; Luo, F.; Li, Z.; Feng, D.; Rui, Y.; Li, Y.; Wang, G.; Tian, X. Nurr1 promotes intestinal regeneration after ischemia/reperfusion injury by inhibiting the expression of p21 (Waf1/Cip1). J. Mol. Med. (Berl.), 2017, 95(1), 83-95.
[http://dx.doi.org/10.1007/s00109-016-1464-6] [PMID: 27553040]
[76]
Yan, W.; Chen, Z.Y.; Chen, J.Q.; Chen, H.M. BMP2 promotes the differentiation of neural stem cells into dopaminergic neurons in vitro via miR-145-mediated upregulation of Nurr1 expression. Am. J. Transl. Res., 2016, 8(9), 3689-3699.
[PMID: 27725851]
[77]
Shang, W. J.; Liang, X. M.; Li, S. Y.; Li, T. Y.; Zheng, L. X.; Shao, W.; Wang, Y.; Liu, F.; Ma, L.; Jia, J. H. Orphan nuclear receptor Nurr1 promotes Helicobacter pylori-associated gastric carcinogenesis by directly enhancing CDK4 expression. Ebiomedicine, 2020, 53, 102672.
[http://dx.doi.org/10.1016/j.ebiom.2020.102672]
[78]
Xie, X. M.; Peng, L.; Zhu, J.; Zhou, Y.; Li, L. Y.; Chen, Y. L.; Yu, S. S.; Zhao, Y. miR-145-5p/Nurr1/TNF-alpha signaling-induced microglia activation regulates neuron injury of acute cerebral ischemic/reperfusion in rats. Front. Mol. Neurosci., 2017, 10, 383.
[http://dx.doi.org/10.3389/fnmol.2017.00383]
[79]
Liu, L.; Yao, J.; Li, Z.; Zu, G.; Feng, D.; Li, Y.; Qasim, W.; Zhang, S.; Li, T.; Zeng, H.; Tian, X. miR-381-3p knockdown improves intestinal epithelial proliferation and barrier function after intestinal ischemia/reperfusion injury by targeting nurr1. Cell Death Dis, 2018, 9(3), 411.
[http://dx.doi.org/10.1038/s41419-018-0450-z]
[80]
Cheloni, G.; Tanturli, M.; Tusa, I.; Ngoc Ho, D.; Shan, Y.; Gozzini, A.; Mazurier, F.; Rovida, E.; Li, S.; Dello Sbarba, P. Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood, 2017, 130(5), 655-665.
[http://dx.doi.org/10.1182/blood-2016-10-745588]
[81]
Hu, D.; Linders, A.; Yamak, A.; Correia, C.; Kijlstra, J. D.; Garakani, A.; Xiao, L.; Milan, D. J.; van der Meer, P.; Serra, M.; Alves, P. M.; Domian, I. J. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1 alpha and LDHA. Circ Res, 2018, 123(9), 1066-1079.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313249]
[82]
Liu, Z.; Jiang, J.; Yang, Q.; Xiong, Y.; Zou, D.; Yang, C.; Xu, J.; Zhan, H. MicroRNA-682-mediated downregulation of PTEN in intestinal epithelial cells ameliorates intestinal ischemia-reperfusion injury. Cell Death Dis, 2016, 7(4), e2210.
[http://dx.doi.org/10.1038/cddis.2016.84]
[83]
Horita, H.; Wysoczynski, C. L.; Walker, L. A.; Moulton, K. S.; Li, M.; Ostriker, A.; Tucker, R.; McKinsey, T. A.; Churchill, M. E. A.; Nemenoff, R. A.; Weiser-Evans, M. C. M. Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation. Nat. Commun., 2016, 7, 10830.
[http://dx.doi.org/10.1038/ncomms10830]
[84]
Parajuli, N.; Yuan, Y.; Zheng, X.; Bedja, D.; Cai, Z.P. Phosphatase PTEN is critically involved in post-myocardial infarction remodeling through the Akt/interleukin-10 signaling pathway. Basic Res. Cardiol., 2012, 107(2), 248.
[http://dx.doi.org/10.1007/s00395-012-0248-6] [PMID: 22298084]
[85]
Helgeland, E.; Wergeland, A.; Sandoy, R. M.; Askeland, M.; Aspevik, A.; Breivik, L.; Jonassen, A. K. Insulin and GSK3 beta- inhibition abrogates the infarct sparing-effect of ischemic postconditioning in ex vivo rat hearts. Scand. Cardiovasc. J., 2017, 51(3), 159-166.
[http://dx.doi.org/10.1080/14017431.2017.1288920]
[86]
Wang, Z.; Wen, J.; Zhou, C.; Wang, Z.; Wei, M. Gene expression profiling analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats. BMC Genomics, 2019, 20(1), 361.
[http://dx.doi.org/10.1186/s12864-019-5743-9] [PMID: 31072368]
[87]
Esposito, E.; Hayakawa, K.; Ahn, B. J.; Chan, S. J.; Xing, C. H.; Liang, A. C.; Kim, K. W.; Arai, K.; Lo, E. H. Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J. Neurochem., 2018, 146(2), 160-172.
[http://dx.doi.org/10.1111/jnc.14337]
[88]
Gao, S.M.; Zhu, Y.; Li, H.B.; Xia, Z.Y.; Wu, Q.P.; Yao, S.L.; Wang, T.T.; Yuan, S.Y. Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Int. Immunopharmacol., 2016, 38, 395-401.
[http://dx.doi.org/10.1016/j.intimp.2016.06.020]
[89]
Jia, Z.; Lian, W.; Shi, H.; Cao, C.; Han, S.; Wang, K.; Li, M.; Zhang, X. Ischemic postconditioning protects against intestinal ischemia/reperfusion injury via the HIF-1α/ miR-21 axis. Sci. Rep., 2017, 7(1), 16190.
[http://dx.doi.org/10.1038/s41598-017-16366-6] [PMID: 29170412]
[90]
Semenza, G.L. Hypoxia-inducible factor 1: Regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Bba-Mol. Cell Res., 2011, 1813(7), 1263-1268.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.006]
[91]
Cheng, Y.H.; Zhu, P.; Yang, J.A.; Liu, X.J.; Dong, S.M.; Wang, X.B.; Chun, B.; Zhuang, J.A.; Zhang, C.X. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc. Res., 2010, 87(3), 431-439.
[http://dx.doi.org/10.1093/cvr/cvq082]
[92]
Zhang, L.; Dong, L.Y.; Li, Y.J.; Hong, Z.; Wei, W.S. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia, 2012, 60(12), 1888-1895.
[http://dx.doi.org/10.1002/glia.22404]
[93]
Zhao, L.; Fong, A.H.W.; Liu, N.; Cho, W.C.S. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J. Biomed. Sci., 2018, 25(1), 16.
[http://dx.doi.org/10.1186/s12929-018-0417-5] [PMID: 29455649]
[94]
Kobayashi, M.; Benakis, C.; Anderson, C.; Moore, M.J.; Poon, C.; Uekawa, K.; Dyke, J.P.; Fak, J.J.; Mele, A.; Park, C.Y.; Zhou, P.; Anrather, J.; Iadecola, C.; Darnell, R.B. AGO CLIP reveals an activated network for acute regulation of brain glutamate homeostasis in Ischemic stroke. Cell Rep., 2019, 28(4), 979-991.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.06.075] [PMID: 31340158]
[95]
Dai, Y.; Mao, Z.; Han, X.; Xu, Y.; Xu, L.; Yin, L.; Qi, Y.; Peng, J. MicroRNA-29b-3p reduces intestinal ischaemia/reperfusion injury via targeting of TNF receptor-associated factor 3. Brit. J. Pharmacol., 2019, 176(17), 3264-3278.
[http://dx.doi.org/10.1111/bph.14759]
[96]
Qu, F.; Xiang, Z.; Zhou, Y.; Qin, Y.; Yu, Z. Tumor necrosis factor receptor-associated factor 3 from Anodonta woodiana is an important factor in bivalve immune response to pathogen infection. Fish Shellfish Immunol., 2017, 71, 151-159.
[http://dx.doi.org/10.1016/j.fsi.2017.10.004] [PMID: 29017949]
[97]
Zhou, Y.; Tao, T.; Liu, G.; Gao, X.; Gao, Y.; Zhuang, Z.; Lu, Y.; Wang, H.; Li, W.; Wu, L.; Zhang, D.; Hang, C. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-κB pathways. Cell Death Dis., 2021, 12(1), 10.
[http://dx.doi.org/10.1038/s41419-020-03278-z] [PMID: 33414375]
[98]
Zhang, F.; Hu, Y.; Xu, X.; Zhai, X.; Wang, G.; Ning, S.; Yao, J.; Tian, X. Icariin protects against intestinal ischemia–reperfusion injury. J. Surg. Res., 2015, 194(1), 127-138.
[http://dx.doi.org/10.1016/j.jss.2014.10.004] [PMID: 25472572]
[99]
Akkafa, F.; Altiparmak, I. H.; Erkus, M. E.; Aksoy, N.; Kaya, C.; Ozer, A.; Sezen, H.; Oztuzcu, S.; Koyuncu, I.; Umurhan, B. Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure. Redox Biol., 2015, 6, 169-173.
[http://dx.doi.org/10.1016/j.redox.2015.07.011]
[100]
Wu, Y.Z.; Zhang, L.; Wu, Z.X.; Shan, T.T.; Xiong, C. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev, 2019, 2019, 2150394.
[http://dx.doi.org/10.1155/2019/2150394]
[101]
Zhang, M.; Tang, J.; Shan, H.; Zhang, Q.; Yang, X.; Zhang, J.; Li, Y. P66Shc mediates mitochondrial dysfunction dependent on PKC activation in airway epithelial cells induced by cigarette smoke. Oxid. Med. Cell. Longev., 2018, 2018, 5837123.
[http://dx.doi.org/10.1155/2018/5837123] [PMID: 29849902]
[102]
Chen, Z.; Wang, G.; Zhai, X.; Hu, Y.; Gao, D.; Ma, L.; Yao, J.; Tian, X. Selective inhibition of protein kinase C β2 attenuates the adaptor P66Shc-mediated intestinal ischemia–reperfusion injury. Cell Death Dis., 2014, 5(4), e1164.
[http://dx.doi.org/10.1038/cddis.2014.131] [PMID: 24722289]
[103]
Wang, G.; Yao, J.; Li, Z.; Zu, G.; Feng, D.; Shan, W.; Li, Y.; Hu, Y.; Zhao, Y.; Tian, X. MiR-34a-5p inhibition alleviates intestinal ischemia/reperfusion-induced reactive oxygen species accumulation and apoptosis via activation of SIRT1 signaling. Antioxid Redox Sign, 2016, 24(17), 961-973.
[http://dx.doi.org/10.1089/ars.2015.6492]
[104]
Yuan, L.; Mishra, R.; Patel, H.; Abdulsalam, S.; Greis, K.D.; Kadekaro, A.L.; Merino, E.J.; Garrett, J.T. Utilization of reactive oxygen species targeted therapy to prolong the efficacy of BRAF inhibitors in melanoma. J. Cancer, 2018, 9(24), 4665-4676.
[http://dx.doi.org/10.7150/jca.27295] [PMID: 30588251]
[105]
Wu, W.; Zhang, W.; Choi, M.; Zhao, J. J.; Gao, P.; Xue, M.; Singer, H. A.; Jourd'heuil, D.; Long, X. C. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol, 2019, 22, 101137.
[http://dx.doi.org/10.1016/j.redox.2019.101137]
[106]
Ewendt, F.; Föller, M. p38MAPK controls fibroblast growth factor 23 (FGF23) synthesis in UMR106-osteoblast-like cells and in IDG-SW3 osteocytes. J. Endocrinol. Invest., 2019, 42(12), 1477-1483.
[http://dx.doi.org/10.1007/s40618-019-01073-y] [PMID: 31201665]
[107]
Kaluski, S.; Portillo, M.; Besnard, A.; Stein, D.; Einav, M.; Zhong, L.; Ueberham, U.; Arendt, T.; Mostoslavsky, R.; Sahay, A.; Toiber, D. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep., 2017, 18(13), 3052-3062.
[http://dx.doi.org/10.1016/j.celrep.2017.03.008]
[108]
Van Meter, M.; Simon, M.; Tombline, G.; May, A.; Morello, T. D.; Hubbard, B. P.; Bredbenner, K.; Park, R.; Sinclair, D.A.; Bohr, V.A.; Gorbunova, V.; Seluanov, A. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep, 2016, 16(10), 2641-2650.
[http://dx.doi.org/10.1016/j.celrep.2016.08.006]
[109]
Luo, H.; Zhou, M.; Ji, K.; Zhuang, J.; Dang, W.; Fu, S.; Sun, T.; Zhang, X. Expression of sirtuins in the retinal neurons of mice, rats, and humans. Front. Aging Neurosci., 2017, 9, 366.
[http://dx.doi.org/10.3389/fnagi.2017.00366]
[110]
Wang, X.-X.; Wang, X.-L.; Tong, M.-m.; Gan, L.; Chen, H.; Wu, S.-s.; Chen, J.-X.; Li, R.-L.; Wu, Y.; Zhang, H.-y.; Zhu, Y.; Li, Y.-x.; He, J.-h.; Wang, M.; Jiang, W. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3 alpha-dependent antioxidant defense mechanisms. Basic Res Cardiol, 2016, 111, 2.
[http://dx.doi.org/10.1007/s00395-016-0531-z]
[111]
Zhang, W.; Wei, R.; Zhang, L.; Tan, Y.; Qian, C. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience, 2017, 366.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.035]
[112]
Zhang, S.; Jiang, S.; Wang, H.; Di, W.; Deng, C.; Jin, Z.; Yi, W.; Xiao, X.; Nie, Y.; Yang, Y. SIRT6 protects against hepatic ischemia/reperfusion injury by inhibiting apoptosis and autophagy related cell death. Free Radical Bio Med., 2018, 115, 18-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.11.005]
[113]
Zheng, L.; Han, X.; Hu, Y.; Zhao, X.; Yin, L.; Xu, L.; Qi, Y.; Xu, Y.; Han, X.; Liu, K.; Peng, J. Dioscin ameliorates intestinal ischemia/reperfusion injury via adjusting miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacol. Res., 2019, 139, 431-439.
[http://dx.doi.org/10.1016/j.phrs.2018.11.040]
[114]
Magri, G.; Comerma, L.; Pybus, M.; Sintes, J.; Llige, D.; Segura-Garzon, D.; Bascones, S.; Yeste, A.; Grasset, E. K.; Gutzeit, C.; Uzzan, M.; Ramanujam, M.; van Zelm, M. C.; Albero-Gonzalez, R.; Vazquez, I.; Iglesias, M.; Serrano, S.; Marquez, L.; Mercade, E.; Mehandru, S.; Cerutti, A. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity, 2017, 47(1), 118.
[http://dx.doi.org/10.1016/j.immuni.2017.06.013]
[115]
Zeng, Q.; He, X.; Puthiyakunnon, S.; Xiao, H.; Gong, Z.; Boddu, S.; Chen, L.; Tian, H.; Huang, S.-H.; Cao, H. Probiotic mixture golden bifido prevents neonatal Escherichia coli K1 translocation via enhancing intestinal defense. Front. Microbiol., 2017, 8, 1798.
[http://dx.doi.org/10.3389/fmicb.2017.01798]
[116]
Glaysher, B. R.; Mabbott, N. A. Isolated lymphoid follicle maturation induces the development of follicular dendritic cells. Immunology, 2007, 120(3), 336-344.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02508.x]
[117]
Zhang, X.-Y.; Guan, S.; Zhang, H.-F.; Li, R.-Y.; Liu, Z.-M. Activation of PD-1 protects intestinal immune defense through IL-10/miR-155 pathway after intestinal Ischemia reperfusion. Digest. Dis. Sci., 2018, 63(12), 3307-3316.
[http://dx.doi.org/10.1007/s10620-018-5282-2]
[118]
Worm, J.; Stenvang, J.; Petri, A.; Frederiksen, K. S.; Obad, S.; Elmen, J.; Hedtjarn, M.; Straarup, E. M.; Hansen, J. B.; Kauppinen, S. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res., 2009, 37(17), 5784-5792.
[http://dx.doi.org/10.1093/nar/gkp577]
[119]
McCoy, C.E.; Sheedy, F.J.; Qualls, J.E.; Doyle, S.L.; Quinn, S.R.; Murray, P.J.; O'Neill, L.A.J. IL-10 inhibits miR-155 induction by toll-like receptors. J. Biol. Chem., 2010, 285(27), 20492-20498.
[http://dx.doi.org/10.1074/jbc.M110.102111]
[120]
Zhang, X.Y.; Liu, Z.M.; Zhang, H.; Li, Y.S.; Wen, S.H.; Shen, J.T.; Liu, K.X. Decreased PD-1/PD-L1 expression is associated with the reduction in mucosal immunoglobulin a in mice with intestinal ischemia reperfusion. Dig. Dis. Sci., 2015, 60(9), 2662-2669.
[http://dx.doi.org/10.1007/s10620-015-3684-y] [PMID: 25944714]
[121]
Rosenberg, J. E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M. S.; Balar, A. V.; Necchi, A.; Dawson, N.; O'Donnell, P. H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M. M.; Grivas, P.; Joseph, R. W.; Galsky, M. D.; Fleming, M. T.; Petrylak, D. P.; Perez-Gracia, J. L.; Burris, H. A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G. M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G. D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet, 2016, 387, (10031), 1909-1920.
[http://dx.doi.org/10.1016/S0140-6736(16)00561-4]
[122]
Volders, P.J.; Anckaert, J.; Verheggen, K.; Nuytens, J.; Martens, L.; Mestdagh, P.; Vandesompele, J. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res., 2019, 47(D1), D135-D139.
[http://dx.doi.org/10.1093/nar/gky1031] [PMID: 30371849]
[123]
Zheng, B.; Wang, H.; Cui, G.; Guo, Q.; Si, L.; Yan, H.; Fang, D.; Jiang, L.; Jiang, Z.; Zhou, J. ERG-associated lncRNA (ERGAL) promotes the stability and integrity of vascular endothelial barrier during dengue viral infection via interaction With miR-183-5p. Front. Cell. Infect. Microbiol., 2020, 10, 477.
[http://dx.doi.org/10.3389/fcimb.2020.00477] [PMID: 33014896]
[124]
Stojic, L.; Lun, A.T.L.; Mascalchi, P.; Ernst, C.; Redmond, A.M.; Mangei, J.; Barr, A.R.; Bousgouni, V.; Bakal, C.; Marioni, J.C.; Odom, D.T.; Gergely, F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nat. Commun., 2020, 11(1), 1851.
[125]
Nong, W. Long non-coding RNA NEAT1/miR-193a-3p regulates LPS-induced apoptosis and inflammatory injury in WI-38 cells through TLR4/NF-κB signaling. Am. J. Transl. Res., 2019, 11(9), 5944-5955.
[PMID: 31632562]
[126]
Takata, M.; Pachera, E.; Frank-Bertoncelj, M.; Kozlova, A.; Jüngel, A.; Whitfield, M.L.; Assassi, S.; Calcagni, M.; Vries-Bouwstra, J.; Huizinga, T.W.; Kurreeman, F.; Kania, G.; Distler, O. OTUD6B-AS1 might be a novel regulator of apoptosis in systemic sclerosis. Front. Immunol., 2019, 10, 1100.
[http://dx.doi.org/10.3389/fimmu.2019.01100] [PMID: 31156645]
[127]
Hansen, T.B.; Venø, M.T.; Damgaard, C.K.; Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Res., 2016, 44(6), e58.
[http://dx.doi.org/10.1093/nar/gkv1458] [PMID: 26657634]
[128]
Sun, Q.; Tripathi, V.; Yoon, J.H.; Singh, D.K.; Hao, Q.; Min, K.W.; Davila, S.; Zealy, R.W.; Li, X.L.; Polycarpou-Schwarz, M.; Lehrmann, E.; Zhang, Y.; Becker, K.G.; Freier, S.M.; Zhu, Y.; Diederichs, S.; Prasanth, S.G.; Lal, A.; Gorospe, M.; Prasanth, K.V. MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res., 2018, 46(19), 10405-10416.
[http://dx.doi.org/10.1093/nar/gky696] [PMID: 30102375]
[129]
Zhang, S.; Shen, S.; Yang, Z.; Kong, X.; Liu, F.; Zhen, Z. Coding and non-coding RNAs: Molecular basis of forest-insect outbreaks. Front. Cell Dev. Biol., 2020, 8, 369.
[http://dx.doi.org/10.3389/fcell.2020.00369] [PMID: 32596236]
[130]
Ning, J.; He, K.; Cheng, F.; Li, W.; Yu, W.; Li, H.; Rao, T.; Ruan, Y. Long non-coding RNA MEG3 promotes pyroptosis in testicular Ischemia-reperfusion injury by targeting MiR-29a to modulate PTEN expression. Front. Cell Dev. Biol., 2021, 9, 671613.
[http://dx.doi.org/10.3389/fcell.2021.671613] [PMID: 34222244]
[131]
Liu, D.; Liu, Y.; Zheng, X.; Liu, N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia–reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis., 2021, 12(2), 191.
[http://dx.doi.org/10.1038/s41419-021-03466-5] [PMID: 33602903]
[132]
Liang, J.; Wang, Q.; Li, J.Q.; Guo, T.; Yu, D. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp. Neurol., 2020, 325, 113139.
[http://dx.doi.org/10.1016/j.expneurol.2019.113139] [PMID: 31794744]
[133]
Yu, W.; Wang, S.; Chen, J. MEG3/miR-223: A potentially reliable risk factor predictor for myocardial ischemia-reperfusion injury. Int. J. Cardiol., 2019, 293, 259.
[http://dx.doi.org/10.1016/j.ijcard.2019.07.031] [PMID: 31447040]
[134]
Huang, X.; Gao, Y.; Qin, J.; Lu, S. The mechanism of long non‐coding RNA MEG3 for hepatic ischemia‐reperfusion: Mediated by miR‐34a/Nrf2 signaling pathway. J. Cell. Biochem., 2018, 119(1), 1163-1172.
[http://dx.doi.org/10.1002/jcb.26286] [PMID: 28708282]
[135]
Zhang, W.; Xu, Y.; Chen, Z.; Xu, Z.; Xu, H. Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett., 2011, 585(19), 3113-3119.
[http://dx.doi.org/10.1016/j.febslet.2011.08.045] [PMID: 21907710]
[136]
Hara-Chikuma, M.; Tanaka, M.; Verkman, A.S.; Yasui, M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat. Commun., 2020, 11(1), 5666.
[http://dx.doi.org/10.1038/s41467-020-19491-5] [PMID: 33168815]
[137]
Zhi, X.; Tao, J.; Li, Z.; Jiang, B.; Feng, J.; Yang, L.; Xu, H.; Xu, Z. MiR-874 promotes intestinal barrier dysfunction through targeting AQP3 following intestinal ischemic injury. FEBS Lett., 2014, 588(5), 757-763.
[http://dx.doi.org/10.1016/j.febslet.2014.01.022] [PMID: 24462679]
[138]
Su, Z.; Zhi, X.; Zhang, Q.; Yang, L.; Xu, H.; Xu, Z. LncRNA H19 functions as a competing endogenous RNA to regulate AQP3 expression by sponging miR-874 in the intestinal barrier. FEBS Lett., 2016, 590(9), 1354-1364.
[http://dx.doi.org/10.1002/1873-3468.12171] [PMID: 27059301]
[139]
Qin, C.; Xia, X.; Fan, Y.; Jiang, Y.; Chen, Y.; Zhang, N.; Uslu, B.; Johnson, J.; Kallen, A.N. A novel, noncoding-RNA-mediated, post-transcriptional mechanism of anti-Mullerian hormone regulation by the H19/let-7 axis. Biol. Reprod., 2019, 100(1), 101-111.
[http://dx.doi.org/10.1093/biolre/ioy172] [PMID: 30137224]
[140]
Wang, J.Y.; Cui, Y.H.; Xiao, L.; Chung, H.K.; Zhang, Y.; Rao, J.N.; Gorospe, M.; Wang, J.Y. Regulation of intestinal epithelial barrier function by long noncoding RNA uc.173 through interaction with MicroRNA 29b. Mol. Cell. Biol., 2018, 38(13), e00010-18.
[http://dx.doi.org/10.1128/MCB.00010-18] [PMID: 29632078]
[141]
Xu, M.; Xiang, Y.; Liu, X.; Bai, B.; Chen, R.; Liu, L.; Li, M. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mβ. RNA Biol., 2019, 16(1), 42-53.
[http://dx.doi.org/10.1080/15476286.2018.1556148] [PMID: 30526271]
[142]
Siang, D.T.C.; Lim, Y.C.; Kyaw, A.M.M.; Win, K.N.; Chia, S.Y.; Degirmenci, U.; Hu, X.; Tan, B.C.; Walet, A.C.E.; Sun, L.; Xu, D. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat. Commun., 2020, 11(1), 213.
[http://dx.doi.org/10.1038/s41467-019-14001-8] [PMID: 31924774]
[143]
Park, K.S.; Mitra, A.; Rahat, B.; Kim, K.; Pfeifer, K. Loss of imprinting mutations define both distinct and overlapping roles for misexpression of IGF2 and of H19 lncRNA. Nucleic Acids Res., 2017, 45(22), 12766-12779.
[http://dx.doi.org/10.1093/nar/gkx896] [PMID: 29244185]
[144]
Zou, T.; Jaladanki, S. K.; Liu, L.; Xiao, L.; Chung, H. K.; Wang, J.-Y.; Xu, Y.; Gorospe, M.; Wang, J.-Y. H19 long noncoding rna regulates intestinal epithelial barrier function via MicroRNA 675 by interacting with RNA-binding protein HuR. Mol. Cell. Biol., 2016, 36(9), 1332-1341.
[http://dx.doi.org/10.1128/MCB.01030-15]
[145]
Dai, Y.; Yan, L.; Fan, J.; Zou, Q. Urinary long non-coding RNA H19 may serve as a biomarker for early diagnosis of acute intestinal necrosis. J. South. Med. Univ., 2018, 38(7), 867-872.
[http://dx.doi.org/10.3969/j.issn.1673-4254.2018.07.16]
[146]
Lee, B.J.; Thake, C.D. Heat and hypoxic acclimation increase monocyte heat shock protein 72 but do not attenuate inflammation following hypoxic exercise. Front. Physiol., 2017, 8, 811.
[http://dx.doi.org/10.3389/fphys.2017.00811] [PMID: 29085305]
[147]
Li, Y.; Liu, T.; Li, Y.; Han, D.; Hong, J.; Yang, N.; He, J.; Peng, R.; Mi, X.; Kuang, C.; Zhou, Y.; Han, Y.; Shi, C.; Li, Z.; Guo, X. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway. Oxid. Med. Cell. Longev., 2020, 2020, 4751349.
[http://dx.doi.org/10.1155/2020/4751349] [PMID: 33029280]
[148]
He, L.; Zhang, H.; Zhou, X. Weanling offspring of dams maintained on serine-deficient diet are vulnerable to oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 8026496.
[http://dx.doi.org/10.1155/2018/8026496] [PMID: 30305866]
[149]
Shihabudeen Haider Ali, M.S.; Cheng, X.; Moran, M.; Haemmig, S.; Naldrett, M.J.; Alvarez, S.; Feinberg, M.W.; Sun, X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res., 2019, 47(3), 1505-1522.
[http://dx.doi.org/10.1093/nar/gky1190] [PMID: 30476192]
[150]
Tu, Y.; Zhu, M.; Wang, Z.; Wang, K.; Chen, L.; Liu, W.; Shi, Q.; Zhao, Q.; Sun, Y.; Wang, X.; Song, E.; Liu, X. Melatonin inhibits Müller cell activation and pro‐inflammatory cytokine production via upregulating the MEG3/miR‐204/Sirt1 axis in experimental diabetic retinopathy. J. Cell. Physiol., 2020, 235(11), 8724-8735.
[http://dx.doi.org/10.1002/jcp.29716] [PMID: 32324260]
[151]
Huang, X.; Pan, M.; Du, P.; Chen, Y.; Zhang, C.; Lu, W.; Lin, J. Maternally expressed 3 protects the intestinal barrier from cardiac arrest-induced ischemia/reperfusion injury via miR-34a-3p/sirtuin 1/nuclear factor kappa B signaling. Ann. Transl. Med., 2021, 9(2), 122.
[http://dx.doi.org/10.21037/atm-20-6438] [PMID: 33569424]
[152]
Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; Robinson, D.R.; Nesvizhskii, A.I.; Chinnaiyan, A.M. The landscape of circular RNA in cancer. Cell, 2019, 176(4), 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]
[153]
Chen, L.; Wang, C.; Sun, H.; Wang, J.; Liang, Y.; Wang, Y.; Wong, G. The bioinformatics toolbox for circRNA discovery and analysis. Brief. Bioinform., 2021, 22(2), 1706-1728.
[http://dx.doi.org/10.1093/bib/bbaa001] [PMID: 32103237]
[154]
Bao, Z.; Yang, Z.; Huang, Z.; Zhou, Y.; Cui, Q.; Dong, D. LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res., 2019, 47(D1), D1034-D1037.
[http://dx.doi.org/10.1093/nar/gky905] [PMID: 30285109]
[155]
Liu, X.; Hu, Z.; Zhou, J.; Tian, C.; Tian, G.; He, M.; Gao, L.; Chen, L.; Li, T.; Peng, H.; Zhang, W. Interior circular RNA. RNA Biol., 2020, 17(1), 87-97.
[http://dx.doi.org/10.1080/15476286.2019.1669391] [PMID: 31532701]
[156]
Dong, W.; Dai, Z.; Liu, F.; Guo, X.; Ge, C.; Ding, J.; Liu, H.; Yang, F. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine, 2019, 45, 155-167.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.030] [PMID: 31235426]
[157]
Kristensen, L.S.; Ebbesen, K.K.; Sokol, M.; Jakobsen, T.; Korsgaard, U.; Eriksen, A.C.; Hansen, T.B.; Kjems, J.; Hager, H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun., 2020, 11(1), 4551.
[http://dx.doi.org/10.1038/s41467-020-18355-2] [PMID: 32917870]
[158]
Yan, D.; Dong, W.; He, Q.; Yang, M.; Huang, L.; Kong, J.; Qin, H.; Lin, T.; Huang, J. Circular RNA circPICALM sponges miR-1265 to inhibit bladder cancer metastasis and influence FAK phosphorylation. EBioMedicine, 2019, 48, 316-331.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.074] [PMID: 31648990]
[159]
Wang, G.; Chen, Z.; Zhang, F.; Jing, H.; Xu, W.; Ning, S.; Li, Z.; Liu, K.; Yao, J.; Tian, X. Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway. Apoptosis, 2014, 19(9), 1342-1353.
[http://dx.doi.org/10.1007/s10495-014-1008-x]
[160]
Feng, D.; Yao, J.; Wang, G.; Li, Z.; Zu, G.; Li, Y.; Luo, F.; Ning, S.; Qasim, W.; Chen, Z.; Tian, X. Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats. Clin. Sci. (Lond.), 2017, 131(8), 759-773.
[http://dx.doi.org/10.1042/CS20160799] [PMID: 28232511]
[161]
Fu, R.; Zhou, J.; Wang, R.; Sun, R.; Feng, D.; Wang, Z.; Zhao, Y.; Lv, L.; Tian, X.; Yao, J. Protocatechuic acid-mediated mir-219a-5p activation inhibits the p66shc oxidant pathway to alleviate alcoholic liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 3527809.
[http://dx.doi.org/10.1155/2019/3527809] [PMID: 31428222]
[162]
Wang, Z.; Zhao, Y.; Sun, R.; Sun, Y.; Liu, D.; Lin, M.; Chen, Z.; Zhou, J.; Lv, L.; Tian, X.; Yao, J. Circ-CBFB upregulates p66Shc to perturb mitochondrial dynamics in APAP-induced liver injury. Cell Death Dis., 2020, 11(11), 953.
[http://dx.doi.org/10.1038/s41419-020-03160-y] [PMID: 33159035]
[163]
Feng, D.; Wang, Z.; Zhao, Y.; Li, Y.; Liu, D.; Chen, Z.; Ning, S.; Hu, Y.; Yao, J.; Tian, X. Circ-PRKCB acts as a ceRNA to regulate p66Shc-mediated oxidative stress in intestinal ischemia/reperfusion. Theranostics, 2020, 10(23), 10680-10696.
[http://dx.doi.org/10.7150/thno.44250] [PMID: 32929374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy