Abstract
Background: Multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) has become a prime health concern globally. These bacteria are found in hospital areas where they are regularly dealing with antibiotics. This brings many possibilities for its mutation, so drug resistance occurs.
Introduction: Nowadays, these nosocomial MRSA strains spread into the community and live stocks. Resistance in Staphylococcus aureus is due to mutations in their genetic elements.
Methods: As the bacteria become resistant to antibiotics, new approaches like antimicrobial peptides (AMPs) play a vital role and are more efficacious, economical, time, and energy saviours.
Results: Machine learning approaches of Artificial Intelligence are the in silico technique which has their importance in better prediction, analysis, and fetching of important details regarding AMPs.
Conclusion: Anti-microbial peptides could be the next-generation solution to combat drug resistance among Superbugs. For better prediction and analysis, implementing the in silico technique is beneficial for fast and more accurate results.
Graphical Abstract
[http://dx.doi.org/10.1080/13880209.2016.1190763] [PMID: 27246787]
[http://dx.doi.org/10.1038/s41598-021-88099-6] [PMID: 33888802]
[http://dx.doi.org/10.1186/s13054-017-1801-3] [PMID: 28807042]
[http://dx.doi.org/10.1371/journal.pone.0111627] [PMID: 25353631]
[http://dx.doi.org/10.1007/s00134-008-1153-1] [PMID: 18500421]
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[http://dx.doi.org/10.1038/s41579-018-0147-4] [PMID: 30737488]
[http://dx.doi.org/10.3390/antibiotics10060748] [PMID: 34205552]
[http://dx.doi.org/10.3390/ijerph18147602] [PMID: 34300053]
[http://dx.doi.org/10.1590/0037-8682-0373-2017] [PMID: 30304265]
[http://dx.doi.org/10.1155/2015/475062] [PMID: 26000295]
[PMID: 31396309]
[http://dx.doi.org/10.3389/fchem.2021.691532] [PMID: 34222199]
[http://dx.doi.org/10.1016/j.addr.2021.05.028] [PMID: 34090965]
[http://dx.doi.org/10.3390/ijms222111691] [PMID: 34769122]
[http://dx.doi.org/10.1080/23744235.2017.1280617] [PMID: 28135900]
[PMID: 27738564]
[http://dx.doi.org/10.1007/978-1-59745-468-1_7] [PMID: 18025671]
[http://dx.doi.org/10.3389/fmicb.2016.01293] [PMID: 27597849]
[http://dx.doi.org/10.1016/j.cmi.2016.11.002] [PMID: 27851997]
[http://dx.doi.org/10.1128/JCM.01006-19] [PMID: 31578263]
[PMID: 28656013]
[http://dx.doi.org/10.3389/fmicb.2017.02303] [PMID: 29259579]
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1] [PMID: 28013493]
[http://dx.doi.org/10.1002/ffj.1904]
[http://dx.doi.org/10.2174/1568026616666160713141439] [PMID: 27411324]
[http://dx.doi.org/10.1111/cxo.13125] [PMID: 32924208]
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[http://dx.doi.org/10.1016/j.mtla.2019.100494]
[http://dx.doi.org/10.1007/s00232-011-9343-0] [PMID: 21225255]
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[http://dx.doi.org/10.1016/S0006-3495(01)75802-X] [PMID: 11509361]
[http://dx.doi.org/10.1039/c2cp43099a] [PMID: 23093307]
[http://dx.doi.org/10.1016/j.peptides.2010.07.028] [PMID: 20705109]
[http://dx.doi.org/10.1021/acsami.0c09931] [PMID: 32909733]
[http://dx.doi.org/10.1016/j.bbamem.2004.12.004] [PMID: 15737328]
[http://dx.doi.org/10.1016/j.bbamem.2010.08.020] [PMID: 20833125]
[http://dx.doi.org/10.1016/j.bbamem.2010.03.012] [PMID: 20302840]
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<4:AID-BIP30>3.0.CO;2-M] [PMID: 10931439]
[http://dx.doi.org/10.2174/0929866053406084] [PMID: 15638801]
[http://dx.doi.org/10.1111/j.1747-0285.2010.01067.x] [PMID: 21266014]
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[http://dx.doi.org/10.2174/138920309789630589] [PMID: 19751192]
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[http://dx.doi.org/10.1016/j.ijantimicag.2019.10.008]
[http://dx.doi.org/10.1186/s12866-019-1416-8] [PMID: 30849936]
[http://dx.doi.org/10.1016/j.jgar.2019.10.022] [PMID: 31678322]
[http://dx.doi.org/10.1086/501633] [PMID: 10349956]
[http://dx.doi.org/10.4103/jpp.JPP_2_17] [PMID: 28706403]
[http://dx.doi.org/10.3390/antibiotics10081014] [PMID: 34439067]
[http://dx.doi.org/10.1007/s40121-016-0103-4] [PMID: 26831328]
[http://dx.doi.org/10.1093/jac/dku335] [PMID: 25190719]
[http://dx.doi.org/10.1093/jac/dkx437] [PMID: 29244141]
[PMID: 26770588]
[http://dx.doi.org/10.1128/AAC.44.7.1803-1808.2000] [PMID: 10858334]
[http://dx.doi.org/10.1128/AAC.03513-14] [PMID: 25331699]
[http://dx.doi.org/10.3390/ijms21197047] [PMID: 32987946]
[http://dx.doi.org/10.7717/peerj.12193] [PMID: 35003909]
[http://dx.doi.org/10.1093/nar/gkp1021] [PMID: 19923233]
[http://dx.doi.org/10.1038/srep24684] [PMID: 27089856]
[http://dx.doi.org/10.1109/TCBB.2012.89] [PMID: 22732690]
[http://dx.doi.org/10.1093/bioinformatics/btab681] [PMID: 34613360]
[http://dx.doi.org/10.1155/2015/212715] [PMID: 25802839]
[http://dx.doi.org/10.1371/journal.pone.0018476] [PMID: 21533231]
[http://dx.doi.org/10.1002/pro.3714] [PMID: 31441165]
[http://dx.doi.org/10.1093/nar/gkn823] [PMID: 18957441]
[http://dx.doi.org/10.1093/nar/gkab651] [PMID: 34390348]
[http://dx.doi.org/10.1080/08927014.2015.1021340] [PMID: 25760404]
[http://dx.doi.org/10.1109/TCBB.2014.2359442] [PMID: 26357271]
[http://dx.doi.org/10.1016/j.ijantimicag.2011.12.003] [PMID: 22325123]
[http://dx.doi.org/10.1016/bs.apcsb.2018.01.006] [PMID: 29680238]
[http://dx.doi.org/10.3389/fmolb.2021.669431] [PMID: 33996914]
[http://dx.doi.org/10.1016/j.ejmech.2020.112312] [PMID: 32442851]
[http://dx.doi.org/10.1016/j.nmni.2017.08.005] [PMID: 29158906]
[http://dx.doi.org/10.1021/ml300047h] [PMID: 24900523]
[http://dx.doi.org/10.1371/journal.pone.0206578] [PMID: 30365554]
[http://dx.doi.org/10.21786/bbrc/13.2/42]
[http://dx.doi.org/10.1515/jbcpp-2019-0282] [PMID: 31953996]
[http://dx.doi.org/10.1089/mdr.2020.0196] [PMID: 33983855]
[http://dx.doi.org/10.3390/cryst10080692]
[http://dx.doi.org/10.13005/ojc/350216]
[http://dx.doi.org/10.3389/fmicb.2019.01175] [PMID: 31191493]
[http://dx.doi.org/10.1016/j.addr.2014.10.013] [PMID: 25453271]
[http://dx.doi.org/10.1016/j.bpj.2018.09.008] [PMID: 30297133]
[http://dx.doi.org/10.2174/1381612824666180213130318] [PMID: 29436993]
[http://dx.doi.org/10.3389/fmicb.2021.710199] [PMID: 34475862]
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[http://dx.doi.org/10.1016/j.colsurfb.2020.110835] [PMID: 32033885]
[http://dx.doi.org/10.1016/j.jfda.2018.09.004] [PMID: 30648586]
[http://dx.doi.org/10.1016/j.ejmech.2020.113056] [PMID: 33280899]
[http://dx.doi.org/10.2174/138955712801264774] [PMID: 22512554]
[http://dx.doi.org/10.1021/acssynbio.7b00293] [PMID: 29125739]
[http://dx.doi.org/10.1016/j.cbpa.2017.03.014] [PMID: 28399505]
[http://dx.doi.org/10.3390/biom10040652] [PMID: 32340301]
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[http://dx.doi.org/10.1007/s10989-010-9230-z] [PMID: 20835389]
[http://dx.doi.org/10.1167/tvst.9.2.14] [PMID: 32704420]
[http://dx.doi.org/10.1016/j.metabol.2017.01.011] [PMID: 28126242]
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[http://dx.doi.org/10.1098/rsfs.2016.0153] [PMID: 29147555]
[http://dx.doi.org/10.3389/fmicb.2019.03097] [PMID: 32038544]
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[http://dx.doi.org/10.1038/s41598-018-19752-w] [PMID: 29374199]
[http://dx.doi.org/10.1007/978-3-319-32695-5_8]
[http://dx.doi.org/10.1021/ci300328y] [PMID: 23094651]
[http://dx.doi.org/10.4049/jimmunol.0901813]
[http://dx.doi.org/10.1038/s41598-018-19669-4] [PMID: 29382854]
[http://dx.doi.org/10.1016/j.nantod.2021.101229]
[http://dx.doi.org/10.3390/biom11030471] [PMID: 33810011]
[http://dx.doi.org/10.1038/nature05233] [PMID: 17051220]
[http://dx.doi.org/10.1016/j.bbagen.2018.06.011] [PMID: 29928920]
[http://dx.doi.org/10.1023/A:1014389729000] [PMID: 11918076]
[http://dx.doi.org/10.1038/s41467-018-03746-3] [PMID: 29662055]
[http://dx.doi.org/10.1016/j.chempr.2018.01.005]
[http://dx.doi.org/10.1093/bioinformatics/btaa724] [PMID: 32804993]
[http://dx.doi.org/10.1371/journal.pone.0194289] [PMID: 29534106]
[http://dx.doi.org/10.1016/j.meegid.2019.103935] [PMID: 31233781]
[http://dx.doi.org/10.5812/jjm.35685] [PMID: 27679706]
[http://dx.doi.org/10.1007/978-1-60327-999-4_11] [PMID: 19521872]
[http://dx.doi.org/10.3389/fmicb.2015.00791] [PMID: 26300860]
[http://dx.doi.org/10.1116/6.0001590] [PMID: 35345884]
[http://dx.doi.org/10.1080/14789450.2018.1438193] [PMID: 29411645]
[http://dx.doi.org/10.1039/D1SC01713F] [PMID: 34349895]
[http://dx.doi.org/10.4155/fmc-2016-0188] [PMID: 28211294]
[http://dx.doi.org/10.1038/srep22843] [PMID: 26953092]
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[http://dx.doi.org/10.1038/s41598-020-67701-3] [PMID: 32616760]
[http://dx.doi.org/10.1186/s12859-015-0702-1] [PMID: 26303676]
[http://dx.doi.org/10.1038/s41598-020-73644-6] [PMID: 33024236]
[http://dx.doi.org/10.1007/s11517-021-02443-6] [PMID: 34632545]
[http://dx.doi.org/10.1016/j.etap.2006.08.004] [PMID: 21783753]
[http://dx.doi.org/10.1016/j.jcms.2009.03.017] [PMID: 19473851]