Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Anti-microbial Peptides against Methicillin-resistant Staphylococcus aureus: Promising Therapeutics

Author(s): Priyanka Sinoliya, Pooran Singh Solanki, Sakshi Piplani, Ravi Ranjan Kumar Niraj* and Vinay Sharma*

Volume 24, Issue 2, 2023

Published on: 06 January, 2023

Page: [156 - 177] Pages: 22

DOI: 10.2174/1389203724666221216115850

Price: $65

Abstract

Background: Multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) has become a prime health concern globally. These bacteria are found in hospital areas where they are regularly dealing with antibiotics. This brings many possibilities for its mutation, so drug resistance occurs.

Introduction: Nowadays, these nosocomial MRSA strains spread into the community and live stocks. Resistance in Staphylococcus aureus is due to mutations in their genetic elements.

Methods: As the bacteria become resistant to antibiotics, new approaches like antimicrobial peptides (AMPs) play a vital role and are more efficacious, economical, time, and energy saviours.

Results: Machine learning approaches of Artificial Intelligence are the in silico technique which has their importance in better prediction, analysis, and fetching of important details regarding AMPs.

Conclusion: Anti-microbial peptides could be the next-generation solution to combat drug resistance among Superbugs. For better prediction and analysis, implementing the in silico technique is beneficial for fast and more accurate results.

Graphical Abstract

[1]
Zouhir, A.; Jridi, T.; Nefzi, A.; Ben Hamida, J.; Sebei, K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils. Pharm. Biol., 2016, 54(12), 3136-3150.
[http://dx.doi.org/10.1080/13880209.2016.1190763] [PMID: 27246787]
[2]
Banerjee, S.; Sionov, R.V.; Feldman, M.; Smoum, R.; Mechoulam, R.; Steinberg, D. Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci. Rep., 2021, 11(1), 8690.
[http://dx.doi.org/10.1038/s41598-021-88099-6] [PMID: 33888802]
[3]
Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit. Care, 2017, 21(1), 211.
[http://dx.doi.org/10.1186/s13054-017-1801-3] [PMID: 28807042]
[4]
Warnke, P.; Frickmann, H.; Ottl, P.; Podbielski, A. Nasal screening for MRSA: different swabs--different results! PLoS One, 2014, 9(10), e111627.
[http://dx.doi.org/10.1371/journal.pone.0111627] [PMID: 25353631]
[5]
Batra, R.; Eziefula, A.C.; Wyncoll, D.; Edgeworth, J. Throat and rectal swabs may have an important role in MRSA screening of critically ill patients. Intensive Care Med., 2008, 34(9), 1703-1706.
[http://dx.doi.org/10.1007/s00134-008-1153-1] [PMID: 18500421]
[6]
Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-e18.
[http://dx.doi.org/10.1128/CMR.00020-18] [PMID: 30209034]
[7]
Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Jr Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol., 2019, 17(4), 203-218.
[http://dx.doi.org/10.1038/s41579-018-0147-4] [PMID: 30737488]
[8]
Hsu, B.M.; Chen, J.S.; Lin, I.C.; Hsu, G.J.; Koner, S.; Hussain, B.; Huang, S.W.; Tsai, H.C. Molecular and anti-microbial resistance (AMR) profiling of methicillin-resistant Staphylococcus aureus (MRSA) from hospital and long-term care facilities (LTCF) environment. Antibiotics (Basel), 2021, 10(6), 748.
[http://dx.doi.org/10.3390/antibiotics10060748] [PMID: 34205552]
[9]
Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus Biofilm: morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health, 2021, 18(14), 7602.
[http://dx.doi.org/10.3390/ijerph18147602] [PMID: 34300053]
[10]
Sohail, M.; Latif, Z. Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in central venous catheters. Rev. Soc. Bras. Med. Trop., 2018, 51(5), 603-609.
[http://dx.doi.org/10.1590/0037-8682-0373-2017] [PMID: 30304265]
[11]
Lee, H.T.; Lee, C.C.; Yang, J.R.; Lai, J.Z.C.; Chang, K.Y. A large-scale structural classification of antimicrobial peptides. BioMed Res. Int., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/475062] [PMID: 26000295]
[12]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[13]
Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front Chem., 2021, 9, 691532.
[http://dx.doi.org/10.3389/fchem.2021.691532] [PMID: 34222199]
[14]
Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev., 2021, 175, 113818.
[http://dx.doi.org/10.1016/j.addr.2021.05.028] [PMID: 34090965]
[15]
Bin Hafeez, A.; Jiang, X.; Bergen, P.J.; Zhu, Y. Antimicrobial peptides: An update on classifications and databases. Int. J. Mol. Sci., 2021, 22(21), 11691.
[http://dx.doi.org/10.3390/ijms222111691] [PMID: 34769122]
[16]
Hagstrand Aldman, M.; Skovby, A.; Påhlman, I. L. Penicillin-susceptible Staphylococcus aureus: susceptibility testing, resistance rates and outcome of infection. Infect. Dis. (Lond.), 2017, 49(6), 454-460.
[http://dx.doi.org/10.1080/23744235.2017.1280617] [PMID: 28135900]
[17]
Fukunaga, B.T.; Sumida, W.K.; Taira, D.A.; Davis, J.W.; Seto, T.B. Hospital-acquired methicillin-resistant Staphylococcus aureus bacteremia related to medicare antibiotic prescriptions: A state-level analysis. Hawaii J. Med. Public Health, 2016, 75(10), 303-309.
[PMID: 27738564]
[18]
Ito, T.; Kuwahara, K.; Hiramatsu, K. Staphylococcal cassette chromosome mec(SCC mec) analysis of MRSA. Methods Mol. Biol., 2007, 391, 87-102.
[http://dx.doi.org/10.1007/978-1-59745-468-1_7] [PMID: 18025671]
[19]
Qin, L.; McCausland, J.W.; Cheung, G.Y.C.; Otto, M. PSM-Mec—A virulence determinant that connects transcriptional regulation, virulence, and antibiotic resistance in staphylococci. Front. Microbiol., 2016, 7, 1293.
[http://dx.doi.org/10.3389/fmicb.2016.01293] [PMID: 27597849]
[20]
Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin. Microbiol. Infect., 2017, 23(6), 373-380.
[http://dx.doi.org/10.1016/j.cmi.2016.11.002] [PMID: 27851997]
[21]
Álvarez, A.; Fernández, L.; Gutiérrez, D.; Iglesias, B.; Rodríguez, A.; García, P. Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest trends and treatments based on bacteriophages. J. Clin. Microbiol., 2019, 57(12), e01006-e01019.
[http://dx.doi.org/10.1128/JCM.01006-19] [PMID: 31578263]
[22]
McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med., 2017, 90(2), 269-281.
[PMID: 28656013]
[23]
Roch, M.; Gagetti, P.; Davis, J.; Ceriana, P.; Errecalde, L.; Corso, A.; Rosato, A.E. Daptomycin resistance in clinical MRSA strains is associated with a high biological fitness cost. Front. Microbiol., 2017, 8, 2303.
[http://dx.doi.org/10.3389/fmicb.2017.02303] [PMID: 29259579]
[24]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol., 2017, 55(1), 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[25]
Haney, E.F.; Mansour, S.C.; Hancock, R.E.W. Antimicrobial peptides: An introduction. Methods Mol. Biol., 2017, 1548, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1] [PMID: 28013493]
[26]
Chao, S.; Young, G.; Oberg, C.; Nakaoka, K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragrance J., 2008, 23(6), 444-449.
[http://dx.doi.org/10.1002/ffj.1904]
[27]
Sánchez-Gómez, S.; Martínez-de-Tejada, G. Antimicrobial peptides as anti-biofilm agents in medical implants. Curr. Top. Med. Chem., 2016, 17(5), 590-603.
[http://dx.doi.org/10.2174/1568026616666160713141439] [PMID: 27411324]
[28]
Tummanapalli, S.S.; Willcox, M.D.P. Antimicrobial resistance of ocular microbes and the role of antimicrobial peptides. Clin. Exp. Optom., 2021, 104(3), 295-307.
[http://dx.doi.org/10.1111/cxo.13125] [PMID: 32924208]
[29]
Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides–Advances in development of therapeutic applications. Life Sci., 2020, 260, 118407.
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[30]
Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia (Oxf.), 2019, 8, 100494.
[http://dx.doi.org/10.1016/j.mtla.2019.100494]
[31]
Wimley, W.C.; Hristova, K. Antimicrobial peptides: successes, challenges and unanswered questions. J. Membr. Biol., 2011, 239(1-2), 27-34.
[http://dx.doi.org/10.1007/s00232-011-9343-0] [PMID: 21225255]
[32]
Chung, P.Y.; Khanum, R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J. Microbiol. Immunol. Infect., 2017, 50(4), 405-410.
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[33]
Yang, L.; Harroun, T.A.; Weiss, T.M.; Ding, L.; Huang, H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J., 2001, 81(3), 1475-1485.
[http://dx.doi.org/10.1016/S0006-3495(01)75802-X] [PMID: 11509361]
[34]
Fernandez, D.I.; Le Brun, A.P.; Whitwell, T.C.; Sani, M.A.; James, M.; Separovic, F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys. Chem. Chem. Phys., 2012, 14(45), 15739-15751.
[http://dx.doi.org/10.1039/c2cp43099a] [PMID: 23093307]
[35]
Dean, R.E.; O’Brien, L.M.; Thwaite, J.E.; Fox, M.A.; Atkins, H.; Ulaeto, D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, 31(11), 1966-1972.
[http://dx.doi.org/10.1016/j.peptides.2010.07.028] [PMID: 20705109]
[36]
Gong, H.; Liao, M.; Hu, X.; Fa, K.; Phanphak, S.; Ciumac, D.; Hollowell, P.; Shen, K.; Clifton, L.A.; Campana, M.; Webster, J.R.P.; Fragneto, G.; Waigh, T.A.; McBain, A.J.; Lu, J.R. Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. ACS Appl. Mater. Interfaces, 2020, 12(40), 44420-44432.
[http://dx.doi.org/10.1021/acsami.0c09931] [PMID: 32909733]
[37]
Hunter, H.N.; Jing, W.; Schibli, D.J.; Trinh, T.; Park, I.Y.; Kim, S.C.; Vogel, H.J. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochim. Biophys. Acta Biomembr., 2005, 1668(2), 175-189.
[http://dx.doi.org/10.1016/j.bbamem.2004.12.004] [PMID: 15737328]
[38]
Legrand, B.; Laurencin, M.; Sarkis, J.; Duval, E.; Mouret, L.; Hubert, J.F.; Collen, M.; Vié, V.; Zatylny-Gaudin, C.; Henry, J.; Baudy-Floc’h, M.; Bondon, A. Structure and mechanism of action of a de novo antimicrobial detergent-like peptide. Biochim. Biophys. Acta Biomembr., 2011, 1808(1), 106-116.
[http://dx.doi.org/10.1016/j.bbamem.2010.08.020] [PMID: 20833125]
[39]
Epand, R.M.; Epand, R.F.; Arnusch, C.J.; Papahadjopoulos-Sternberg, B.; Wang, G.; Shai, Y. Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim. Biophys. Acta Biomembr., 2010, 1798(6), 1272-1280.
[http://dx.doi.org/10.1016/j.bbamem.2010.03.012] [PMID: 20302840]
[40]
Mwangi, J.; Hao, X.; Lai, R.; Zhang, Z.Y. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool. Res., 2019, 40(6), 488-505.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[41]
Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers, 2000, 55(1), 4-30.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<4:AID-BIP30>3.0.CO;2-M] [PMID: 10931439]
[42]
Dennison, S.; Wallace, J.; Harris, F.; Phoenix, D. Amphiphilic α-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett., 2005, 12(1), 31-39.
[http://dx.doi.org/10.2174/0929866053406084] [PMID: 15638801]
[43]
Godballe, T.; Nilsson, L.L.; Petersen, P.D.; Jenssen, H. Antimicrobial β-Peptides and α-. Peptoids. Chem. Biol. Drug Des., 2011, 77(2), 107-116.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01067.x] [PMID: 21266014]
[44]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[45]
Harris, F.; Dennison, S.; Phoenix, D. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 2009, 10(6), 585-606.
[http://dx.doi.org/10.2174/138920309789630589] [PMID: 19751192]
[46]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[47]
Greber, K. E.; Roch, M.; Rosato, M. A.; Martinez, M. P.; Rosato, A. E. Efficacy of newly generated short antimicrobial cationic lipopeptides against methicillin-resistant staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents, 2019, S0924-8579(19), 302821.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.10.008]
[48]
Geitani, R.; Ayoub Moubareck, C.; Touqui, L.; Karam Sarkis, D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol., 2019, 19(1), 54.
[http://dx.doi.org/10.1186/s12866-019-1416-8] [PMID: 30849936]
[49]
Ciandrini, E.; Morroni, G.; Cirioni, O.; Kamysz, W.; Kamysz, E.; Brescini, L.; Baffone, W.; Campana, R. Synergis Combinations of Antimicrobial Peptides (AMPs) against Biofilms of Methicillin-Resistant Staphylococcus aureus (MRSA) on Polystyrene and Medical Devices. J. Glob. Antimicrob. Resist., 2020, 21, 203-210.
[http://dx.doi.org/10.1016/j.jgar.2019.10.022] [PMID: 31678322]
[50]
Soto, N.E.; Vaghjimal, A.; Stahl-Avicolli, A.; Protic, J.R.; Lutwick, L.I.; Chapnick, E.K. Bacitracin versus mupirocin for Staphylococcus aureus nasal colonization. Infect. Control Hosp. Epidemiol., 1999, 20(5), 351-353.
[http://dx.doi.org/10.1086/501633] [PMID: 10349956]
[51]
Barber, K.E.; Tirmizi, A.; Finley, R.; Stover, K.R. Dalbavancin use for the treatment of methicillin-resistant Staphylococcus aureus pneumonia. J. Pharmacol. Pharmacother., 2017, 8(2), 77-79.
[http://dx.doi.org/10.4103/jpp.JPP_2_17] [PMID: 28706403]
[52]
Maraolo, A.E.; Giaccone, A.; Gentile, I.; Saracino, A.; Bavaro, D.F. Daptomycin versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bloodstream infection with or without endocarditis: A systematic review and meta-analysis. Antibiotics (Basel), 2021, 10(8), 1014.
[http://dx.doi.org/10.3390/antibiotics10081014] [PMID: 34439067]
[53]
Brade, K.D.; Rybak, J.M.; Rybak, M.J. Oritavancin: A new lipoglycopeptide antibiotic in the treatment of gram-positive infections. Infect. Dis. Ther., 2016, 5(1), 1-15.
[http://dx.doi.org/10.1007/s40121-016-0103-4] [PMID: 26831328]
[54]
Lee, C.H.; Tsai, C.Y.; Li, C.C.; Chien, C.C.; Liu, J.W. Teicoplanin therapy for MRSA bacteraemia: A retrospective study emphasizing the importance of maintenance dosing in improving clinical outcomes. J. Antimicrob. Chemother., 2015, 70(1), 257-263.
[http://dx.doi.org/10.1093/jac/dku335] [PMID: 25190719]
[55]
Britt, N.S.; Tirmizi, S.; Ritchie, D.J.; Topal, J.E.; McManus, D.; Nizet, V.; Casabar, E.; Sakoulas, G. Telavancin for refractory MRSA bacteraemia in intermittent haemodialysis recipients. J. Antimicrob. Chemother., 2018, 73(3), 764-767.
[http://dx.doi.org/10.1093/jac/dkx437] [PMID: 29244141]
[56]
Tang, J.; Hu, J.; Kang, L.; Deng, Z.; Wu, J.; Pan, J. The use of vancomycin in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: a survey in a tertiary hospital in China. Int. J. Clin. Exp. Med., 2015, 8(10), 19436-19441.
[PMID: 26770588]
[57]
Mosca, D.A.; Hurst, M.A.; So, W.; Viajar, B.S.C.; Fujii, C.A.; Falla, T.J. IB-367, a protegrin peptide with in vitro and in vivo activities against the microflora associated with oral mucositis. Antimicrob. Agents Chemother., 2000, 44(7), 1803-1808.
[http://dx.doi.org/10.1128/AAC.44.7.1803-1808.2000] [PMID: 10858334]
[58]
Nilsson, A.C.; Janson, H.; Wold, H.; Fugelli, A.; Andersson, K.; Håkangård, C.; Olsson, P.; Olsen, W.M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(1), 145-151.
[http://dx.doi.org/10.1128/AAC.03513-14] [PMID: 25331699]
[59]
Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.P.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci., 2020, 21(19), 7047.
[http://dx.doi.org/10.3390/ijms21197047] [PMID: 32987946]
[60]
Zainal Baharin, N.H.; Khairil Mokhtar, N.F.; Mohd Desa, M.N.; Gopalsamy, B.; Mohd Zaki, N.N.; Yuswan, M.H.; Muthanna, A.; Dzaraly, N.D.; Abbasiliasi, S.; Mohd Hashim, A.; Abdullah Sani, M.S.; Mustafa, S. The characteristics and roles of antimicrobial peptides as potential treatment for antibiotic-resistant pathogens: a review. PeerJ, 2021, 9, e12193.
[http://dx.doi.org/10.7717/peerj.12193] [PMID: 35003909]
[61]
Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K.; Idicula-Thomas, S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D774-D780.
[http://dx.doi.org/10.1093/nar/gkp1021] [PMID: 19923233]
[62]
Waghu, F.H.; Barai, R.S.; Idicula-Thomas, S. Leveraging family-specific signatures for AMP discovery and high-throughput annotation. Sci. Rep., 2016, 6(1), 24684.
[http://dx.doi.org/10.1038/srep24684] [PMID: 27089856]
[63]
Joseph, S.; Karnik, S.; Nilawe, P.; Jayaraman, V.K.; Idicula-Thomas, S. ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2012, 9(5), 1535-1538.
[http://dx.doi.org/10.1109/TCBB.2012.89] [PMID: 22732690]
[64]
Ren, Y.; Chakraborty, T.; Doijad, S.; Falgenhauer, L.; Falgenhauer, J.; Goesmann, A.; Hauschild, A.C.; Schwengers, O.; Heider, D. Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning. Bioinformatics, 2022, 38(2), 325-334.
[http://dx.doi.org/10.1093/bioinformatics/btab681] [PMID: 34613360]
[65]
Ng, X.Y.; Rosdi, B.A.; Shahrudin, S. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity. BioMed Res. Int., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/212715] [PMID: 25802839]
[66]
Wang, P.; Hu, L.; Liu, G.; Jiang, N.; Chen, X.; Xu, J.; Zheng, W.; Li, L.; Tan, M.; Chen, Z.; Song, H.; Cai, Y.D.; Chou, K.C. Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One, 2011, 6(4), e18476.
[http://dx.doi.org/10.1371/journal.pone.0018476] [PMID: 21533231]
[67]
Waghu, F.H.; Idicula-Thomas, S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci., 2020, 29(1), 36-42.
[http://dx.doi.org/10.1002/pro.3714] [PMID: 31441165]
[68]
Wang, G.; Li, X.; Wang, Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009, 37(Database issue)(Suppl. 1), D933-D937.
[http://dx.doi.org/10.1093/nar/gkn823] [PMID: 18957441]
[69]
Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496.
[http://dx.doi.org/10.1093/nar/gkab651] [PMID: 34390348]
[70]
Di Luca, M.; Maccari, G.; Maisetta, G.; Batoni, G. BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling, 2015, 31(2), 193-199.
[http://dx.doi.org/10.1080/08927014.2015.1021340] [PMID: 25760404]
[71]
Gopinath, K.; Jayakumararaj, R.; Karthikeyan, M. DAPD: A knowledgebase for diabetes associated proteins. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2015, 12(3), 604-610.
[http://dx.doi.org/10.1109/TCBB.2014.2359442] [PMID: 26357271]
[72]
Piotto, S.P.; Sessa, L.; Concilio, S.; Iannelli, P. YADAMP: yet another database of antimicrobial peptides. Int. J. Antimicrob. Agents, 2012, 39(4), 346-351.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.12.003] [PMID: 22325123]
[73]
Usmani, S.S.; Kumar, R.; Bhalla, S.; Kumar, V.; Raghava, G.P.S. In silico tools and databases for designing peptide-based vaccine and drugs. Adv. Protein Chem. Struct. Biol., 2018, 112, 221-263.
[http://dx.doi.org/10.1016/bs.apcsb.2018.01.006] [PMID: 29680238]
[74]
Hashemi, Z.S.; Zarei, M.; Fath, M.K.; Ganji, M.; Farahani, M.S.; Afsharnouri, F.; Pourzardosht, N.; Khalesi, B.; Jahangiri, A.; Rahbar, M.R.; Khalili, S. In silico approaches for the design and optimization of interfering peptides against protein–protein interactions. Front. Mol. Biosci., 2021, 8, 669431.
[http://dx.doi.org/10.3389/fmolb.2021.669431] [PMID: 33996914]
[75]
Shalaby, M.A.W.; Dokla, E.M.E.; Serya, R.A.T.; Abouzid, K.A.M. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur. J. Med. Chem., 2020, 199, 112312.
[http://dx.doi.org/10.1016/j.ejmech.2020.112312] [PMID: 32442851]
[76]
Yamuna, D.B.; Francis, Y.I.; Priya Doss, G.; Balaji, V. Molecular characterization of Panton-Valentine leukocidin (PVL) toxin–encoding phages from South India. New Microbes New Infect., 2017, 20, 34-38.
[http://dx.doi.org/10.1016/j.nmni.2017.08.005] [PMID: 29158906]
[77]
Tomašić T.; Šink, R.; Zidar, N.; Fic, A.; Contreras-Martel, C.; Dessen, A.; Patin, D.; Blanot, D.; Müller-Premru, M.; Gobec, S.; Zega, A.; Kikelj, D.; Mašič L.P. Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med. Chem. Lett., 2012, 3(8), 626-630.
[http://dx.doi.org/10.1021/ml300047h] [PMID: 24900523]
[78]
Taheri, B.; Mohammadi, M.; Nabipour, I.; Momenzadeh, N.; Roozbehani, M. Identification of novel antimicrobial peptide from Asian sea bass (Lates calcarifer) by in silico and activity characterization. PLoS One, 2018, 13(10), e0206578.
[http://dx.doi.org/10.1371/journal.pone.0206578] [PMID: 30365554]
[79]
Sagar, S. In Silico Modelling of Antibacterial Protein Transferrin from Periplaneta americana and its Interaction Analysis with Membrane Protein of MRSA. Biosci. Biotechnol. Res. Commun., 2020, 13(2), 642-650.
[http://dx.doi.org/10.21786/bbrc/13.2/42]
[80]
Gondokesumo, M.E.; Kurniawan, I.M. Molecular docking study of sappan wood extract to inhibit PBP2A enzyme on methicillin-resistant Staphylococcus aureus (MRSA). J. Basic Clin. Physiol. Pharmacol., 2020, 30(6)
[http://dx.doi.org/10.1515/jbcpp-2019-0282] [PMID: 31953996]
[81]
Toor, H.G.; Banerjee, D.I.; Chauhan, J.B. In silico evaluation of human cathelicidin LL-37 as a novel therapeutic inhibitor of panton-valentine leukocidin toxin of methicillin-resistant Staphylococcus aureus. Microb. Drug Resist., 2021, 27(5), 602-615.
[http://dx.doi.org/10.1089/mdr.2020.0196] [PMID: 33983855]
[82]
Cortes, E.; Mora, J.; Márquez, E. Modelling the Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study. Crystals (Basel), 2020, 10(8), 692.
[http://dx.doi.org/10.3390/cryst10080692]
[83]
Billones, J.B.; Bangalan, M.A.T. Structure-Based Discovery of Inhibitors against MurE in Methicillin-Resistant Staphylococcus aureus. Orient. J. Chem., 2019, 35(2), 618-625.
[http://dx.doi.org/10.13005/ojc/350216]
[84]
Zhang, R.; Wang, Z.; Tian, Y.; Yin, Q.; Cheng, X.; Lian, M.; Zhou, B.; Zhang, X.; Yang, L. Efficacy of antimicrobial peptide DP7, designed by machine-learning method, against methicillin-resistant Staphylococcus aureus. Front. Microbiol., 2019, 10, 1175.
[http://dx.doi.org/10.3389/fmicb.2019.01175] [PMID: 31191493]
[85]
Ong, Z.Y.; Wiradharma, N.; Yang, Y.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv. Drug Deliv. Rev., 2014, 78, 28-45.
[http://dx.doi.org/10.1016/j.addr.2014.10.013] [PMID: 25453271]
[86]
Doktorova, M.; Weinstein, H. Accurate In Silico modeling of asymmetric bilayers based on biophysical principles. Biophys. J., 2018, 115(9), 1638-1643.
[http://dx.doi.org/10.1016/j.bpj.2018.09.008] [PMID: 30297133]
[87]
Gao, Y.; Fang, H.; Fang, L.; Liu, D.; Liu, J.; Su, M.; Fang, Z.; Ren, W.; Jiao, H. The modification and design of antimicrobial peptide. Curr. Pharm. Des., 2018, 24(8), 904-910.
[http://dx.doi.org/10.2174/1381612824666180213130318] [PMID: 29436993]
[88]
Yang, Z.; He, S.; Wu, H.; Yin, T.; Wang, L.; Shan, A. Nanostructured antimicrobial peptides: crucial steps of overcoming the bottleneck for clinics. Front. Microbiol., 2021, 12, 710199.
[http://dx.doi.org/10.3389/fmicb.2021.710199] [PMID: 34475862]
[89]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[90]
Borro, B.C.; Nordström, R.; Malmsten, M. Microgels and hydrogels as delivery systems for antimicrobial peptides. Colloids Surf. B Biointerfaces, 2020, 187, 110835.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110835] [PMID: 32033885]
[91]
Hsieh, W.H.; Liaw, J. Applications of cyclic peptide nanotubes (cPNTs). J. Food Drug Anal., 2019, 27(1), 32-47.
[http://dx.doi.org/10.1016/j.jfda.2018.09.004] [PMID: 30648586]
[92]
Gao, Y.; Chen, Y.; Cao, Y.; Mo, A.; Peng, Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2021, 213, 113056.
[http://dx.doi.org/10.1016/j.ejmech.2020.113056] [PMID: 33280899]
[93]
Brandelli, A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem., 2012, 12(8), 731-741.
[http://dx.doi.org/10.2174/138955712801264774] [PMID: 22512554]
[94]
Yu, L.; Su, W.; Fey, P.D.; Liu, F.; Du, L. Yield improvement of the Anti-MRSA antibiotics WAP-8294A by CRISPR/dCas9 combined with refactoring self-protection genes in Lysobacter enzymogenes OH11. ACS Synth. Biol., 2018, 7(1), 258-266.
[http://dx.doi.org/10.1021/acssynbio.7b00293] [PMID: 29125739]
[95]
Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.014] [PMID: 28399505]
[96]
Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules, 2020, 10(4), 652.
[http://dx.doi.org/10.3390/biom10040652] [PMID: 32340301]
[97]
Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol., 2004, 22(10), 1302-1306.
[http://dx.doi.org/10.1038/nbt1012] [PMID: 15361882]
[98]
Liu, S.P.; Zhou, L.; Lakshminarayaan, R.; Beuerman, R.W. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. Int. J. Pept. Res. Ther., 2010, 16(3), 199-213.
[http://dx.doi.org/10.1007/s10989-010-9230-z] [PMID: 20835389]
[99]
Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to machine learning, neural networks, and deep learning. Transl. Vis. Sci. Technol., 2020, 9(2), 14-14.
[http://dx.doi.org/10.1167/tvst.9.2.14] [PMID: 32704420]
[100]
Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism, 2017, 69(69), S36-S40.
[http://dx.doi.org/10.1016/j.metabol.2017.01.011] [PMID: 28126242]
[101]
Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[102]
Lee, E.Y.; Lee, M.W.; Fulan, B.M.; Ferguson, A.L.; Wong, G.C.L. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus, 2017, 7(6), 20160153.
[http://dx.doi.org/10.1098/rsfs.2016.0153] [PMID: 29147555]
[103]
Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front. Microbiol., 2020, 10, 3097.
[http://dx.doi.org/10.3389/fmicb.2019.03097] [PMID: 32038544]
[104]
Xiao, X.; Wang, P.; Lin, W.Z.; Jia, J.H.; Chou, K.C. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 2013, 436(2), 168-177.
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[105]
Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep., 2018, 8(1), 1697.
[http://dx.doi.org/10.1038/s41598-018-19752-w] [PMID: 29374199]
[106]
Parisi, R.; Moccia, I.; Sessa, L.; Di Biasi, L.; Concilio, S.; Piotto, S. Models for the prediction of antimicrobial peptides activity. Commun. Comput. Inf. Sci., 2016, 587, 83-91.
[http://dx.doi.org/10.1007/978-3-319-32695-5_8]
[107]
Kamech, N. Vukičević D.; Ladram, A.; Piesse, C.; Vasseur, J.; Bojović V.; Simunić J.; Juretić D. Improving the selectivity of antimicrobial peptides from anuran skin. J. Chem. Inf. Model., 2012, 52(12), 3341-3351.
[http://dx.doi.org/10.1021/ci300328y] [PMID: 23094651]
[108]
Nijnik, A.; Madera, L.; Ma, S.; Waldbrook, M.; Elliott, M. R.; Easton, D. M.; Mayer, M. L.; Mullaly, S. C.; Kindrachuk, J.; Jenssen, H.; Hancock, R. E. W. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. Journal of Immunology (Baltimore, Md.: 1950), 2010, 184(5), 2539-2550.
[http://dx.doi.org/10.4049/jimmunol.0901813]
[109]
Haney, E.F.; Brito-Sánchez, Y.; Trimble, M.J.; Mansour, S.C.; Cherkasov, A.; Hancock, R.E.W. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep., 2018, 8(1), 1871.
[http://dx.doi.org/10.1038/s41598-018-19669-4] [PMID: 29382854]
[110]
Tan, P.; Fu, H.; Ma, X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today, 2021, 39, 101229.
[http://dx.doi.org/10.1016/j.nantod.2021.101229]
[111]
Wang, C.; Garlick, S.; Zloh, M. Deep learning for novel antimicrobial peptide design. Biomolecules, 2021, 11(3), 471.
[http://dx.doi.org/10.3390/biom11030471] [PMID: 33810011]
[112]
Loose, C.; Jensen, K.; Rigoutsos, I.; Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. Nature, 2006, 443(7113), 867-869.
[http://dx.doi.org/10.1038/nature05233] [PMID: 17051220]
[113]
Porto, W.F.; Fensterseifer, I.C.M.; Ribeiro, S.M.; Franco, O.L. Joker: An algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(9), 2043-2052.
[http://dx.doi.org/10.1016/j.bbagen.2018.06.011] [PMID: 29928920]
[114]
Pegg, S.C.H.; Haresco, J.J.; Kuntz, I.D. A genetic algorithm for structure-based de novo design. J. Comput. Aided Mol. Des., 2001, 15(10), 911-933.
[http://dx.doi.org/10.1023/A:1014389729000] [PMID: 11918076]
[115]
Porto, W.F.; Irazazabal, L.; Alves, E.S.F.; Ribeiro, S.M.; Matos, C.O.; Pires, Á.S.; Fensterseifer, I.C.M.; Miranda, V.J.; Haney, E.F.; Humblot, V.; Torres, M.D.T.; Hancock, R.E.W.; Liao, L.M.; Ladram, A.; Lu, T.K.; de la Fuente-Nunez, C.; Franco, O.L. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun., 2018, 9(1), 1490.
[http://dx.doi.org/10.1038/s41467-018-03746-3] [PMID: 29662055]
[116]
Yoshida, M.; Hinkley, T.; Tsuda, S.; Abul-Haija, Y.M.; McBurney, R.T.; Kulikov, V.; Mathieson, J.S.; Galiñanes Reyes, S.; Castro, M.D.; Cronin, L. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem, 2018, 4(3), 533-543.
[http://dx.doi.org/10.1016/j.chempr.2018.01.005]
[117]
Cohen, S.; Rokach, L.; Motro, Y.; Moran-Gilad, J.; Veksler-Lublinsky, I. minMLST: Machine learning for optimization of bacterial strain typing. Bioinformatics, 2021, 37(3), 303-311.
[http://dx.doi.org/10.1093/bioinformatics/btaa724] [PMID: 32804993]
[118]
Wang, H.Y.; Lee, T.Y.; Tseng, Y.J.; Liu, T.P.; Huang, K.Y.; Chang, Y.T.; Chen, C.H.; Lu, J.J. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach. PLoS One, 2018, 13(3), e0194289.
[http://dx.doi.org/10.1371/journal.pone.0194289] [PMID: 29534106]
[119]
Neoh, H.; Tan, X.E.; Sapri, H.F.; Tan, T.L. Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives. Infect. Genet. Evol., 2019, 74, 103935.
[http://dx.doi.org/10.1016/j.meegid.2019.103935] [PMID: 31233781]
[120]
Goudarzi, M.; Fazeli, M.; Goudarzi, H.; Azad, M.; Seyedjavadi, S.S. Spa typing of staphylococcus aureus strains isolated from clinical specimens of patients with nosocomial infections in Tehran, Iran. Jundishapur J. Microbiol., 2016, 9(7), e35685.
[http://dx.doi.org/10.5812/jjm.35685] [PMID: 27679706]
[121]
Ibarz Pavón, A.B.; Maiden, M.C.J. Multilocus sequence typing. Methods Mol. Biol., 2009, 551, 129-140.
[http://dx.doi.org/10.1007/978-1-60327-999-4_11] [PMID: 19521872]
[122]
Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol., 2015, 6, 791.
[http://dx.doi.org/10.3389/fmicb.2015.00791] [PMID: 26300860]
[123]
Gardner, W.; Winkler, D.A.; Muir, B.W.; Pigram, P.J. Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems. Biointerphases, 2022, 17(2), 020802.
[http://dx.doi.org/10.1116/6.0001590] [PMID: 35345884]
[124]
Kostrzewa, M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Rev. Proteomics, 2018, 15(3), 193-202.
[http://dx.doi.org/10.1080/14789450.2018.1438193] [PMID: 29411645]
[125]
Capecchi, A.; Cai, X.; Personne, H.; Köhler, T.; van Delden, C.; Reymond, J.L. Machine learning designs non-hemolytic antimicrobial peptides. Chem. Sci. (Camb.), 2021, 12(26), 9221-9232.
[http://dx.doi.org/10.1039/D1SC01713F] [PMID: 34349895]
[126]
Win, T.S.; Malik, A.A.; Prachayasittikul, V.; S., Wikberg J.E.; Nantasenamat, C.; Shoombuatong, W. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med. Chem., 2017, 9(3), 275-291.
[http://dx.doi.org/10.4155/fmc-2016-0188] [PMID: 28211294]
[127]
Chaudhary, K.; Kumar, R.; Singh, S.; Tuknait, A.; Gautam, A.; Mathur, D.; Anand, P.; Varshney, G.C.; Raghava, G.P.S. A web server and mobile app for computing hemolytic potency of peptides. Sci. Rep., 2016, 6(1), 22843.
[http://dx.doi.org/10.1038/srep22843] [PMID: 26953092]
[128]
Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics, 2020, 36(11), 3350-3356.
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[129]
Timmons, P.B.; Hewage, C.M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci. Rep., 2020, 10(1), 10869.
[http://dx.doi.org/10.1038/s41598-020-67701-3] [PMID: 32616760]
[130]
Jehl, P.; Sievers, F.; Higgins, D.G. OD-seq: outlier detection in multiple sequence alignments. BMC Bioinformatics, 2015, 16(1), 269.
[http://dx.doi.org/10.1186/s12859-015-0702-1] [PMID: 26303676]
[131]
Plisson, F.; Ramírez-Sánchez, O.; Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci. Rep., 2020, 10(1), 16581.
[http://dx.doi.org/10.1038/s41598-020-73644-6] [PMID: 33024236]
[132]
Wani, M.A.; Garg, P.; Roy, K.K. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Med. Biol. Eng. Comput., 2021, 59(11-12), 2397-2408.
[http://dx.doi.org/10.1007/s11517-021-02443-6] [PMID: 34632545]
[133]
Yu, J.Q.; Liao, Z.X.; Cai, X.Q.; Lei, J.C.; Zou, G.L. Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ. Toxicol. Pharmacol., 2007, 23(2), 162-167.
[http://dx.doi.org/10.1016/j.etap.2006.08.004] [PMID: 21783753]
[134]
Warnke, P.H.; Becker, S.T.; Podschun, R.; Sivananthan, S.; Springer, I.N.; Russo, P.A.J.; Wiltfang, J.; Fickenscher, H.; Sherry, E. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J. Craniomaxillofac. Surg., 2009, 37(7), 392-397.
[http://dx.doi.org/10.1016/j.jcms.2009.03.017] [PMID: 19473851]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy