Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Nuclear Medicine Application of Pentixafor/Pentixather Targeting CXCR4 for Imaging and Therapy in Related Disease

Author(s): Zhenying Chen, Qianqian Xue and Shaobo Yao*

Volume 23, Issue 7, 2023

Published on: 18 January, 2023

Page: [787 - 803] Pages: 17

DOI: 10.2174/1389557523666221216095821

Price: $65

Abstract

C-X-C-motif chemokine receptor 4 (CXCR4) is a novel predictive biomarker for metastasis and poor prognosis in individuals with malignancies. CXCL12 is the only cognate ligand of CXCR4. CXCL12/CXCR4 signaling pathways are involved in the cross-talk among cancer cells, T cells, stromal cells, and their microenvironments, including the regulation and direction of T cell migration (chemotaxis), proliferation, and differentiation of immature progenitor stem cells. As CXCR4 overexpression is related to tumor prognosis, it is essential to quantitatively evaluate CXCR4 expression levels in vivo.

68Ga-Pentixafor, as a radiolabeled tracer, shows high specificity and affinity for CXCR4 in tumors. Thus, CXCR4-directed imaging with 68Ga-Pentixafor has been investigated to evaluate CXCR4 expression in patients non-invasively. In recent years, many small cohorts, including those of individuals with hematologic malignancies, solid tumors, and cardiovascular and infectious diseases, have been reported. So far, 68Ga-Pentixafor has been used successfully in individuals with hematologic malignancies. In addition, Lutetium-177 (177Lu) or Yttrium-90 (90Y)-labeled Pentixather (an analog of Pentixafor) suggested high potential applicability in tumor endoradiotherapy (ERT) with CXCR4 overexpression. Patients with advanced-stage multiple myeloma, refractory acute leukemia, and diffuse large B-cell lymphoma received a certain amount of 177Lu-Pentixather or 90Y-Pentixather. This review aimed to overview the current CXCR4-directed positron emission computed tomography (PET) molecular imaging based on Pentixafor in several diseases and ERT.

Graphical Abstract

[1]
Weiss, I.D.; Jacobson, O. Molecular imaging of chemokine receptor CXCR4. Theranostics, 2013, 3(1), 76-84.
[http://dx.doi.org/10.7150/thno.4835] [PMID: 23382787]
[2]
Hung, C.S.; Su, H.Y.; Liang, H.H.; Lai, C.W.; Chang, Y.C.; Ho, Y.S.; Wu, C.H.; Ho, J.D.; Wei, P.L.; Chang, Y.J. High-level expression of CXCR4 in breast cancer is associated with early distant and bone metastases. Tumour Biol., 2014, 35(2), 1581-1588.
[http://dx.doi.org/10.1007/s13277-013-1218-9] [PMID: 24101191]
[3]
Burger, J.A.; Kipps, T.J. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 2006, 107(5), 1761-1767.
[http://dx.doi.org/10.1182/blood-2005-08-3182] [PMID: 16269611]
[4]
Zhao, H.; Guo, L.; Zhao, H.; Zhao, J.; Weng, H.; Zhao, B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget, 2015, 6(7), 5022-5040.
[http://dx.doi.org/10.18632/oncotarget.3217] [PMID: 25669980]
[5]
Juarez, J.; Bendall, L.; Bradstock, K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr. Pharm. Des., 2004, 10(11), 1245-1259.
[http://dx.doi.org/10.2174/1381612043452640] [PMID: 15078139]
[6]
Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; de Vries, E.G.E.; Walenkamp, A.M.E. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Cancer, 2013, 49(1), 219-230.
[http://dx.doi.org/10.1016/j.ejca.2012.05.005] [PMID: 22683307]
[7]
Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res., 2014, 124, 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[8]
Jacobson, O.; Weiss, I.D.; Szajek, L.; Farber, J.M.; Kiesewetter, D.O. 64Cu-AMD3100-A novel imaging agent for targeting chemokine receptor CXCR4. Bioorg. Med. Chem., 2009, 17(4), 1486-1493.
[http://dx.doi.org/10.1016/j.bmc.2009.01.014] [PMID: 19188071]
[9]
Wang, Z.; Zhang, M.; Wang, L.; Wang, S.; Kang, F.; Li, G.; Jacobson, O.; Niu, G.; Yang, W.; Wang, J.; Chen, X. Prospective Study of 68 Ga-NOTA-NFB: Radiation dosimetry in healthy volunteers and first application in glioma patients. Theranostics, 2015, 5(8), 882-889.
[http://dx.doi.org/10.7150/thno.12303] [PMID: 26000059]
[10]
Demoin, D.W.; Shindo, M.; Zhang, H.; Edwards, K.J.; Serganova, I.; Pillarsetty, N.V.K.; Lewis, J.S.; Blasberg, R.G. Synthesis and evaluation of an 18 F-labeled pyrimidine-pyridine amine for targeting CXCR4 receptors in gliomas. Nucl. Med. Biol., 2016, 43(10), 606-611.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.05.005] [PMID: 27485481]
[11]
Tamamura, H.; Hiramatsu, K.; Ueda, S.; Wang, Z.; Kusano, S.; Terakubo, S.; Trent, J.O.; Peiper, S.C.; Yamamoto, N.; Nakashima, H.; Otaka, A.; Fujii, N. Stereoselective synthesis of [L-Arg-L/D-3-(2-naphthyl)alanine]-type (E)-alkene dipeptide isosteres and its application to the synthesis and biological evaluation of pseudopeptide analogues of the CXCR4 antagonist FC131. J. Med. Chem., 2005, 48(2), 380-391.
[http://dx.doi.org/10.1021/jm049429h] [PMID: 15658852]
[12]
Dijkgraaft, I.; Demmer, O.; Schumacher, U.; Feldhaus, S.; Anton, M.; Brandau, W.; Schwaiger, M.; Kessler, H.; Wester, H.J. CXCR4 receptor targeting for in vivo imaging of metastases J. Nucl. Med., 2008, 49(Suppl.), 103P, [abstract].
[13]
Wester, HJ.; Kessler, H.; Demmer, O. Radiolabeled monomeric and multimeric cyclic oligopeptides binding to the CXCR4 receptor for cancer imaging and treatment. Europe PMC., , PAT: EP2183272.2009
[14]
Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem, 2011, 6(10), 1789-1791.
[http://dx.doi.org/10.1002/cmdc.201100320] [PMID: 21780290]
[15]
Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H.J. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J. Nucl. Med., 2011, 52(11), 1803-1810.
[http://dx.doi.org/10.2967/jnumed.111.098798] [PMID: 22045709]
[16]
Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J. Med. Chem., 2011, 54(21), 7648-7662.
[http://dx.doi.org/10.1021/jm2009716] [PMID: 21905730]
[17]
Wester, H.J.; Keller, U.; Schottelius, M.; Beer, A.; Philipp-Abbrederis, K.; Hoffmann, F. Šimeček, J.; Gerngross, C.; Lassmann, M.; Herrmann, K.; Pellegata, N.; Rudelius, M.; Kessler, H.; Schwaiger, M. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics, 2015, 5(6), 618-630.
[http://dx.doi.org/10.7150/thno.11251] [PMID: 25825601]
[18]
Ratajczak, M.Z.; Serwin, K.; Schneider, G. Innate immunity derived factors as external modulators of the CXCL12-CXCR4 axis and their role in stem cell homing and mobilization. Theranostics, 2013, 3(1), 3-10.
[http://dx.doi.org/10.7150/thno.4621] [PMID: 23382780]
[19]
Chen, J.; Xu-Monette, Z.Y.; Deng, L.; Shen, Q.; Manyam, G.C.; Martinez-Lopez, A.; Zhang, L.; Montes-Moreno, S.; Visco, C.; Tzankov, A.; Yin, L.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.L.; van Krieken, J.H.; Huh, J.; Ponzoni, M.; Ferreri, A.J.M.; Zhao, X.; Møller, M.B.; Farnen, J.P.; Winter, J.N.; Piris, M.A.; Pham, L.; Young, K.H. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma. Oncotarget, 2015, 6(8), 5597-5614.
[http://dx.doi.org/10.18632/oncotarget.3343] [PMID: 25704881]
[20]
Brunn, A.; Montesinos-Rongen, M.; Strack, A.; Reifenberger, G.; Mawrin, C.; Schaller, C.; Deckert, M. Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol., 2007, 114(3), 271-276.
[http://dx.doi.org/10.1007/s00401-007-0258-x] [PMID: 17641901]
[21]
Lapa, C.; Schreder, M.; Schirbel, A.; Samnick, S.; Kortüm, K.M.; Herrmann, K.; Kropf, S.; Einsele, H.; Buck, A.K.; Wester, H.J.; Knop, S.; Lückerath, K. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values. Theranostics, 2017, 7(1), 205-212.
[http://dx.doi.org/10.7150/thno.16576] [PMID: 28042328]
[22]
Herhaus, P.; Habringer, S.; Philipp-Abbrederis, K.; Vag, T.; Gerngross, C.; Schottelius, M.; Slotta-Huspenina, J.; Steiger, K.; Altmann, T.; Weisser, T.; Steidle, S.; Schick, M.; Jacobs, L.; Slawska, J.; Müller-Thomas, C.; Verbeek, M.; Subklewe, M.; Peschel, C.; Wester, H.J.; Schwaiger, M.; Götze, K.; Keller, U. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica, 2016, 101(8), 932-940.
[http://dx.doi.org/10.3324/haematol.2016.142976] [PMID: 27175029]
[23]
Philipp-Abbrederis, K.; Herrmann, K.; Knop, S.; Schottelius, M.; Eiber, M.; Lückerath, K.; Pietschmann, E.; Habringer, S.; Gerngroß, C.; Franke, K.; Rudelius, M.; Schirbel, A.; Lapa, C.; Schwamborn, K.; Steidle, S.; Hartmann, E.; Rosenwald, A.; Kropf, S.; Beer, A.J.; Peschel, C.; Einsele, H.; Buck, A.K.; Schwaiger, M.; Götze, K.; Wester, H.J.; Keller, U. In vivo molecular imaging of chemokine receptor CXCR 4 expression in patients with advanced multiple myeloma. EMBO Mol. Med., 2015, 7(4), 477-487.
[http://dx.doi.org/10.15252/emmm.201404698] [PMID: 25736399]
[24]
Kubota, K.; Yamashita, H.; Mimori, A. Clinical Value of FDG-PET/CT for the evaluation of rheumatic diseases: Rheumatoid Arthritis, Polymyalgia Rheumatica, and Relapsing Polychondritis. Semin. Nucl. Med., 2017, 47(4), 408-424.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.02.005] [PMID: 28583280]
[25]
de Leval, L.; Jaffe, E.S. Lymphoma classification. Cancer J., 2020, 26(3), 176-185.
[http://dx.doi.org/10.1097/PPO.0000000000000451]
[26]
Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol., 2014, 32(27), 3059-3067.
[http://dx.doi.org/10.1200/JCO.2013.54.8800] [PMID: 25113753]
[27]
McCarten, K.M.; Nadel, H.R.; Shulkin, B.L.; Cho, S.Y. Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr. Radiol., 2019, 49(11), 1545-1564.
[http://dx.doi.org/10.1007/s00247-019-04529-8] [PMID: 31620854]
[28]
Beal, K.P.; Yeung, H.W.; Yahalom, J. FDG-PET scanning for detection and staging of extranodal marginal zone lymphomas of the MALT type: a report of 42 cases. Ann. Oncol., 2005, 16(3), 473-480.
[http://dx.doi.org/10.1093/annonc/mdi093] [PMID: 15668266]
[29]
Park, S.H.; Lee, J.J.; Kim, H.O.; Lee, D.Y.; Suh, C.; Jung, H.Y.; Choi, K.D.; Kim, D.H.; Huh, J.; Ryu, J.S. 18F-Fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography in mucosa-associated lymphoid tissue lymphoma: variation in 18F-FDG avidity according to site involvement. Leuk. Lymphoma, 2015, 56(12), 3288-3294.
[http://dx.doi.org/10.3109/10428194.2015.1030640] [PMID: 25804932]
[30]
Herhaus, P.; Habringer, S.; Vag, T.; Steiger, K.; Slotta-Huspenina, J.; Gerngroß, C.; Wiestler, B.; Wester, H.J.; Schwaiger, M.; Keller, U. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Res., 2017, 7(1), 51.
[http://dx.doi.org/10.1186/s13550-017-0294-z] [PMID: 28577295]
[31]
Haug, A.R.; Leisser, A.; Wadsak, W.; Mitterhauser, M.; Pfaff, S.; Kropf, S.; Wester, H.J.; Hacker, M.; Hartenbach, M.; Kiesewetter-Wiederkehr, B.; Raderer, M.; Mayerhoefer, M.E. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68 Ga]Ga-Pentixafor-PET/MRI. Theranostics, 2019, 9(12), 3653-3658.
[http://dx.doi.org/10.7150/thno.31032] [PMID: 31281504]
[32]
Duell, J.; Krummenast, F.; Schirbel, A.; Klassen, P.; Samnick, S.; Rauert-Wunderlich, H.; Rasche, L.; Buck, A.K.; Wester, H.J.; Rosenwald, A.; Einsele, H.; Topp, M.S.; Lapa, C.; Kircher, M. Improved primary staging of marginal zone lymphoma by addition of CXCR4-directed PET/CT. J. Nucl. Med., 2021, 62(10), 1415-1421.
[http://dx.doi.org/10.2967/jnumed.120.257279] [PMID: 33579803]
[33]
Mayerhoefer, M.; Raderer, M.; Lamm, W.; Weber, M.; Kiesewetter, B.; Rohrbeck, J.; Simonitsch-Klupp, I.; Hacker, M.; Leisser, A.; Nics, L.; Schmitl, S.; Wester, H.; Haug, A. CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line H. pylori eradication. Blood 2022, 139(2), 240-244.
[http://dx.doi.org/10.1182/blood.2021013239] [PMID: 34525196]
[34]
Herhaus, P.; Lipkova, J.; Lammer, F.; Yakushev, I.; Vag, T.; Slotta-Huspenina, J.; Habringer, S.; Lapa, C.; Pukrop, T.; Hellwig, D.; Wiestler, B.; Buck, A.K.; Deckert, M.; Wester, H.J.; Bassermann, F.; Schwaiger, M.; Weber, W.; Menze, B.; Keller, U. CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. J. Nucl. Med., 2020, 61(12), 1765-1771.
[http://dx.doi.org/10.2967/jnumed.120.241703] [PMID: 32332145]
[35]
Chen, Z.; Yang, A.; Zhang, J.; Chen, A.; Zhang, Y.; Huang, C.; Chen, S.; Yao, S.; Miao, W. CXCR4-Directed PET/CT with [68Ga]Pentixafor in Central Nervous System Lymphoma: A Comparison with [18F]FDG PET/CT. Mol. Imaging Biol., 2021. (Online ahead of print) Available from: https://rdcu.be/cDLwR
[36]
Starzer, A.M.; Berghoff, A.S.; Traub-Weidinger, T.; Haug, A.R.; Widhalm, G.; Hacker, M.; Rausch, I.; Preusser, M.; Mayerhoefer, M.E. Assessment of central nervous system lymphoma based on CXCR4 Expression In vivo Using 68Ga-Pentixafor PET/MRI. Clin. Nucl. Med., 2021, 46(1), 16-20.
[http://dx.doi.org/10.1097/RLU.0000000000003404] [PMID: 33208624]
[37]
Nabavizadeh, S.A.; Vossough, A.; Hajmomenian, M.; Assadsangabi, R.; Mohan, S. Neuroimaging in central nervous system Lymphoma. Hematol. Oncol. Clin. North Am., 2016, 30(4), 799-821.
[http://dx.doi.org/10.1016/j.hoc.2016.03.005] [PMID: 27443998]
[38]
Baraniskin, A.; Deckert, M.; Schulte-Altedorneburg, G.; Schlegel, U.; Schroers, R. Current strategies in the diagnosis of diffuse large B-cell lymphoma of the central nervous system. Br. J. Haematol., 2012, 156(4), 421-432.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08928.x] [PMID: 22077417]
[39]
Banwait, R.; O’Regan, K.; Campigotto, F.; Harris, B.; Yarar, D.; Bagshaw, M.; Leleu, X.; Leduc, R.; Ramaiya, N.; Weller, E.; Ghobrial, I.M. The role of 18F-FDG PET/CT imaging in Waldenstrom macroglobulinemia. Am. J. Hematol., 2011, 86(7), 567-572.
[http://dx.doi.org/10.1002/ajh.22044] [PMID: 21681781]
[40]
Luo, Y.; Cao, X.; Pan, Q.; Li, J.; Feng, J.; Li, F. 68 Ga-Pentixafor PET/CT for imaging of chemokine receptor 4 expression in waldenström macroglobulinemia/lymphoplasmacytic lymphoma: comparison to 18F-FDG PET/CT. J. Nucl. Med., 2019, 60(12), 1724-1729.
[http://dx.doi.org/10.2967/jnumed.119.226134] [PMID: 31101745]
[41]
Luo, Y.; Pan, Q.; Feng, J.; Cao, X.; Li, F. Chemokine Receptor CXCR4-Targeted PET/CT With 68Ga-Pentixafor Shows Superiority to 18F-FDG in a patient with waldenström macroglobulinemia. Clin. Nucl. Med., 2018, 43(7), 548-550.
[http://dx.doi.org/10.1097/RLU.0000000000002131] [PMID: 29742593]
[42]
Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Li, F. Chemokine Receptor 4– Targeted 68Ga-Pentixafor PET/CT in response assessment of waldenström macroglobulinemia/lymphoplasmacytic lymphoma. Clin. Nucl. Med. , 2021, Publish Ahead of Print(9), 732-737.
[http://dx.doi.org/10.1097/RLU.0000000000003760] [PMID: 34172595]
[43]
Kuyumcu, S.; Yilmaz, E.; Büyükkaya, F.; Özkan, Z.G.; Ünal, S.N. imaging of chemokine receptor CXCR4 in mycosis fungoides using 68Ga-Pentixafor PET/CT. Clin. Nucl. Med., 2018, 43(8), 606-608.
[http://dx.doi.org/10.1097/RLU.0000000000002166] [PMID: 29916918]
[44]
Pan, Q.; Luo, Y.; Cao, X.; Li, J.; Li, F. Posttreated POEMS syndrome with concurrent follicular lymphoma revealed by 18F-FDG and 68Ga-Pentixafor PET/CT. Clin. Nucl. Med., 2020, 45(3), 220-222.
[http://dx.doi.org/10.1097/RLU.0000000000002923] [PMID: 31977484]
[45]
Pan, Q.; Luo, Y.; Zhang, Y.; Chang, L.; Li, J.; Cao, X.; Li, J.; Li, F. Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: comparison to [18F]FDG. EJNMMI Res., 2020, 10(1), 89.
[http://dx.doi.org/10.1186/s13550-020-00681-7] [PMID: 32757068]
[46]
Mayerhoefer, M.E.; Raderer, M.; Lamm, W.; Pichler, V.; Pfaff, S.; Weber, M.; Kiesewetter, B.; Hacker, M.; Kazianka, L.; Staber, P.B.; Wester, H.J.; Rohrbeck, J.; Simonitsch-Klupp, I.; Haug, A. CXCR4 PET imaging of mantle cell lymphoma using [ 68 Ga]Pentixafor: comparison with [ 18 F]FDG-PET. Theranostics, 2021, 11(2), 567-578.
[http://dx.doi.org/10.7150/thno.48620] [PMID: 33391493]
[47]
Chen, Z.; Xue, Q.; Huang, C.; Yao, S.; Miao, W. Burkitt lymphoma/leukemia presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clin. Nucl. Med., 2022, 47(1), 98-100.
[http://dx.doi.org/10.1097/RLU.0000000000003750] [PMID: 34115701]
[48]
Zamagni, E.; Patriarca, F.; Nanni, C.; Zannetti, B.; Englaro, E.; Pezzi, A.; Tacchetti, P.; Buttignol, S.; Perrone, G.; Brioli, A.; Pantani, L.; Terragna, C.; Carobolante, F.; Baccarani, M.; Fanin, R.; Fanti, S.; Cavo, M. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood, 2011, 118(23), 5989-5995.
[http://dx.doi.org/10.1182/blood-2011-06-361386] [PMID: 21900189]
[49]
van Lammeren-Venema, D.; Regelink, J.C.; Riphagen, I.I.; Zweegman, S.; Hoekstra, O.S.; Zijlstra, J.M. 18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: A systematic review. Cancer, 2012, 118(8), 1971-1981.
[http://dx.doi.org/10.1002/cncr.26467] [PMID: 21887677]
[50]
Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Feng, J.; Li, F. Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(3), 537-546.
[http://dx.doi.org/10.1007/s00259-019-04605-z] [PMID: 31776631]
[51]
Zhou, X.; Dierks, A.; Kertels, O.; Kircher, M.; Schirbel, A.; Samnick, S.; Buck, A.K.; Knorz, S.; Böckle, D.; Scheller, L.; Messerschmidt, J.; Barakat, M.; Kortüm, K.M.; Rasche, L.; Einsele, H.; Lapa, C. 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers (Basel), 2020, 12(8), 2333.
[http://dx.doi.org/10.3390/cancers12082333] [PMID: 32824832]
[52]
Kuyumcu, S.; Isik, E.G.; Tiryaki, T.O.; Has-Simsek, D.; Sanli, Y.; Buyukkaya, F.; Özkan, Z.G.; Kalayoglu-Besisik, S.; Unal, S.N. Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: a comparison to 18F-FDG PET/CT and laboratory results. Ann. Nucl. Med., 2021, 35(10), 1147-1156.
[http://dx.doi.org/10.1007/s12149-021-01652-1] [PMID: 34185263]
[53]
Kraus, S.; Dierks, A.; Rasche, L.; Kertels, O.; Kircher, M.; Schirbel, A.; Zovko, J.; Steinbrunn, T.; Tibes, R.; Wester, H.; Buck, A.; Einsele, H.; Kortüm, K.; Rosenwald, A.; Lapa, C. 68Ga-Pentixafor-PET/CT for detection of chemokine receptor CXCR4 expression in myeloproliferative neoplasms. J. Nucl. Med., 2022, 63(1), 96-99.
[54]
Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; Stilgenbauer, S.; Rai, K.R.; Byrd, J.C.; Eichhorst, B.; O’Brien, S.; Robak, T.; Seymour, J.F.; Kipps, T.J. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131(25), 2745-2760.
[http://dx.doi.org/10.1182/blood-2017-09-806398] [PMID: 29540348]
[55]
Mayerhoefer, M.E.; Jaeger, U.; Staber, P.; Raderer, M.; Wadsak, W.; Pfaff, S.; Kornauth, C.; Senn, D.; Weber, M.; Wester, H.J.; Skrabs, C.; Haug, A. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia. Invest. Radiol., 2018, 53(7), 403-408.
[http://dx.doi.org/10.1097/RLI.0000000000000469] [PMID: 29642081]
[56]
Mayerhoefer, M.E.; Haug, A.; Jäger, U.; Pichler, V.; Pfaff, S.; Wester, H.J.; Hacker, M.; Kazianka, L.; Staber, P.B. In human visualization of Ibrutinib-Induced CLL compartment shift. Cancer Immunol. Res., 2020, 8(8), 984-989.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0880] [PMID: 32580942]
[57]
Vag, T.; Gerngross, C.; Herhaus, P.; Eiber, M.; Philipp-Abbrederis, K.; Graner, F.P.; Ettl, J.; Keller, U.; Wester, H.J.; Schwaiger, M. First experience with chemokine receptor CXCR4–targeted PET imaging of patients with solid cancers. J. Nucl. Med., 2016, 57(5), 741-746.
[http://dx.doi.org/10.2967/jnumed.115.161034] [PMID: 26769866]
[58]
Werner, R.A.; Kircher, S.; Higuchi, T.; Kircher, M.; Schirbel, A.; Wester, H.J.; Buck, A.K.; Pomper, M.G.; Rowe, S.P.; Lapa, C. CXCR4-directed imaging in solid tumors. Front. Oncol., 2019, 9, 770.
[http://dx.doi.org/10.3389/fonc.2019.00770] [PMID: 31475113]
[59]
Werner, R.A.; Weich, A.; Schirbel, A.; Samnick, S.; Buck, A.K.; Higuchi, T.; Wester, H.J.; Lapa, C. Intraindividual tumor heterogeneity in NET – Further insight by C-X-C motif chemokine receptor 4-directed imaging. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(3), 553-554.
[http://dx.doi.org/10.1007/s00259-016-3566-3] [PMID: 27830282]
[60]
Lapa, C.; Lückerath, K.; Rudelius, M.; Schmid, J.S.; Schoene, A.; Schirbel, A.; Samnick, S.; Pelzer, T.; Buck, A.K.; Kropf, S.; Wester, H.J.; Herrmann, K. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience. Oncotarget, 2016, 7(8), 9288-9295.
[http://dx.doi.org/10.18632/oncotarget.7063] [PMID: 26843617]
[61]
Watts, A.; Singh, B.; Basher, R.; Singh, H.; Bal, A.; Kapoor, R.; Arora, S.K.; Wester, H.J.; Mittal, B.R.; Behera, D. 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(5), 909-910.
[http://dx.doi.org/10.1007/s00259-017-3622-7] [PMID: 28110347]
[62]
Werner, R.A.; Weich, A.; Higuchi, T.; Schmid, J.S.; Schirbel, A.; Lassmann, M.; Wild, V.; Rudelius, M.; Kudlich, T.; Herrmann, K.; Scheurlen, M.; Buck, A.K.; Kropf, S.; Wester, H.J.; Lapa, C. Imaging of chemokine receptor 4 expression in neuroendocrine tumors - a triple tracer comparative approach. Theranostics, 2017, 7(6), 1489-1498.
[http://dx.doi.org/10.7150/thno.18754] [PMID: 28529632]
[63]
Weich, A.; Werner, R.A.; Buck, A.K.; Hartrampf, P.E.; Serfling, S.E.; Scheurlen, M.; Wester, H.J.; Meining, A.; Kircher, S.; Higuchi, T.; Pomper, M.G.; Rowe, S.P.; Lapa, C.; Kircher, M. CXCR4-Directed PET/CT in patients with newly diagnosed neuroendocrine carcinomas. Diagnostics (Basel), 2021, 11(4), 605.
[http://dx.doi.org/10.3390/diagnostics11040605] [PMID: 33805264]
[64]
Kaemmerer, D.; Träger, T.; Hoffmeister, M.; Sipos, B.; Hommann, M.; Sänger, J.; Schulz, S.; Lupp, A. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget, 2015, 6(29), 27566-27579.
[http://dx.doi.org/10.18632/oncotarget.4491] [PMID: 26259237]
[65]
Burger, J.A.; Stewart, D.J.; Wald, O.; Peled, A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev. Anticancer Ther., 2011, 11(4), 621-630.
[http://dx.doi.org/10.1586/era.11.11] [PMID: 21504328]
[66]
Spano, J.P.; Andre, F.; Morat, L.; Sabatier, L.; Besse, B.; Combadiere, C.; Deterre, P.; Martin, A.; Azorin, J.; Valeyre, D.; Khayat, D.; Le Chevalier, T.; Soria, J.C. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: pattern of expression and correlation with outcome. Ann. Oncol., 2004, 15(4), 613-617.
[http://dx.doi.org/10.1093/annonc/mdh136] [PMID: 15033669]
[67]
Wald, O.; Izhar, U.; Amir, G.; Kirshberg, S.; Shlomai, Z.; Zamir, G.; Peled, A.; Shapira, O.M. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non–small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg., 2011, 141(6), 1503-1512.
[http://dx.doi.org/10.1016/j.jtcvs.2010.11.056] [PMID: 21463876]
[68]
Lüke, F.; Blazquez, R.; Yamaci, R.F.; Lu, X.; Pregler, B.; Hannus, S.; Menhart, K.; Hellwig, D.; Wester, H.J.; Kropf, S.; Heudobler, D.; Grosse, J.; Moosbauer, J.; Hutterer, M.; Hau, P.; Riemenschneider, M.J.; Bayerlová, M.; Bleckmann, A.; Polzer, B.; Beißbarth, T.; Klein, C.A.; Pukrop, T. Isolated metastasis of an EGFR-L858R-mutated NSCLC of the meninges: the potential impact of CXCL12/CXCR4 axis in EGFRmut NSCLC in diagnosis, follow-up and treatment. Oncotarget, 2018, 9(27), 18844-18857.
[http://dx.doi.org/10.18632/oncotarget.24787] [PMID: 29721166]
[69]
Derlin, T.; Jonigk, D.; Bauersachs, J.; Bengel, F.M. Molecular imaging of chemokine receptor CXCR4 in non–small cell lung cancer using 68Ga-Pentixafor PET/CT. Clin. Nucl. Med., 2016, 41(4), e204-e205.
[http://dx.doi.org/10.1097/RLU.0000000000001092] [PMID: 26756098]
[70]
Bluemel, C.; Hahner, S.; Heinze, B.; Fassnacht, M.; Kroiss, M.; Bley, T.A.; Wester, H.J.; Kropf, S.; Lapa, C.; Schirbel, A.; Buck, A.K.; Herrmann, K. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin. Nucl. Med., 2017, 42(1), e29-e34.
[http://dx.doi.org/10.1097/RLU.0000000000001435] [PMID: 27819856]
[71]
Weiss, I.D.; Huff, L.M.; Evbuomwan, M.O.; Xu, X.; Dang, H.D.; Velez, D.S.; Singh, S.P.; Zhang, H.H.; Gardina, P.J.; Lee, J.H.; Lindenberg, L.; Myers, T.G.; Paik, C.H.; Schrump, D.S.; Pittaluga, S.; Choyke, P.L.; Fojo, T.; Farber, J.M. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget, 2017, 8(43), 73387-73406.
[http://dx.doi.org/10.18632/oncotarget.19945] [PMID: 29088715]
[72]
Sheikine, Y.; Akram, K. FDG–PET imaging of atherosclerosis: Do we know what we see? Atherosclerosis, 2010, 211(2), 371-380.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.002] [PMID: 20202637]
[73]
Heinze, B.; Fuss, C.T.; Mulatero, P.; Beuschlein, F.; Reincke, M.; Mustafa, M.; Schirbel, A.; Deutschbein, T.; Williams, T.A.; Rhayem, Y.; Quinkler, M.; Rayes, N.; Monticone, S.; Wild, V.; Gomez-Sanchez, C.E.; Reis, A.C.; Petersenn, S.; Wester, H.J.; Kropf, S.; Fassnacht, M.; Lang, K.; Herrmann, K.; Buck, A.K.; Bluemel, C.; Hahner, S. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular imaging of aldosterone-producing adenoma. Hypertension, 2018, 71(2), 317-325.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09975] [PMID: 29279316]
[74]
Ding, J.; Tong, A.; Zhang, Y.; Wen, J.; Huo, L. Intense 68Ga-Pentixafor Activity in Aldosterone-Producing Adrenal Adenomas. Clin. Nucl. Med., 2020, 45(4), 336-339.
[http://dx.doi.org/10.1097/RLU.0000000000002946] [PMID: 32108693]
[75]
Ding, J.; Tong, A.; Zhang, Y.; Wen, J.; Zhang, H.; Hacker, M.; Huo, L.; Li, X. Functional characterization of adrenocortical masses in nononcological patients using [68Ga]-pentixafor. J. Nucl. Med., 2022, 63(3), 368-375.
[76]
Cui, Y.; Zhang, Y.; Ding, J.; Wang, H.; Ma, X.; Wang, O.; Chang, X.; Sun, H.; Huo, L.; Tong, A. A Rare Aldosterone-Producing Adenoma Detected by 68Ga-pentixafor PET-CT: A Case report and literature review. Front. Endocrinol. (Lausanne), 2019, 10, 810.
[http://dx.doi.org/10.3389/fendo.2019.00810] [PMID: 31849839]
[77]
Ding, J.; Zhang, Y.; Wen, J.; Zhang, H.; Wang, H.; Luo, Y.; Pan, Q.; Zhu, W.; Wang, X.; Yao, S.; Kreissl, M.C.; Hacker, M.; Tong, A.; Huo, L.; Li, X. Imaging CXCR4 expression in patients with suspected primary hyperaldosteronism. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(11), 2656-2665.
[http://dx.doi.org/10.1007/s00259-020-04722-0] [PMID: 32206838]
[78]
Bian, X.; Yang, S.; Chen, J.; Ping, Y.; Zhou, X.; Wang, Q.; Jiang, X.; Gong, W.; Xiao, H.; Du, L.; Chen, Z.; Zhao, W.; Shi, J.; Wang, J.M. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery, 2007, 61(3), 570-579.
[http://dx.doi.org/10.1227/01.NEU.0000290905.53685.A2] [PMID: 17881971]
[79]
Lapa, C.; Lückerath, K.; Kleinlein, I.; Monoranu, C.M.; Linsenmann, T.; Kessler, A.F.; Rudelius, M.; Kropf, S.; Buck, A.K.; Ernestus, R.I.; Wester, H.J.; Löhr, M.; Herrmann, K. 68 Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics, 2016, 6(3), 428-434.
[http://dx.doi.org/10.7150/thno.13986] [PMID: 26909116]
[80]
Jacobs, S.; Wesseling, P.; de Keizer, B.; Tolboom, N.; Ververs, F.; Krijger, G.; Westerman, B.; Snijders, T.; Robe, P.; van der Kolk, A. CXCR4 expression in glioblastoma tissue and the potential for PET imaging and treatment with [68Ga]Ga-Pentixafor/[177Lu]Lu-Pentixather. Eur. J. Nucl. Med. Mol. Imaging, 2022, 49, 481-491.
[81]
Fang, H.Y.; Münch, N.S.; Schottelius, M.; Ingermann, J.; Liu, H.; Schauer, M.; Stangl, S.; Multhoff, G.; Steiger, K.; Gerngroß, C.; Jesinghaus, M.; Weichert, W.; Kühl, A.A.; Sepulveda, A.R.; Wester, H.J.; Wang, T.C.; Quante, M. CXCR4 Is a potential target for diagnostic PET/CT imaging in barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res., 2018, 24(5), 1048-1061.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1756] [PMID: 29208671]
[82]
Linde, P.; Baues, C.; Wegen, S.; Trommer, M.; Quaas, A.; Rosenbrock, J.; Celik, E.; Marnitz, S.; Bruns, C.J.; Fischer, T.; Schomaecker, K.; Wester, H.J.; Drzezga, A.; van Heek, L.; Kobe, C. Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer – a first clinical approach. Cancer Imaging, 2021, 21(1), 22.
[http://dx.doi.org/10.1186/s40644-021-00391-w] [PMID: 33579381]
[83]
Lapa, C.; Kircher, S.; Schirbel, A.; Rosenwald, A.; Kropf, S.; Pelzer, T.; Walles, T.; Buck, A.K.; Weber, W.A.; Wester, H.J.; Herrmann, K.; Lückerath, K. Targeting CXCR4 with [68Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma? Oncotarget, 2017, 8(57), 96732-96737.
[http://dx.doi.org/10.18632/oncotarget.18235] [PMID: 29228566]
[84]
Breun, M.; Monoranu, C.M.; Kessler, A.F.; Matthies, C.; Löhr, M.; Hagemann, C.; Schirbel, A.; Rowe, S.P.; Pomper, M.G.; Buck, A.K.; Wester, H.J.; Ernestus, R.I.; Lapa, C. [68Ga]-Pentixafor PET/CT for CXCR4-Mediated imaging of vestibular schwannomas. Front. Oncol., 2019, 9, 503.
[http://dx.doi.org/10.3389/fonc.2019.00503] [PMID: 31245296]
[85]
Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2329] [PMID: 20484021]
[86]
Shim, H.; Lau, S.K.; Devi, S.; Yoon, Y.; Cho, H.T.; Liang, Z. Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: Potential regulation by ligand-dependent degradation and HIF-1α Biochem. Biophys. Res. Commun., 2006, 346(1), 252-258.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.110] [PMID: 16756955]
[87]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[88]
Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front. Immunol., 2019, 10, 379.
[http://dx.doi.org/10.3389/fimmu.2019.00379] [PMID: 30894861]
[89]
Rath, D.; Chatterjee, M.; Borst, O.; Müller, K.; Stellos, K.; Mack, A.F.; Bongartz, A.; Bigalke, B.; Langer, H.; Schwab, M.; Gawaz, M.; Geisler, T. Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. Eur. Heart J., 2014, 35(6), 386-394.
[http://dx.doi.org/10.1093/eurheartj/eht448] [PMID: 24168792]
[90]
Yamaguchi, J.; Kusano, K.F.; Masuo, O.; Kawamoto, A.; Silver, M.; Murasawa, S.; Bosch-Marce, M.; Masuda, H.; Losordo, D.W.; Isner, J.M.; Asahara, T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003, 107(9), 1322-1328.
[http://dx.doi.org/10.1161/01.CIR.0000055313.77510.22] [PMID: 12628955]
[91]
Teague, H.L.; Ahlman, M.A.; Alavi, A.; Wagner, D.D.; Lichtman, A.H.; Nahrendorf, M.; Swirski, F.K.; Nestle, F.; Gelfand, J.M.; Kaplan, M.J.; Grinspoon, S.; Ridker, P.M.; Newby, D.E.; Tawakol, A.; Fayad, Z.A.; Mehta, N.N. unraveling vascular inflammation. J. Am. Coll. Cardiol., 2017, 70(11), 1403-1412.
[http://dx.doi.org/10.1016/j.jacc.2017.07.750] [PMID: 28882238]
[92]
Damås, J.K.; Wæhre, T.; Yndestad, A.; Ueland, T.; Müller, F.; Eiken, H.G.; Holm, A.M.; Halvorsen, B.; Frøland, S.S.; Gullestad, L.; Aukrust, P. Stromal cell-derived factor-1alpha in unstable angina: potential antiinflammatory and matrix-stabilizing effects. Circulation, 2002, 106(1), 36-42.
[http://dx.doi.org/10.1161/01.CIR.0000020001.09990.90] [PMID: 12093767]
[93]
Matsuoka, S.; Uematsu, M.; Nakamura, T.; Shimizu, T.; Futamata, M.; Obata, J.; Fujioka, D.; Nakamura, K.; Yoshizaki, T.; Kugiyama, K. High levels of stromal cell-derived factor-1α predict secondary cardiac events in stable patients with a history of myocardial infarction. J. Cardiol., 2017, 69(1), 320-325.
[http://dx.doi.org/10.1016/j.jjcc.2016.06.011] [PMID: 27496337]
[94]
Mayorga, M.; Kiedrowski, M.; Shamhart, P.; Forudi, F.; Weber, K.; Chilian, W.M.; Penn, M.S.; Dong, F. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(1), H20-H28.
[http://dx.doi.org/10.1152/ajpheart.00449.2015] [PMID: 26519029]
[95]
Dong, F.; Harvey, J.; Finan, A.; Weber, K.; Agarwal, U.; Penn, M.S. Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation, 2012, 126(3), 314-324.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.082453] [PMID: 22685115]
[96]
Thackeray, J.T.; Derlin, T.; Haghikia, A.; Napp, L.C.; Wang, Y.; Ross, T.L.; Schäfer, A.; Tillmanns, J.; Wester, H.J.; Wollert, K.C.; Bauersachs, J.; Bengel, F.M. molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging, 2015, 8(12), 1417-1426.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.008] [PMID: 26577262]
[97]
Rischpler, C.; Nekolla, S.G.; Kossmann, H.; Dirschinger, R.J.; Schottelius, M.; Hyafil, F.; Wester, H.J.; Laugwitz, K.L.; Schwaiger, M. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J. Nucl. Cardiol., 2016, 23(1), 131-133.
[http://dx.doi.org/10.1007/s12350-015-0347-5] [PMID: 26667813]
[98]
Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Kropf, S.; Ertl, G.; Buck, A.K.; Wester, H.J.; Bauer, W.R.; Lapa, C. Imaging of C-X-C Motif Chemokine Receptor CXCR4 expression after myocardial infarction with [68Ga]Pentixafor-PET/CT in Correlation with cardiac MRI. JACC Cardiovasc. Imaging, 2018, 11(10), 1541-1543.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.001] [PMID: 29454781]
[99]
Lapa, C.; Reiter, T.; Werner, R.A.; Ertl, G.; Wester, H.J.; Buck, A.K.; Bauer, W.R.; Herrmann, K. [68Ga]Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression After Myocardial Infarction. JACC Cardiovasc. Imaging, 2015, 8(12), 1466-1468.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.007] [PMID: 26699115]
[100]
Swirski, F.K.; Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 2013, 339(6116), 161-166.
[http://dx.doi.org/10.1126/science.1230719] [PMID: 23307733]
[101]
Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease Front. Physiol., 2014, 5, 212.
[PMID: 24966838]
[102]
Döring, Y.; Noels, H.; Weber, C. Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie, 2016, 36(2), 97-102.
[http://dx.doi.org/10.5482/HAMO-14-10-0054] [PMID: 25586789]
[103]
Schmid, J.S.; Schirbel, A.; Buck, A.K.; Kropf, S.; Wester, H.J.; Lapa, C. [ 68 Ga]Pentixafor–Positron Emission Tomography/Computed Tomography Detects Chemokine Receptor CXCR4 Expression After Ischemic Stroke. Circ. Cardiovasc. Imaging, 2016, 9(9), e005217.
[http://dx.doi.org/10.1161/CIRCIMAGING.116.005217] [PMID: 27613700]
[104]
Schioppa, T.; Uranchimeg, B.; Saccani, A.; Biswas, S.K.; Doni, A.; Rapisarda, A.; Bernasconi, S.; Saccani, S.; Nebuloni, M.; Vago, L.; Mantovani, A.; Melillo, G.; Sica, A. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med., 2003, 198(9), 1391-1402.
[http://dx.doi.org/10.1084/jem.20030267] [PMID: 14597738]
[105]
Li, X.; Yu, W.; Wollenweber, T.; Lu, X.; Wei, Y.; Beitzke, D.; Wadsak, W.; Kropf, S.; Wester, H.J.; Haug, A.R.; Zhang, X.; Hacker, M. [68Ga]Pentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(8), 1616-1625.
[http://dx.doi.org/10.1007/s00259-019-04322-7] [PMID: 31004184]
[106]
Li, X.; Heber, D.; Leike, T.; Beitzke, D.; Lu, X.; Zhang, X.; Wei, Y.; Mitterhauser, M.; Wadsak, W.; Kropf, S.; Wester, H.J.; Loewe, C.; Hacker, M.; Haug, A.R. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(4), 558-566.
[http://dx.doi.org/10.1007/s00259-017-3831-0] [PMID: 28932900]
[107]
Weiberg, D.; Thackeray, J.T.; Daum, G.; Sohns, J.M.; Kropf, S.; Wester, H.J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using 68 Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. J. Nucl. Med., 2018, 59(2), 266-272.
[http://dx.doi.org/10.2967/jnumed.117.196485] [PMID: 28775206]
[108]
Meester, E.J.; de Blois, E.; Krenning, B.J.; van der Steen, A.F.W.; Norenberg, J.P.; van Gaalen, K.; Bernsen, M.R.; de Jong, M.; van der Heiden, K. Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Res., 2021, 11(1), 27.
[http://dx.doi.org/10.1186/s13550-021-00772-z] [PMID: 33730311]
[109]
Kircher, M.; Tran-Gia, J.; Kemmer, L.; Zhang, X.; Schirbel, A.; Werner, R.A.; Buck, A.K.; Wester, H.J.; Hacker, M.; Lapa, C.; Li, X. Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68 Ga-Pentixafor PET/CT: Correlation with 18 F-FDG PET/CT. J. Nucl. Med., 2020, 61(5), 751-756.
[http://dx.doi.org/10.2967/jnumed.119.234484] [PMID: 31653710]
[110]
Grosse, G.M.; Bascuñana, P.; Schulz-Schaeffer, W.J.; Teebken, O.E.; Wilhelmi, M.; Worthmann, H.; Ross, T.L.; Wester, H.J.; Kropf, S.; Derlin, T.; Bengel, F.M.; Bankstahl, J.P.; Weissenborn, K. Targeting Chemokine Receptor CXCR4 and Translocator Protein for Characterization of High-Risk Plaque in Carotid Stenosis Ex Vivo. Stroke, 2018, 49(8), 1988-1991.
[http://dx.doi.org/10.1161/STROKEAHA.118.021070] [PMID: 30002148]
[111]
Derlin, T.; Sedding, D.G.; Dutzmann, J.; Haghikia, A.; König, T.; Napp, L.C.; Schütze, C.; Owsianski-Hille, N.; Wester, H.J.; Kropf, S.; Thackeray, J.T.; Bankstahl, J.P.; Geworski, L.; Ross, T.L.; Bauersachs, J.; Bengel, F.M. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(11), 1934-1944.
[http://dx.doi.org/10.1007/s00259-018-4076-2] [PMID: 29967943]
[112]
Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in Atherosclerosis. J. Am. Coll. Cardiol., 2009, 54(23), 2129-2138.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[113]
Lawal, I.O.; Popoola, G.O.; Mahapane, J.; Kaufmann, J.; Davis, C.; Ndlovu, H.; Maserumule, L.C.; Mokoala, K.M.G.; Bouterfa, H.; Wester, H.J.; Zeevaart, J.R.; Sathekge, M.M. [68Ga]Ga-Pentixafor for PET Imaging of Vascular Expression of CXCR-4 as a Marker of Arterial Inflammation in HIV-Infected Patients: A Comparison with 18F[FDG] PET Imaging. Biomolecules, 2020, 10(12), 1629.
[http://dx.doi.org/10.3390/biom10121629] [PMID: 33287237]
[114]
Jujo, K.; Ii, M.; Sekiguchi, H.; Klyachko, E.; Misener, S.; Tanaka, T.; Tongers, J.; Roncalli, J.; Renault, M.A.; Thorne, T.; Ito, A.; Clarke, T.; Kamide, C.; Tsurumi, Y.; Hagiwara, N.; Qin, G.; Asahi, M.; Losordo, D.W. CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism. Circulation, 2013, 127(1), 63-73.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.099242] [PMID: 23204107]
[115]
Salvatore, P.; Pagliarulo, C.; Colicchio, R.; Napoli, C. CXCR4-CXCL12-dependent inflammatory network and endothelial progenitors. Curr. Med. Chem., 2010, 17(27), 3019-3029.
[http://dx.doi.org/10.2174/092986710791959792] [PMID: 20629629]
[116]
Bouter, C.; Meller, B.; Sahlmann, C.O.; Staab, W.; Wester, H.J.; Kropf, S.; Meller, J. 68 Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. J. Nucl. Med., 2018, 59(2), 320-326.
[http://dx.doi.org/10.2967/jnumed.117.193854] [PMID: 28729430]
[117]
Bouter, Y.; Meller, B.; Sahlmann, C.; Wolf, B.; Langer, L.; Bankstahl, J.; Wester, H.; Kropf, S.; Meller, J.; Bouter, C. Immunohistochemical detection of chemokine receptor 4 expression in chronic osteomyelitis confirms specific uptake in 68Ga-Pentixafor-PET/CT. Nucl. Med. (Stuttg.), 2018, 57(5), 198-203.
[http://dx.doi.org/10.3413/Nukmed-0971-18-04] [PMID: 30267402]
[118]
Derlin, T.; Gueler, F.; Bräsen, J.H.; Schmitz, J.; Hartung, D.; Herrmann, T.R.; Ross, T.L.; Wacker, F.; Wester, H.J.; Hiss, M.; Haller, H.; Bengel, F.M.; Hueper, K. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J. Nucl. Med., 2017, 58(11), 1831-1837.
[http://dx.doi.org/10.2967/jnumed.117.193037] [PMID: 28450555]
[119]
Pan, Q.; Luo, Y.; Cao, X.; Li, J.; Li, F. Pulmonary Cryptococcosis Accidentally Detected by 68Ga-Pentixafor PET/CT in a Patient With Multiple Myeloma. Clin. Nucl. Med., 2020, 45(5), 423-425.
[http://dx.doi.org/10.1097/RLU.0000000000003004] [PMID: 32209881]
[120]
Cytawa, W.; Kircher, S.; Schirbel, A.; Shirai, T.; Fukushima, K.; Buck, A.K.; Wester, H.J.; Lapa, C. Chemokine Receptor 4 Expression in Primary Sjögren’s Syndrome. Clin. Nucl. Med., 2018, 43(11), 835-836.
[http://dx.doi.org/10.1097/RLU.0000000000002258] [PMID: 30179908]
[121]
Tavor, S.; Petit, I.; Porozov, S.; Avigdor, A.; Dar, A.; Leider-Trejo, L.; Shemtov, N.; Deutsch, V.; Naparstek, E.; Nagler, A.; Lapidot, T. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res., 2004, 64(8), 2817-2824.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3693] [PMID: 15087398]
[122]
Spoo, A.C.; Lübbert, M.; Wierda, W.G.; Burger, J.A. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 2007, 109(2), 786-791.
[http://dx.doi.org/10.1182/blood-2006-05-024844] [PMID: 16888090]
[123]
Flomenberg, N.; Devine, S.M.; Dipersio, J.F.; Liesveld, J.L.; McCarty, J.M.; Rowley, S.D.; Vesole, D.H.; Badel, K.; Calandra, G. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood, 2005, 106(5), 1867-1874.
[http://dx.doi.org/10.1182/blood-2005-02-0468] [PMID: 15890685]
[124]
Poschenrieder, A.; Schottelius, M.; Schwaiger, M.; Kessler, H.; Wester, H.J. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res., 2016, 6(1), 36.
[http://dx.doi.org/10.1186/s13550-016-0193-8] [PMID: 27112767]
[125]
Schottelius, M.; Osl, T.; Poschenrieder, A.; Hoffmann, F.; Beykan, S.; Hänscheid, H.; Schirbel, A.; Buck, A.K.; Kropf, S.; Schwaiger, M.; Keller, U.; Lassmann, M.; Wester, H.J. [177Lu]pentixather: comprehensive preclinical characterization of a First CXCR4-directed endoradiotherapeutic Agent. Theranostics, 2017, 7(9), 2350-2362.
[http://dx.doi.org/10.7150/thno.19119] [PMID: 28744319]
[126]
Hänscheid, H.; Schirbel, A.; Hartrampf, P.; Kraus, S.; Werner, R.; Einsele, H.; Wester, H.; Lassmann, M.; Kortüm, M.; Buck, A. Biokinetics and Dosimetry of [177Lu]Lu-Pentixather. J Nucl Med., 2021. (Online ahead of print) Available from: https://jnm.snmjournals.org/content/early/2021/08/19/jnumed.121.262295
[127]
Herrmann, K.; Schottelius, M.; Lapa, C.; Osl, T.; Poschenrieder, A.; Hänscheid, H.; Lückerath, K.; Schreder, M.; Bluemel, C.; Knott, M.; Keller, U.; Schirbel, A.; Samnick, S.; Lassmann, M.; Kropf, S.; Buck, A.K.; Einsele, H.; Wester, H.J.; Knop, S. First-in-human experience of CXCR4-directed endoradiotherapy with 177 Lu- and 90 Y-Labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J. Nucl. Med., 2016, 57(2), 248-251.
[http://dx.doi.org/10.2967/jnumed.115.167361] [PMID: 26564323]
[128]
Lapa, C.; Herrmann, K.; Schirbel, A.; Hänscheid, H.; Lückerath, K.; Schottelius, M.; Kircher, M.; Werner, R.A.; Schreder, M.; Samnick, S.; Kropf, S.; Knop, S.; Buck, A.K.; Einsele, H.; Wester, H.J.; Kortüm, K.M. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 2017, 7(6), 1589-1597.
[http://dx.doi.org/10.7150/thno.19050] [PMID: 28529638]
[129]
Lapa, C.; Hänscheid, H.; Kircher, M.; Schirbel, A.; Wunderlich, G.; Werner, R.A.; Samnick, S.; Kotzerke, J.; Einsele, H.; Buck, A.K.; Wester, H.J.; Grigoleit, G.U. feasibility of CXCR4-directed radioligand therapy in advanced diffuse large b-cell lymphoma. J. Nucl. Med., 2019, 60(1), 60-64.
[http://dx.doi.org/10.2967/jnumed.118.210997] [PMID: 29777009]
[130]
Habringer, S.; Lapa, C.; Herhaus, P.; Schottelius, M.; Istvanffy, R.; Steiger, K.; Slotta-Huspenina, J.; Schirbel, A.; Hänscheid, H.; Kircher, S.; Buck, A.K.; Götze, K.; Vick, B.; Jeremias, I.; Schwaiger, M.; Peschel, C.; Oostendorp, R.; Wester, H.J.; Grigoleit, G.U.; Keller, U. dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics, 2018, 8(2), 369-383.
[http://dx.doi.org/10.7150/thno.21397] [PMID: 29290814]
[131]
Maurer, S.; Herhaus, P.; Lippenmeyer, R.; Hänscheid, H.; Kircher, M.; Schirbel, A.; Maurer, H.C.; Buck, A.K.; Wester, H.J.; Einsele, H.; Grigoleit, G.U.; Keller, U.; Lapa, C. Side Effects of CXC-chemokine receptor 4–directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J. Nucl. Med., 2019, 60(10), 1399-1405.
[http://dx.doi.org/10.2967/jnumed.118.223420] [PMID: 30850502]
[132]
Kuhne, M.R.; Mulvey, T.; Belanger, B.; Chen, S.; Pan, C.; Chong, C.; Cao, F.; Niekro, W.; Kempe, T.; Henning, K.A.; Cohen, L.J.; Korman, A.J.; Cardarelli, P.M. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin. Cancer Res., 2013, 19(2), 357-366.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2333] [PMID: 23213054]
[133]
Dar, A.; Schajnovitz, A.; Lapid, K.; Kalinkovich, A.; Itkin, T.; Ludin, A.; Kao, W-M.; Battista, M.; Tesio, M.; Kollet, O.; Cohen, N.N.; Margalit, R.; Buss, E.C.; Baleux, F.; Oishi, S.; Fujii, N.; Larochelle, A.; Dunbar, C.E.; Broxmeyer, H.E.; Frenette, P.S.; Lapidot, T. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 2011, 25(8), 1286-1296.
[http://dx.doi.org/10.1038/leu.2011.62] [PMID: 21494253]
[134]
Cashen, A.; Lopez, S.; Gao, F.; Calandra, G.; MacFarland, R.; Badel, K.; DiPersio, J. A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol. Blood Marrow Transplant., 2008, 14(11), 1253-1261.
[http://dx.doi.org/10.1016/j.bbmt.2008.08.011] [PMID: 18940680]
[135]
Pernas, S.; Martin, M.; Kaufman, P.A.; Gil-Martin, M.; Gomez Pardo, P.; Lopez-Tarruella, S.; Manso, L.; Ciruelos, E.; Perez-Fidalgo, J.A.; Hernando, C.; Ademuyiwa, F.O.; Weilbaecher, K.; Mayer, I.; Pluard, T.J.; Martinez Garcia, M.; Vahdat, L.; Perez-Garcia, J.; Wach, A.; Barker, D.; Fung, S.; Romagnoli, B.; Cortes, J. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol., 2018, 19(6), 812-824.
[http://dx.doi.org/10.1016/S1470-2045(18)30147-5] [PMID: 29706375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy