Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

An Insight into the Immunomodulatory Effects of Probiotics in the Prevention of COVID-19 Disease

Author(s): Jyotirmoy Das*, Smita Bordoloi and Kalyani Pathak

Volume 12, Issue 1, 2023

Published on: 03 January, 2023

Page: [14 - 24] Pages: 11

DOI: 10.2174/2211550112666221216092108

Price: $65

Abstract

The coronavirus pandemic hit the world with different variants of SARS-CoV-2; reliable therapeutics are needed every hour to control and minimize the infection. To date, the way to menace the chaos of post-COVID infection is not confined rationally. Researchers are still on their way to the progression of an efficient way to eradicate the disease. However, to prevent it from causing infection post-entry into the body, there have been a few strategies to maintain and boost the immune system. At the onset of infection when no antiviral therapeutics were available, convalescent plasma therapies as a proposed mechanism were adapted to treat the post-COVID infection. Researchers have formulated the administration of different types of vaccines based on attenuated or inactivated nucleic acids or subunits after approval from the FDA and still continue to find the best reliable vaccines for better enhancement in inducing immunogenicity of the immune system to fight against the disease. The COVID-19 infection affects the gut and lung axis and there has been dysbiosis of microbiota which leads to cause secondary infections. To accomplish homeostasis of essential microbiota in the body, the administration of different strains of probiotic bacteria has been one way to induce immunogenicity and combat the disease.

Graphical Abstract

[1]
Singh S, Kaur N, Kaur M. A review on corona virus 2020; 1(1): 1-11.
[2]
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141-54.
[http://dx.doi.org/10.1038/s41579-020-00459-7]
[3]
Wang C, Wang Z, Wang G, Lau JYN, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther 2021; 6(1): 114.
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[4]
Gupta P, Gairolla J, Varshney P. Evolutionary origin and structure of SARS-CoV-2 - A brief narrative review. J Mar Med Soc 2020.
[http://dx.doi.org/10.4103/jmms.jmms_141_20]
[5]
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288(8): 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[6]
WHO. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data 2021. Available from: https://COVID19.who.int/ (Accessed on: May 30, 2021).
[7]
Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 2021; 49(2): 199-213.
[http://dx.doi.org/10.1007/s15010-020-01516-2] [PMID: 32886331]
[8]
Bhatt T, Kumar V, Pande S, Malik R, Khamparia A, Gupta D. A Rev COVID-19. Stud Comput Intell 2021; 924: 25.422021.
[http://dx.doi.org/10.1007/978-3-030-60188-1_2]
[9]
Li Y-D, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci 2020; 27(1): 104.
[http://dx.doi.org/10.1186/s12929-020-00695-2] [PMID: 31894001]
[10]
Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 2020; 55(6): 105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[11]
Maier HJ, Bickerton E, Britton P. Coronaviruses: An overview of their replication and pathogenesis. In: Coronaviruses Methods Protoc. 2015; pp. 1-282.
[http://dx.doi.org/10.1007/978-1-4939-2438-7]
[12]
Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[13]
Dhama K, Khan S, Tiwari R, et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 2020; 33(4): e00028-20.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[14]
Xie Y, Karki CB, Du D, et al. Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Front Mol Biosci 2020; 7(12): 591873.
[http://dx.doi.org/10.3389/fmolb.2020.591873] [PMID: 33363207]
[15]
Beeraka NM, Tulimilli SV, Karnik M, et al. The current status and challenges in the development of vaccines and drugs against severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). BioMed Res Int 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/8160860] [PMID: 34159203]
[16]
Speiser DE, Bachmann MF. COVID-19: Mechanisms of vaccination and immunity. Vaccines 2020; 8(3): 404.
[http://dx.doi.org/10.3390/vaccines8030404] [PMID: 32707833]
[17]
World Health Organization. COVID-19 vaccine tracker and landscape 2021. Available from: https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines (Accessed on: Aug. 20, 2021).
[18]
Yousfi N, Bragazzi NL, Briki W, Zmijewski P, Chamari K. The COVID-19 pandemic: how to maintain a healthy immune system during the lockdown - a multidisciplinary approach with special focus on athletes. Biol Sport 2020; 37(3): 211-6.
[http://dx.doi.org/10.5114/biolsport.2020.95125] [PMID: 32879542]
[19]
Singh K, Rao A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr Res 2021; 87: 1-12.
[http://dx.doi.org/10.1016/j.nutres.2020.12.014] [PMID: 33592454]
[20]
Akour A. Probiotics and COVID-19: is there any link? Lett Appl Microbiol 2020; 71(3): 229-34.
[http://dx.doi.org/10.1111/lam.13334] [PMID: 32495940]
[21]
Owen JA, Punt J, Stranford SA, Jones PP, Kuby J. Kuby immunology. (7th ed.), New York: W.H. Freeman 2013.
[22]
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.
[http://dx.doi.org/10.12932/AP-200220-0772] [PMID: 32105090]
[23]
Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current evidence. Ecancermedicalscience 2020; 14: 1022.
[http://dx.doi.org/10.3332/ecancer.2020.1022] [PMID: 32256705]
[24]
Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020; 214: 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[25]
Moon C. Fighting COVID-19 exhausts T cells. Nat Rev Immunol 2020; 20(5): 277.
[http://dx.doi.org/10.1038/s41577-020-0304-7] [PMID: 32249845]
[26]
Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 2020; 71(15): 778-85.
[http://dx.doi.org/10.1093/cid/ciaa310] [PMID: 32198501]
[27]
Milibari AA. Current Situation of Coronavirus Disease: (COVID-19). Review Article Heal Sci J 2020; 3: 10-3.
[28]
Kumar D. Corona virus: a review of COVID-19 In: 2020; 4: pp(2): 8-25.
[http://dx.doi.org/10.14744/ejmo.2020.51418]
[29]
Almaghaslah D, Kandasamy G, Almanasef M, Vasudevan R, Chandramohan S. Review on the coronavirus disease (COVID-19) pandemic: Its outbreak and current status. Int J Clin Pract 2020; 74(11): e13637.
[http://dx.doi.org/10.1111/ijcp.13637] [PMID: 32750190]
[30]
Luo R, Delaunay-Moisan A, Timmis K, Danchin A. SARS‐CoV ‐2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23(5): 2339-63.
[http://dx.doi.org/10.1111/1462-2920.15487] [PMID: 33769683]
[31]
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm 2020; 1(3): 270-301.
[http://dx.doi.org/10.1002/mco2.26] [PMID: 33173860]
[32]
Florindo HF, Kleiner R, Vaskovich-Koubi D, et al. Immune-mediated approaches against COVID-19. Nat Nanotechnol 2020; 15(8): 630-45.
[http://dx.doi.org/10.1038/s41565-020-0732-3] [PMID: 32661375]
[33]
Sumirtanurdin R, Barliana MI. Coronavirus disease 2019 vaccine development: an overview. Viral Immunol 2021; 34(3): 134-44.
[http://dx.doi.org/10.1089/vim.2020.0119] [PMID: 32985963]
[34]
Kim HS. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? MBio 2021; 12(1): e03022-20.
[http://dx.doi.org/10.1128/mBio.03022-20] [PMID: 33436436]
[35]
Meidaninikjeh S, Sabouni N, Marzouni HZ, Bengar S, Khalili A, Jafari R. Monocytes and macrophages in COVID-19: Friends and foes. Life Sci 2021; 269(1): 119010.
[http://dx.doi.org/10.1016/j.lfs.2020.119010] [PMID: 33454368]
[36]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol 2020; 11(6): 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[37]
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020; 11(7): 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[38]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[39]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53(5): 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[40]
Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[41]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[42]
Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol 2020; 10(9): 200160.
[http://dx.doi.org/10.1098/rsob.200160] [PMID: 32961074]
[43]
Mustafa MI, Abdelmoneim AH, Mahmoud EM, Makhawi AM. Cytokine storm in COVID-19 patients, its impact on organs and potential treatment by QTY code-designed detergent-free chemokine receptors. Mediators Inflamm 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/8198963] [PMID: 33029105]
[44]
Islam KU, Iqbal J. An Update on Molecular Diagnostics for COVID-19. Front Cell Infect Microbiol 2020; 10(11): 560616.
[http://dx.doi.org/10.3389/fcimb.2020.560616] [PMID: 33244462]
[45]
Chaimayo C, Kaewnaphan B, Tanlieng N, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J 2020; 17(1): 177.
[http://dx.doi.org/10.1186/s12985-020-01452-5] [PMID: 33187528]
[46]
Pokhrel P, Hu C, Mao H. Detecting the Coronavirus (COVID-19). ACS Sens 2020; 5(8): 2283-96.
[http://dx.doi.org/10.1021/acssensors.0c01153] [PMID: 32627534]
[47]
Echtioui A, Zouch W, Ghorbel M, Mhiri C, Hamam H. Detection methods of COVID-19. SLAS Technol 2020; 25(6): 566-72.
[http://dx.doi.org/10.1177/2472630320962002] [PMID: 32997560]
[48]
Habas K, Nganwuchu C, Shahzad F, et al. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther 2020; 18(12): 1201-11.
[http://dx.doi.org/10.1080/14787210.2020.1797487] [PMID: 32749914]
[49]
Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens Bioelectron 2021; 174: 112830.
[http://dx.doi.org/10.1016/j.bios.2020.112830] [PMID: 33339696]
[50]
Eftekhari A, Alipour M, Chodari L, et al. A comprehensive review of detection methods for SARS-CoV-2. Microorganisms 2021; 9(2): 232.
[http://dx.doi.org/10.3390/microorganisms9020232] [PMID: 33499379]
[51]
Kevadiya BD, Machhi J, Herskovitz J, et al. Diagnostics for SARS-CoV-2 infections. Nat Mater 2021; 20(5): 593-605.
[http://dx.doi.org/10.1038/s41563-020-00906-z] [PMID: 33589798]
[52]
Anka AU, Tahir MI, Abubakar SD, et al. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2021; 93(4): e12998.
[http://dx.doi.org/10.1111/sji.12998] [PMID: 33190302]
[53]
Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis -A review of current methods. Biosens Bioelectron 2021; 172(6): 112752.
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[54]
Lai CKC, Lam W. Laboratory testing for the diagnosis of COVID-19. Biochem Biophys Res Commun 2021; 538: 226-30.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.069]
[55]
Rai P, Kumar BK, Deekshit VK, Karunasagar I, Karunasagar I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol 2021; 105(2): 441-55.
[http://dx.doi.org/10.1007/s00253-020-11061-5] [PMID: 33394144]
[56]
Cheung EW, Zachariah P, Gorelik M, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA 2020; 324(3): 294-6.
[http://dx.doi.org/10.1001/jama.2020.10374] [PMID: 32511676]
[57]
Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020; 14(4): 3822-35.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[58]
Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: A review. Radiography 2021; 27(2): 682-7.
[http://dx.doi.org/10.1016/j.radi.2020.09.010] [PMID: 33008761]
[59]
Gupta R, Sagar P, Priyadarshi N, et al. Nanotechnology-Based Approaches for the Detection of SARS-CoV-2. Frontiers in Nanotechnology 2020; 2: 589832.
[http://dx.doi.org/10.3389/fnano.2020.589832]
[60]
Ejazi SA, Ghosh S, Ali N. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunol Cell Biol 2021; 99(1): 21-33.
[http://dx.doi.org/10.1111/imcb.12397] [PMID: 32864735]
[61]
Li Q, Cheng F, Xu Q, et al. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int Immunopharmacol 2021; 95(9): 107531.
[http://dx.doi.org/10.1016/j.intimp.2021.107531] [PMID: 33714884]
[62]
Grompone G. COVID-19 outbreak and probiotics: facts and information from BioGaia 2020.
[63]
Abril M. Probiotics : A treatment alternative for dermatological diseases. J Med Biomed Appl Sci 2021; 9(4): 658-62.
[64]
Mirzaei R, Attar A, Papizadeh S, et al. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol 2021; 166(7): 1819-40.
[http://dx.doi.org/10.1007/s00705-021-05036-8] [PMID: 33745067]
[65]
Mak JWY, Chan FKL, Ng SC. Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol 2020; 5(7): 644-5.
[http://dx.doi.org/10.1016/S2468-1253(20)30122-9] [PMID: 32339473]
[66]
Xu K. Management of corona virus disease-19 (COVID-19). J Zhejiang Univ Med Sci 2020; 49(1): 147-57.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.02.02] [PMID: 32391658]
[67]
Kiousi D, Karapetsas A, Karolidou K, Panayiotidis M, Pappa A, Galanis A. Probiotics in extraintestinal diseases: Current trends and new directions. Nutrients 2019; 11(4): 788.
[http://dx.doi.org/10.3390/nu11040788] [PMID: 30959761]
[68]
Sultana S, Hossain A, Karim MM. Gut-microbiome management: An issue worth considering in COVID-19 treatment. Int J Pharm Sci Res 2021; 12(1): 1-7.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.12(1).1-7]
[69]
Zafar N, Aslam MA, Ali A, et al. Probiotics: Helpful for the prevention of COVID-19? Biomed Res Ther 2020; 7(11): 4086-99.
[http://dx.doi.org/10.15419/bmrat.v7i11.646]
[70]
Peng J, Zhang M, Yao G, Kwok LY, Zhang W. Probiotics as Adjunctive Treatment for Patients Contracted COVID-19: Current Understanding and Future Needs. Front Nutr 2021; 8(6): 669808.
[http://dx.doi.org/10.3389/fnut.2021.669808] [PMID: 34179059]
[71]
Ya T, Zhang Q, Chu F, et al. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 2008; 9(1): 68.
[http://dx.doi.org/10.1186/1471-2172-9-68] [PMID: 19019236]
[72]
Zhao W, Liu Y, Kwok LY, Cai T, Zhang W. The immune regulatory role of Lactobacillus acidophilus: An updated meta-analysis of randomized controlled trials. Food Biosci 2020; 36: 100656.
[http://dx.doi.org/10.1016/j.fbio.2020.100656]
[73]
Gohil K, Samson R, Dastager S, Dharne M. Probiotics in the prophylaxis of COVID-19: something is better than nothing. 3 Biotech 2021; 11(1): 1-10.
[http://dx.doi.org/10.1007/s13205-020-02554-1]
[74]
Liu M, Zhu H, He Y, Zhu Y, Hu X, Zeng Y. Probiotics for treating novel coronavirus with diarrhea. Medicine 2020; 99(38): e21617.
[http://dx.doi.org/10.1097/MD.0000000000021617] [PMID: 32957305]
[75]
Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. Vaccines 2021; 6(1)
[http://dx.doi.org/10.1038/s41541-021-00292-w]
[76]
Lundstrom K. The Current Status of COVID-19 Vaccines. Frontiers in Genome Editing 2020; 2(10): 579297.
[http://dx.doi.org/10.3389/fgeed.2020.579297] [PMID: 34713220]
[77]
Rishi P, et al. Diet, Gut Microbiota and COVID-19. Indian Journal of Microbiology 2020; 60(4): 420-9.
[http://dx.doi.org/10.1007/s12088-020-00908-0]
[78]
Donati Zeppa S, Agostini D, Piccoli G, Stocchi V, Sestili P. Gut microbiota status in COVID-19: an unrecognized player? Front Cell Infect Microbiol 2020; 10(11): 576551.
[http://dx.doi.org/10.3389/fcimb.2020.576551] [PMID: 33324572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy