Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The JAK-STAT Signaling Pathway in Epilepsy

Author(s): Huaiyu Sun, Di Ma, Yu Cheng, Jiaai Li, Wuqiong Zhang, Ting Jiang, Zhaoran Li, Xuewei Li and Hongmei Meng*

Volume 21, Issue 10, 2023

Published on: 20 February, 2023

Page: [2049 - 2069] Pages: 21

DOI: 10.2174/1570159X21666221214170234

Price: $65

Abstract

Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway’s potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.

Graphical Abstract

[1]
Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers, 2018, 4(1), 18024.
[http://dx.doi.org/10.1038/nrdp.2018.24] [PMID: 29722352]
[2]
Falco-Walter, J.J.; Scheffer, I.E.; Fisher, R.S. The new definition and classification of seizures and epilepsy. Epilepsy Res., 2018, 139, 73-79.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.11.015] [PMID: 29197668]
[3]
Macdonald, R.L.; Kelly, K.M. Antiepileptic drug mechanisms of action. Epilepsia, 1995, 36, S2-S12.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb05996.x] [PMID: 8784210]
[4]
Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[5]
Tiwari, P.C.; Pal, R. The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues Clin. Neurosci., 2017, 19(1), 71-80.
[http://dx.doi.org/10.31887/DCNS.2017.19.1/rpal] [PMID: 28566949]
[6]
Liau, N.P.D.; Laktyushin, A.; Lucet, I.S.; Murphy, J.M.; Yao, S.; Whitlock, E.; Callaghan, K.; Nicola, N.A.; Kershaw, N.J.; Babon, J.J. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun., 2018, 9(1), 1558.
[http://dx.doi.org/10.1038/s41467-018-04013-1] [PMID: 29674694]
[7]
Aschenbrenner, D.S. New indication for ruxolitinib. Am. J. Nurs., 2022, 122(1), 20.
[PMID: 34941588]
[8]
Wang, Z.; Hui, C.; Xie, Y. Natural STAT3 inhibitors: A mini perspective. Bioorg. Chem., 2021, 115, 105169.
[http://dx.doi.org/10.1016/j.bioorg.2021.105169] [PMID: 34333418]
[9]
Ba-Diop, A.; Marin, B.; Druet-Cabanac, M.; Ngoungou, E.B.; Newton, C.R.; Preux, P.M. Epidemiology, causes, and treatment of epilepsy in sub-Saharan Africa. Lancet Neurol., 2014, 13(10), 1029-1044.
[http://dx.doi.org/10.1016/S1474-4422(14)70114-0] [PMID: 25231525]
[10]
Neligan, A.; Shorvon, S.D. Frequency and prognosis of convulsive status epilepticus of different causes: A systematic review. Arch. Neurol., 2010, 67(8), 931-940.
[http://dx.doi.org/10.1001/archneurol.2010.169] [PMID: 20697043]
[11]
Ngugi, A.K.; Bottomley, C.; Kleinschmidt, I.; Sander, J.W.; Newton, C.R. Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 2010, 51(5), 883-890.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02481.x] [PMID: 20067507]
[12]
Burneo, J.G.; Tellez-Zenteno, J.; Wiebe, S. Understanding the burden of epilepsy in Latin America: A systematic review of its prevalence and incidence. Epilepsy Res., 2005, 66(1-3), 63-74.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.07.002] [PMID: 16125900]
[13]
Falco-Walter, J. Epilepsy—definition, classification, pathophysiology, and epidemiology. Semin. Neurol., 2020, 40(6), 617-623.
[http://dx.doi.org/10.1055/s-0040-1718719] [PMID: 33155183]
[14]
Aaberg, K.M.; Surén, P.; Søraas, C.L.; Bakken, I.J.; Lossius, M.I.; Stoltenberg, C.; Chin, R. Seizures, syndromes, and etiologies in childhood epilepsy: The International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia, 2017, 58(11), 1880-1891.
[http://dx.doi.org/10.1111/epi.13913] [PMID: 28949013]
[15]
Bosak, M.; Słowik, A.; Kacorzyk, R.; Turaj, W. Implementation of the new ILAE classification of epilepsies into clinical practice — A cohort study. Epilepsy Behav., 2019, 96, 28-32.
[http://dx.doi.org/10.1016/j.yebeh.2019.03.045] [PMID: 31077939]
[16]
Forsgren, L.; Beghi, E.; Oun, A.; Sillanpää, M. The epidemiology of epilepsy in Europe - a systematic review. Eur. J. Neurol., 2005, 12(4), 245-253.
[http://dx.doi.org/10.1111/j.1468-1331.2004.00992.x] [PMID: 15804240]
[17]
Mrabet, H.; Mrabet, A.; Mansour, M. Epidemiological and medical aspects of epilepsy in the elderly. Tunis. Med., 2007, 85(1), 67.
[PMID: 17424714]
[18]
Õun, A.; Haldre, S.; Mägi, M. Incidence of adult epilepsy in Estonia. Acta Neurol. Scand., 2003, 108(4), 245-251.
[http://dx.doi.org/10.1034/j.1600-0404.2003.00121.x] [PMID: 12956857]
[19]
Olafsson, E.; Hauser, W.A.; Ludvigsson, P.; Gudmundsson, G. Incidence of epilepsy in rural Iceland: A population-based study. Epilepsia, 1996, 37(10), 951-955.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb00532.x] [PMID: 8822693]
[20]
Sander, J.W.; Hart, Y.M.; Johnson, A.L.; Shorvon, S.D. National General Practice Study of Epilepsy: Newly diagnosed epileptic seizures in a general population. Lancet, 1990, 336(8726), 1267-1271.
[http://dx.doi.org/10.1016/0140-6736(90)92959-L] [PMID: 1978113]
[21]
Forsgren, L.; Bucht, G.; Eriksson, S.; Bergmark, L. Incidence and clinical characterization of unprovoked seizures in adults: A prospective population-based study. Epilepsia, 1996, 37(3), 224-229.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb00017.x] [PMID: 8598179]
[22]
Sidenvall, R.; Forsgren, L.; Blomquist, H.K.; Heijbel, J. A community-based prospective incidence study of epileptic seizures in children. Acta Paediatr., 1993, 82(1), 60-65.
[http://dx.doi.org/10.1111/j.1651-2227.1993.tb12518.x] [PMID: 8453224]
[23]
Vezzani, A.; Fujinami, R.S.; White, H.S.; Preux, P.M.; Blümcke, I.; Sander, J.W.; Löscher, W. Infections, inflammation and epilepsy. Acta Neuropathol., 2016, 131(2), 211-234.
[http://dx.doi.org/10.1007/s00401-015-1481-5] [PMID: 26423537]
[24]
Sander, J.W.; Perucca, E. Epilepsy and comorbidity: Infections and antimicrobials usage in relation to epilepsy management. Acta Neurol. Scand., 2003, 108, 16-22.
[http://dx.doi.org/10.1034/j.1600-0404.108.s180.3.x] [PMID: 14510816]
[25]
Melvin, J.J.; Huntley Hardison, H. Immunomodulatory treatments in epilepsy. Semin. Pediatr. Neurol., 2014, 21(3), 232-237.
[http://dx.doi.org/10.1016/j.spen.2014.08.001] [PMID: 25510946]
[26]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[27]
Chen, K.T.; Wei, K.C.; Liu, H.L. Focused ultrasound combined with microbubbles in central nervous system applications. Pharmaceutics, 2021, 13(7), 1084.
[http://dx.doi.org/10.3390/pharmaceutics13071084] [PMID: 34371774]
[28]
Nakagawa, S.; Deli, M.A.; Nakao, S.; Honda, M.; Hayashi, K.; Nakaoke, R.; Kataoka, Y.; Niwa, M. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell. Mol. Neurobiol., 2007, 27(6), 687-694.
[http://dx.doi.org/10.1007/s10571-007-9195-4] [PMID: 17823866]
[29]
Terrone, G.; Balosso, S.; Pauletti, A.; Ravizza, T.; Vezzani, A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology, 2020, 167, 107742.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107742] [PMID: 31421074]
[30]
Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflammation, 2018, 15(1), 144.
[http://dx.doi.org/10.1186/s12974-018-1192-7] [PMID: 29764485]
[31]
Shapiro, L.A.; Wang, L.; Ribak, C.E. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia, 2008, 49, 33-41.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01491.x] [PMID: 18226170]
[32]
Briellmann, R.S.; Kalnins, R.M.; Berkovic, S.F.; Jackson, G.D. Hippocampal pathology in refractory temporal lobe epilepsy. Neurology, 2002, 58(2), 265-271.
[http://dx.doi.org/10.1212/WNL.58.2.265] [PMID: 11805255]
[33]
Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci., 2013, 36(3), 174-184.
[http://dx.doi.org/10.1016/j.tins.2012.11.008] [PMID: 23298414]
[34]
Klapal, L.; Igelhorst, B.A.; Dietzel-Meyer, I.D. Changes in neuronal excitability by activated microglia: Differential Na+ current upregulation in pyramid-shaped and bipolar neurons by TNF-α and IL-18. Front. Neurol., 2016, 7, 44.
[http://dx.doi.org/10.3389/fneur.2016.00044] [PMID: 27065940]
[35]
Liu, W.; Tang, Y.; Feng, J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci., 2011, 89(5-6), 141-146.
[http://dx.doi.org/10.1016/j.lfs.2011.05.011] [PMID: 21684291]
[36]
Choi, J.; Koh, S. Role of brain inflammation in epileptogenesis. Yonsei Med. J., 2008, 49(1), 1-18.
[http://dx.doi.org/10.3349/ymj.2008.49.1.1] [PMID: 18306464]
[37]
Iorio, R.; Lennon, V.A. Neural antigen-specific autoimmune disorders. Immunol. Rev., 2012, 248(1), 104-121.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01144.x] [PMID: 22725957]
[38]
Bien, C.G.; Schulze-Bonhage, A.; Deckert, M.; Urbach, H.; Helmstaedter, C.; Grunwald, T.; Schaller, C.; Elger, C.E. Limbic encephalitis not associated with neoplasm as a cause of temporal lobe epilepsy. Neurology, 2000, 55(12), 1823-1828.
[http://dx.doi.org/10.1212/WNL.55.12.1823] [PMID: 11134380]
[39]
Bien, C.G.; Scheffer, I.E. Autoantibodies and epilepsy. Epilepsia, 2011, 52, 18-22.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03031.x] [PMID: 21542841]
[40]
Correll, C.M. Antibodies in epilepsy. Curr. Neurol. Neurosci. Rep., 2013, 13(5), 348.
[http://dx.doi.org/10.1007/s11910-013-0348-1] [PMID: 23526548]
[41]
Tumiene, B.; Ferreira, C.R.; van Karnebeek, C.D.M. Overview of metabolic epilepsies. Genes (Basel), 2022, 13(3), 508.
[42]
Dafoulas, G.E.; Toulis, K.A.; Mccorry, D.; Kumarendran, B.; Thomas, G.N.; Willis, B.H.; Gokhale, K.; Gkoutos, G.; Narendran, P.; Nirantharakumar, K. Type 1 diabetes mellitus and risk of incident epilepsy: A population-based, open-cohort study. Diabetologia, 2017, 60(2), 258-261.
[http://dx.doi.org/10.1007/s00125-016-4142-x] [PMID: 27796422]
[43]
Liu, X.S.; Gao, Y.; Wu, L.B.; Wan, H.B.; Yan, P.; Jin, Y.; Guo, S.B.; Wang, Y.L.; Chen, X.Q.; Zhou, L.M.; Yang, J.W.; Kui, X.Y.; Liu, X.Y.; Pei, Z.J. Comprehensive analysis of GLUT1 immune infiltrates and cerna network in human esophageal carcinoma. Front. Oncol., 2021, 11, 665388.
[http://dx.doi.org/10.3389/fonc.2021.665388] [PMID: 34123828]
[44]
Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures American Academy of Pediatrics. Febrile seizures: Clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics, 2008, 121(6), 1281-1286.
[http://dx.doi.org/10.1542/peds.2008-0939] [PMID: 18519501]
[45]
Dubé, C.; Vezzani, A.; Behrens, M.; Bartfai, T.; Baram, T.Z. Interleukin-1β contributes to the generation of experimental febrile seizures. Ann. Neurol., 2005, 57(1), 152-155.
[http://dx.doi.org/10.1002/ana.20358] [PMID: 15622539]
[46]
Virta, M.; Hurme, M.; Helminen, M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia, 2002, 43(8), 920-923.
[http://dx.doi.org/10.1046/j.1528-1157.2002.02002.x] [PMID: 12181012]
[47]
Haspolat, S.; Mihçi, E.; Coşkun, M.; Gümüslü, S.; Özbenm, T.; Yeğin, O. Interleukin-1beta, tumor necrosis factor-alpha, and nitrite levels in febrile seizures. J. Child Neurol., 2002, 17(10), 749-751.
[http://dx.doi.org/10.1177/08830738020170101501] [PMID: 12546429]
[48]
Vezzani, A.; Baram, T.Z. New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr., 2007, 7(2), 45-50.
[http://dx.doi.org/10.1111/j.1535-7511.2007.00165.x] [PMID: 17505552]
[49]
Auvin, S.; Mazarati, A.; Shin, D.; Sankar, R. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol. Dis., 2010, 40(1), 303-310.
[http://dx.doi.org/10.1016/j.nbd.2010.06.004] [PMID: 20600912]
[50]
Galic, M.A.; Riazi, K.; Heida, J.G.; Mouihate, A.; Fournier, N.M.; Spencer, S.J.; Kalynchuk, L.E.; Teskey, G.C.; Pittman, Q.J. Postnatal inflammation increases seizure susceptibility in adult rats. J. Neurosci., 2008, 28(27), 6904-6913.
[http://dx.doi.org/10.1523/JNEUROSCI.1901-08.2008] [PMID: 18596165]
[51]
Sheng, J.G.; Boop, F.A.; Mrak, R.E.; Griffin, W.S.T. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: Association with interleukin-1 alpha immunoreactivity. J. Neurochem., 1994, 63(5), 1872-1879.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63051872.x] [PMID: 7931344]
[52]
Gahring, L.C.; White, H.S.; Skradski, S.L.; Carlson, N.G.; Rogers, S.W. Interleukin-1alpha in the brain is induced by audiogenic seizure. Neurobiol. Dis., 1997, 3(4), 263-269.
[http://dx.doi.org/10.1006/nbdi.1996.0123] [PMID: 9173924]
[53]
Plata-Salamán, C.R.; Ilyin, S.E.; Turrin, N.P.; Gayle, D.; Flynn, M.C.; Romanovitch, A.E.; Kelly, M.E.; Bureau, Y.; Anisman, H.; McIntyre, D.C. Kindling modulates the IL-1β system, TNF-α TGF-β1, and neuropeptide mRNAs in specific brain regions. Brain Res. Mol. Brain Res., 2000, 75(2), 248-258.
[http://dx.doi.org/10.1016/S0169-328X(99)00306-X] [PMID: 10686345]
[54]
Roch, C.; Leroy, C.; Nehlig, A.; Namer, I.J. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia, 2002, 43(4), 325-335.
[http://dx.doi.org/10.1046/j.1528-1157.2002.11301.x] [PMID: 11952761]
[55]
Liou, H-H.; Wang, C-R.; Chen, C-J.; Chen, R-C.; Chuang, C-Y.; Chiang, I-P.; Tsai, M-C. Review: Elevated levels of anticardiolipin antibodies and epilepsy in lupus patients. Lupus, 1996, 5(4), 307-312.
[http://dx.doi.org/10.1177/096120339600500412] [PMID: 8869904]
[56]
Lim, S.H.; Park, E.; You, B.; Jung, Y.; Park, A.R.; Park, S.G.; Lee, J.R. Neuronal synapse formation induced by microglia and interleukin 10. PLoS One, 2013, 8(11), e81218.
[http://dx.doi.org/10.1371/journal.pone.0081218] [PMID: 24278397]
[57]
Nishimoto, N. Interleukin-6 in rheumatoid arthritis. Curr. Opin. Rheumatol., 2006, 18(3), 277-281.
[http://dx.doi.org/10.1097/01.bor.0000218949.19860.d1] [PMID: 16582692]
[58]
Uludag, I.F.; Duksal, T.; Tiftikcioglu, B.I.; Zorlu, Y.; Ozkaya, F.; Kirkali, G. IL-1β IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure, 2015, 26, 22-25.
[http://dx.doi.org/10.1016/j.seizure.2015.01.009] [PMID: 25799897]
[59]
Chang, K.H.; Hsu, Y.C.; Chang, M.Y.; Lin, C.L.; Wu, T.N.; Hwang, B.F.; Chen, C.Y.; Liu, H.C.; Kao, C.H. A large-scale study indicates increase in the risk of epilepsy in patients with different risk factors, including rheumatoid arthritis. Medicine (Baltimore), 2015, 94(36), e1485.
[http://dx.doi.org/10.1097/MD.0000000000001485] [PMID: 26356713]
[60]
Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet, 2015, 386(9997), 983-994.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[61]
Alesci, A.; Lauriano, E.R.; Fumia, A.; Irrera, N.; Mastrantonio, E.; Vaccaro, M.; Gangemi, S.; Santini, A.; Cicero, N.; Pergolizzi, S. Relationship between immune cells, depression, stress, and psoriasis: Could the use of natural products be helpful? Molecules, 2022, 27(6), 1953.
[http://dx.doi.org/10.3390/molecules27061953] [PMID: 35335319]
[62]
Huang, Y.; Chen, Z. Inflammatory bowel disease related innate immunity and adaptive immunity. Am. J. Transl. Res., 2016, 8(6), 2490-2497.
[PMID: 27398134]
[63]
Ong, M.S.; Kohane, I.S.; Cai, T.; Gorman, M.P.; Mandl, K.D. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol., 2014, 71(5), 569-574.
[http://dx.doi.org/10.1001/jamaneurol.2014.188] [PMID: 24687183]
[64]
Chou, I.C.; Wang, C.H.; Lin, W.D.; Tsai, F.J.; Lin, C.C.; Kao, C.H. Risk of epilepsy in type 1 diabetes mellitus: A population-based cohort study. Diabetologia, 2016, 59(6), 1196-1203.
[http://dx.doi.org/10.1007/s00125-016-3929-0] [PMID: 27030312]
[65]
Liimatainen, S.; Honnorat, J.; Pittock, S.J.; McKeon, A.; Manto, M.; Radtke, J.R.; Hampe, C.S. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J. Rare Dis., 2018, 13(1), 55.
[http://dx.doi.org/10.1186/s13023-018-0787-5] [PMID: 29636076]
[66]
Ganelin-Cohen, E.; Modan-Moses, D.; Hemi, R.; Kanety, H.; Ben-zeev, B.; Hampe, C.S. Epilepsy and behavioral changes, type 1 diabetes mellitus and a high titer of glutamic acid decarboxylase antibodies. Pediatr. Diabetes, 2016, 17(8), 617-622.
[http://dx.doi.org/10.1111/pedi.12346] [PMID: 26711844]
[67]
Deckers, C.L.P.; Hekster, Y.A.; Keyser, A.; Meinardi, H.; Renier, W.O. Pharmacotherapy of epilepsy: State of the art and developments. J. Clin. Pharm. Ther., 1997, 22(5-6), 309-322.
[http://dx.doi.org/10.1111/j.1365-2710.1997.tb00012.x] [PMID: 19160714]
[68]
Carcak, N.; Ozkara, C. Seizures and antiepileptic drugs: From pathophysiology to clinical practice. Curr. Pharm. Des., 2018, 23(42), 6376-6388.
[http://dx.doi.org/10.2174/1381612823666171115101557] [PMID: 29141532]
[69]
Hill, D.S.; Wlodarczyk, B.J.; Palacios, A.M.; Finnell, R.H. Teratogenic effects of antiepileptic drugs. Expert Rev. Neurother., 2010, 10(6), 943-959.
[http://dx.doi.org/10.1586/ern.10.57] [PMID: 20518610]
[70]
Sander, J.W. The use of antiepileptic drugs--principles and practice. Epilepsia, 2004, 45(s6), 28-34.
[http://dx.doi.org/10.1111/j.0013-9580.2004.455005.x] [PMID: 15315513]
[71]
Bauer, S.; Willems, L.M.; Paule, E.; Petschow, C.; Zöllner, J.P.; Rosenow, F.; Strzelczyk, A. The efficacy of lacosamide as monotherapy and adjunctive therapy in focal epilepsy and its use in status epilepticus: Clinical trial evidence and experience. Ther. Adv. Neurol. Disord., 2017, 10(2), 103-126.
[http://dx.doi.org/10.1177/1756285616675777] [PMID: 28382109]
[72]
Davies, A.; Hendrich, J.; Van Minh, A.T.; Wratten, J.; Douglas, L.; Dolphin, A.C. Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol. Sci., 2007, 28(5), 220-228.
[http://dx.doi.org/10.1016/j.tips.2007.03.005] [PMID: 17403543]
[73]
Leppik, I.E. Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure, 2004, 13, S5-S9.
[http://dx.doi.org/10.1016/j.seizure.2004.04.016] [PMID: 15511691]
[74]
Poolos, N.P. Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) ion channelopathy in epilepsy In: Jasper's Basic Mechanisms of the Epilepsies; Noebels, J.L., Ed.; National Center for Biotechnology Information (US): Bethesda (MD), 2012.
[75]
Bouwman, B.M.; Suffczynski, P.; Lopes da Silva, F.H.; Maris, E.; Van Rijn, C.M. GABAergic mechanisms in absence epilepsy: A computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in WAG/Rij rats. Eur. J. Neurosci., 2007, 25(9), 2783-2790.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05533.x] [PMID: 17561843]
[76]
Chebib, M.; Johnston, G.A.R. GABA-Activated ligand gated ion channels: Medicinal chemistry and molecular biology. J. Med. Chem., 2000, 43(8), 1427-1447.
[http://dx.doi.org/10.1021/jm9904349] [PMID: 10780899]
[77]
Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16-19.
[http://dx.doi.org/10.1016/S0165-6147(99)01413-3] [PMID: 10637650]
[78]
Kew, J.N.C.; Kemp, J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl.), 2005, 179(1), 4-29.
[http://dx.doi.org/10.1007/s00213-005-2200-z] [PMID: 15731895]
[79]
Calcaterra, N.E.; Barrow, J.C. Classics in chemical neuroscience: Diazepam (valium). ACS Chem. Neurosci., 2014, 5(4), 253-260.
[http://dx.doi.org/10.1021/cn5000056] [PMID: 24552479]
[80]
Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9861-9866.
[http://dx.doi.org/10.1073/pnas.0308208101] [PMID: 15210974]
[81]
Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet, 2015, 385(9971), 884-898.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[82]
Vajda, F.J.E.; Eadie, M.J. The clinical pharmacology of traditional antiepileptic drugs. Epileptic Disord., 2014, 16(4), 395-408.
[http://dx.doi.org/10.1684/epd.2014.0704] [PMID: 25470190]
[83]
Onat, F.; Ozkara, C. Adverse effects of new antiepileptic drugs. Med. Actual., 2004, 40(4), 325-342.
[http://dx.doi.org/10.1358/dot.2004.40.4.820079] [PMID: 15190386]
[84]
Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: Time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218.
[http://dx.doi.org/10.1016/S1474-4422(15)00314-2] [PMID: 26655849]
[85]
Choi, H.; Morrell, M.J. Review of lamotrigine and its clinical applications in epilepsy. Expert Opin. Pharmacother., 2003, 4(2), 243-251.
[http://dx.doi.org/10.1517/14656566.4.2.243] [PMID: 12562315]
[86]
Sachdeo, R.C. Topiramate. Clin. Pharmacokinet., 1998, 34(5), 335-346.
[http://dx.doi.org/10.2165/00003088-199834050-00001] [PMID: 9592618]
[87]
Trinka, E.; Höfler, J.; Leitinger, M.; Brigo, F. Pharmacotherapy for status epilepticus. Drugs, 2015, 75(13), 1499-1521.
[http://dx.doi.org/10.1007/s40265-015-0454-2] [PMID: 26310189]
[88]
Qin, H.; Buckley, J.A.; Li, X.; Liu, Y.; Fox, T.H., III; Meares, G.P.; Yu, H.; Yan, Z.; Harms, A.S.; Li, Y.; Standaert, D.G.; Benveniste, E.N. Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J. Neurosci., 2016, 36(18), 5144-5159.
[http://dx.doi.org/10.1523/JNEUROSCI.4658-15.2016] [PMID: 27147665]
[89]
Buckingham, S.D.; Jones, A.K.; Brown, L.A.; Sattelle, D.B. Nicotinic acetylcholine receptor signalling: Roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol. Rev., 2009, 61(1), 39-61.
[http://dx.doi.org/10.1124/pr.108.000562] [PMID: 19293145]
[90]
Chiba, T.; Yamada, M.; Sasabe, J.; Terashita, K.; Shimoda, M.; Matsuoka, M.; Aiso, S. Amyloid-β causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol. Psychiatry, 2009, 14(2), 206-222.
[http://dx.doi.org/10.1038/mp.2008.105] [PMID: 18813209]
[91]
Emery, B.; Cate, H.S.; Marriott, M.; Merson, T.; Binder, M.D.; Snell, C.; Soo, P.Y.; Murray, S.; Croker, B.; Zhang, J.G.; Alexander, W.S.; Cooper, H.; Butzkueven, H.; Kilpatrick, T.J. Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7859-7864.
[http://dx.doi.org/10.1073/pnas.0602574103] [PMID: 16682639]
[92]
Ben Haim, L.; Ceyzériat, K.; Carrillo-de Sauvage, M.A.; Aubry, F.; Auregan, G.; Guillermier, M.; Ruiz, M.; Petit, F.; Houitte, D.; Faivre, E.; Vandesquille, M.; Aron-Badin, R.; Dhenain, M.; Déglon, N.; Hantraye, P.; Brouillet, E.; Bonvento, G.; Escartin, C. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci., 2015, 35(6), 2817-2829.
[http://dx.doi.org/10.1523/JNEUROSCI.3516-14.2015] [PMID: 25673868]
[93]
Aittomäki, S.; Pesu, M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 18-23.
[http://dx.doi.org/10.1111/bcpt.12164] [PMID: 24164900]
[94]
Gündüz, Ö. JAK/STAT pathway modulation: Does it work in dermatology? Dermatol. Ther., 2019, 32(3), e12903.
[http://dx.doi.org/10.1111/dth.12903] [PMID: 30964573]
[95]
Wilks, A.F.; Harpur, A.G.; Kurban, R.R.; Ralph, S.J.; Zürcher, G.; Ziemiecki, A. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol. Cell. Biol., 1991, 11(4), 2057-2065.
[PMID: 1848670]
[96]
Firmbach-Kraft, I.; Byers, M.; Shows, T.; Dalla-Favera, R.; Krolewski, J.J. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene, 1990, 5(9), 1329-1336.
[PMID: 2216457]
[97]
Harpur, A.G.; Andres, A.C.; Ziemiecki, A.; Aston, R.R.; Wilks, A.F. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene, 1992, 7(7), 1347-1353.
[PMID: 1620548]
[98]
Gurniak, C.B.; Berg, L.J. Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood, 1996, 87(8), 3151-3160.
[http://dx.doi.org/10.1182/blood.V87.8.3151.bloodjournal8783151] [PMID: 8605329]
[99]
Rane, S.G.; Reddy, E.P. JAK3: A novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene, 1994, 9(8), 2415-2423.
[PMID: 7518579]
[100]
Verbsky, J.W.; Bach, E.A.; Fang, Y.F.; Yang, L.; Randolph, D.A.; Fields, L.E. Expression of Janus kinase 3 in human endothelial and other non-lymphoid and non-myeloid cells. J. Biol. Chem., 1996, 271(24), 13976-13980.
[http://dx.doi.org/10.1074/jbc.271.24.13976] [PMID: 8662778]
[101]
Chishti, A.H.; Kim, A.C.; Marfatia, S.M.; Lutchman, M.; Hanspal, M.; Jindal, H.; Liu, S.C.; Low, P.S.; Rouleau, G.A.; Mohandas, N.; Chasis, J.A.; Conboy, J.G.; Gascard, P.; Takakuwa, Y.; Huang, S.C.; Benz, E.J., Jr; Bretscher, A.; Fehon, R.G.; Gusella, J.F.; Ramesh, V.; Solomon, F.; Marchesi, V.T.; Tsukita, S.; Tsukita, S.; Arpin, M.; Louvard, D.; Tonks, N.K.; Anderson, J.M.; Fanning, A.S.; Bryant, P.J.; Woods, D.F.; Hoover, K.B. The FERM domain: A unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci., 1998, 23(8), 281-282.
[http://dx.doi.org/10.1016/S0968-0004(98)01237-7] [PMID: 9757824]
[102]
Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol., 2001, 13(2), 211-217.
[http://dx.doi.org/10.1016/S0955-0674(00)00199-X] [PMID: 11248555]
[103]
Kisseleva, T.; Bhattacharya, S.; Braunstein, J.; Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002, 285(1-2), 1-24.
[http://dx.doi.org/10.1016/S0378-1119(02)00398-0] [PMID: 12039028]
[104]
Dustin, C.M.; Heppner, D.E.; Lin, M.C.J.; van der Vliet, A. Redox regulation of tyrosine kinase signalling: More than meets the eye. J. Biochem., 2020, 167(2), 151-163.
[http://dx.doi.org/10.1093/jb/mvz085] [PMID: 31599960]
[105]
Leonard, W.J.; O’Shea, J.J. JAKS AND STATS: Biological Implications. Annu. Rev. Immunol., 1998, 16(1), 293-322.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.293] [PMID: 9597132]
[106]
Kumar, A.; Toscani, A.; Rane, S.; Reddy, E.P. Structural organization and chromosomal mapping of JAK3 locus. Oncogene, 1996, 13(9), 2009-2014.
[PMID: 8934548]
[107]
Heim, M.H. The Jak-STAT pathway: Cytokine signalling from the receptor to the nucleus. J. Recept. Signal Transduct. Res., 1999, 19(1-4), 75-120.
[http://dx.doi.org/10.3109/10799899909036638] [PMID: 10071751]
[108]
Benveniste, E.N.; Liu, Y.; McFarland, B.C.; Qin, H. Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J. Interferon Cytokine Res., 2014, 34(8), 577-588.
[http://dx.doi.org/10.1089/jir.2014.0012] [PMID: 25084174]
[109]
Hu, X.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther., 2021, 6(1), 402.
[http://dx.doi.org/10.1038/s41392-021-00791-1] [PMID: 34824210]
[110]
Sopjani, M.; Morina, R.; Uka, V.; Xuan, N.T.; Dërmaku-Sopjani, M. JAK2-mediated intracellular signaling. Curr. Mol. Med., 2021, 21(5), 417-425.
[http://dx.doi.org/10.2174/1566524020666201015144702] [PMID: 33059575]
[111]
Schindler, C.; Strehlow, I. Cytokines and STAT signaling. Adv. Pharmacol., 1999, 47, 113-174.
[http://dx.doi.org/10.1016/S1054-3589(08)60111-8] [PMID: 10582086]
[112]
Qiu, Q.; Feng, Q.; Tan, X.; Guo, M. JAK3-selective inhibitor peficitinib for the treatment of rheumatoid arthritis. Expert Rev. Clin. Pharmacol., 2019, 12(6), 547-554.
[http://dx.doi.org/10.1080/17512433.2019.1615443] [PMID: 31059310]
[113]
Russell, S.M.; Johnston, J.A.; Noguchi, M.; Kawamura, M.; Bacon, C.M.; Friedmann, M.; Berg, M.; McVicar, D.W.; Witthuhn, B.A.; Silvennoinen, O.; Goldman, A.S.; Schmalstieg, F.C.; Ihle, J.N.; O’Shea, J.J.; Leonard, W.J. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: Implications for XSCID and XCID. Science, 1994, 266(5187), 1042-1045.
[http://dx.doi.org/10.1126/science.7973658] [PMID: 7973658]
[114]
Yang, E.; Wen, Z.; Haspel, R.L.; Zhang, J.J.; Darnell, J.E., Jr The linker domain of Stat1 is required for gamma interferon-driven transcription. Mol. Cell. Biol., 1999, 19(7), 5106-5112.
[http://dx.doi.org/10.1128/MCB.19.7.5106] [PMID: 10373559]
[115]
Zhang, T.; Kee, W.H.; Seow, K.T.; Fung, W.; Cao, X. The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Mol. Cell. Biol., 2000, 20(19), 7132-7139.
[http://dx.doi.org/10.1128/MCB.20.19.7132-7139.2000] [PMID: 10982829]
[116]
Chen, X.; Vinkemeier, U.; Zhao, Y.; Jeruzalmi, D.; Darnell, J.E., Jr; Kuriyan, J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell, 1998, 93(5), 827-839.
[http://dx.doi.org/10.1016/S0092-8674(00)81443-9] [PMID: 9630226]
[117]
Gao, Q.; Liang, X.; Shaikh, A.S.; Zang, J.; Xu, W.; Zhang, Y. JAK/STAT signal transduction: Promising attractive targets for immune, inflammatory and hematopoietic diseases. Curr. Drug Targets, 2018, 19(5), 487-500.
[http://dx.doi.org/10.2174/1389450117666161207163054] [PMID: 27928945]
[118]
Maritano, D.; Sugrue, M.L.; Tininini, S.; Dewilde, S.; Strobl, B.; Fu, X.; Murray-Tait, V.; Chiarle, R.; Poli, V. The STAT3 isoforms α and β have unique and specific functions. Nat. Immunol., 2004, 5(4), 401-409.
[http://dx.doi.org/10.1038/ni1052] [PMID: 15021879]
[119]
Zhong, Z.; Wen, Z.; Darnell, J.E., Jr Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 1994, 264(5155), 95-98.
[http://dx.doi.org/10.1126/science.8140422] [PMID: 8140422]
[120]
Darnell, J.E., Jr; Kerr, M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264(5164), 1415-1421.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[121]
Yang, C.; Mai, H.; Peng, J.; Zhou, B.; Hou, J.; Jiang, D. STAT4: An immunoregulator contributing to diverse human diseases. Int. J. Biol. Sci., 2020, 16(9), 1575-1585.
[http://dx.doi.org/10.7150/ijbs.41852] [PMID: 32226303]
[122]
Miyagi, T.; Gil, M.P.; Wang, X.; Louten, J.; Chu, W.M.; Biron, C.A. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J. Exp. Med., 2007, 204(10), 2383-2396.
[http://dx.doi.org/10.1084/jem.20070401] [PMID: 17846149]
[123]
Thieu, V.T.; Yu, Q.; Chang, H.C.; Yeh, N.; Nguyen, E.T.; Sehra, S.; Kaplan, M.H. Signal transducer and activator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cell-fate determination. Immunity, 2008, 29(5), 679-690.
[http://dx.doi.org/10.1016/j.immuni.2008.08.017] [PMID: 18993086]
[124]
Soldaini, E.; John, S.; Moro, S.; Bollenbacher, J.; Schindler, U.; Leonard, W.J. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol. Cell. Biol., 2000, 20(1), 389-401.
[http://dx.doi.org/10.1128/MCB.20.1.389-401.2000] [PMID: 10594041]
[125]
Wang, W.; Wang, L.; Zha, B. The roles of STAT6 in regulating B cell fate, activation, and function. Immunol. Lett., 2021, 233, 87-91.
[http://dx.doi.org/10.1016/j.imlet.2021.02.006] [PMID: 33662403]
[126]
Patel, B.K.R.; Pierce, J.H.; LaRochelle, W.J. Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 172-177.
[http://dx.doi.org/10.1073/pnas.95.1.172] [PMID: 9419348]
[127]
Li, W.X. Canonical and non-canonical JAK–STAT signaling. Trends Cell Biol., 2008, 18(11), 545-551.
[http://dx.doi.org/10.1016/j.tcb.2008.08.008] [PMID: 18848449]
[128]
Shi, S.; Larson, K.; Guo, D.; Lim, S.J.; Dutta, P.; Yan, S.J.; Li, W.X. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat. Cell Biol., 2008, 10(4), 489-496.
[http://dx.doi.org/10.1038/ncb1713] [PMID: 18344984]
[129]
Yang, J.; Liao, X.; Agarwal, M.K.; Barnes, L.; Auron, P.E.; Stark, G.R. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκ. B. Genes Dev., 2007, 21(11), 1396-1408.
[http://dx.doi.org/10.1101/gad.1553707] [PMID: 17510282]
[130]
Yang, J.; Stark, G.R. Roles of unphosphorylated STATs in signaling. Cell Res., 2008, 18(4), 443-451.
[http://dx.doi.org/10.1038/cr.2008.41] [PMID: 18364677]
[131]
Hilton, D.J.; Richardson, R.T.; Alexander, W.S.; Viney, E.M.; Willson, T.A.; Sprigg, N.S.; Starr, R.; Nicholson, S.E.; Metcalf, D.; Nicola, N.A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 114-119.
[http://dx.doi.org/10.1073/pnas.95.1.114] [PMID: 9419338]
[132]
Yoshimura, A.; Ohkubo, T.; Kiguchi, T.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Hara, T.; Miyajima, A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J., 1995, 14(12), 2816-2826.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07281.x] [PMID: 7796808]
[133]
Okumura, F.; Joo-Okumura, A.; Nakatsukasa, K.; Kamura, T. The role of cullin 5-containing ubiquitin ligases. Cell Div., 2016, 11(1), 1.
[http://dx.doi.org/10.1186/s13008-016-0016-3] [PMID: 27030794]
[134]
Valdez, B.C.; Henning, D.; Perlaky, L.; Busch, R.K.; Busch, H. Cloning and characterization of Gu/RH-II binding protein. Biochem. Biophys. Res. Commun., 1997, 234(2), 335-340.
[http://dx.doi.org/10.1006/bbrc.1997.6642] [PMID: 9177271]
[135]
Chung, C.D.; Liao, J.; Liu, B.; Rao, X.; Jay, P.; Berta, P.; Shuai, K. Specific inhibition of Stat3 signal transduction by PIAS3. Science, 1997, 278(5344), 1803-1805.
[http://dx.doi.org/10.1126/science.278.5344.1803] [PMID: 9388184]
[136]
Liu, B.; Liao, J.; Rao, X.; Kushner, S.A.; Chung, C.D.; Chang, D.D.; Shuai, K. Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10626-10631.
[http://dx.doi.org/10.1073/pnas.95.18.10626] [PMID: 9724754]
[137]
Arora, T.; Liu, B.; He, H.; Kim, J.; Murphy, T.L.; Murphy, K.M.; Modlin, R.L.; Shuai, K. PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem., 2003, 278(24), 21327-21330.
[http://dx.doi.org/10.1074/jbc.C300119200] [PMID: 12716907]
[138]
Liu, B.; Gross, M.; ten Hoeve, J.; Shuai, K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3203-3207.
[http://dx.doi.org/10.1073/pnas.051489598] [PMID: 11248056]
[139]
Alonso, A.; Pulido, R. The extended human PTPome: A growing tyrosine phosphatase family. FEBS J., 2016, 283(8), 1404-1429.
[http://dx.doi.org/10.1111/febs.13600] [PMID: 26573778]
[140]
ten Hoeve, J.; de Jesus Ibarra-Sanchez, M.; Fu, Y.; Zhu, W.; Tremblay, M.; David, M.; Shuai, K. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol., 2002, 22(16), 5662-5668.
[http://dx.doi.org/10.1128/MCB.22.16.5662-5668.2002] [PMID: 12138178]
[141]
Irie-Sasaki, J.; Sasaki, T.; Matsumoto, W.; Opavsky, A.; Cheng, M.; Welstead, G.; Griffiths, E.; Krawczyk, C.; Richardson, C.D.; Aitken, K.; Iscove, N.; Koretzky, G.; Johnson, P.; Liu, P.; Rothstein, D.M.; Penninger, J.M. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature, 2001, 409(6818), 349-354.
[http://dx.doi.org/10.1038/35053086] [PMID: 11201744]
[142]
Tanaka, T.; Soriano, M.A.; Grusby, M.J. SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity, 2005, 22(6), 729-736.
[http://dx.doi.org/10.1016/j.immuni.2005.04.008] [PMID: 15963787]
[143]
Huang, Y.; Lei, Y.; Zhang, H.; Hou, L.; Zhang, M.; Dayton, A.I. MicroRNA regulation of STAT4 protein expression: Rapid and sensitive modulation of IL-12 signaling in human natural killer cells. Blood, 2011, 118(26), 6793-6802.
[http://dx.doi.org/10.1182/blood-2011-05-356162] [PMID: 22077060]
[144]
Wang, J.; Li, G.; Wang, Z.; Zhang, X.; Yao, L.; Wang, F.; Liu, S.; Yin, J.; Ling, E.A.; Wang, L.; Hao, A. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience, 2012, 202, 58-68.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.062] [PMID: 22178606]
[145]
Wang, T.; Yuan, W.; Liu, Y.; Zhang, Y.; Wang, Z.; Zhou, X.; Ning, G.; Zhang, L.; Yao, L.; Feng, S.; Kong, X. The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomed. Rep., 2015, 3(2), 141-146.
[http://dx.doi.org/10.3892/br.2014.401] [PMID: 25798237]
[146]
Sarafian, T.A.; Montes, C.; Imura, T.; Qi, J.; Coppola, G.; Geschwind, D.H.; Sofroniew, M.V. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One, 2010, 5(3), e9532.
[http://dx.doi.org/10.1371/journal.pone.0009532] [PMID: 20224768]
[147]
You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739.
[http://dx.doi.org/10.1080/15548627.2015.1017192] [PMID: 25951043]
[148]
Li, W.; Liu, J.; Tan, W.; Zhou, Y. The role and mechanisms of microglia in neuromyelitis optica spectrum disorders. Int. J. Med. Sci., 2021, 18(14), 3059-3065.
[http://dx.doi.org/10.7150/ijms.61153] [PMID: 34400876]
[149]
Qin, C.; Liu, Q.; Hu, Z.W.; Zhou, L.Q.; Shang, K.; Bosco, D.B.; Wu, L.J.; Tian, D.S.; Wang, W. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway. Theranostics, 2018, 8(19), 5434-5451.
[http://dx.doi.org/10.7150/thno.27882] [PMID: 30555556]
[150]
Yan, Z.; Gibson, S.A.; Buckley, J.A.; Qin, H.; Benveniste, E.N. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin. Immunol., 2018, 189, 4-13.
[http://dx.doi.org/10.1016/j.clim.2016.09.014] [PMID: 27713030]
[151]
Okamoto, O.K.; Janjoppi, L.; Bonone, F.M.; Pansani, A.P.; da Silva, A.V.; Scorza, F.A.; Cavalheiro, E.A. Whole transcriptome analysis of the hippocampus: Toward a molecular portrait of epileptogenesis. BMC Genomics, 2010, 11(1), 230.
[http://dx.doi.org/10.1186/1471-2164-11-230] [PMID: 20377889]
[152]
Ahmed, M.M.; Carrel, A.J.; Cruz Del Angel, Y.; Carlsen, J.; Thomas, A.X.; González, M.I.; Gardiner, K.J.; Brooks-Kayal, A. Altered protein profiles during epileptogenesis in the pilocarpine mouse model of temporal lobe epilepsy. Front. Neurol., 2021, 12, 654606.
[http://dx.doi.org/10.3389/fneur.2021.654606] [PMID: 34122302]
[153]
Riazi, K.; Galic, M.A.; Kuzmiski, J.B.; Ho, W.; Sharkey, K.A.; Pittman, Q.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17151-17156.
[http://dx.doi.org/10.1073/pnas.0806682105] [PMID: 18955701]
[154]
Vezzani, A.; Ravizza, T.; Balosso, S.; Aronica, E. Glia as a source of cytokines: Implications for neuronal excitability and survival. Epilepsia, 2008, 49, 24-32.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01490.x] [PMID: 18226169]
[155]
Hu, S.; Sheng, W.S.; Ehrlich, L.C.; Peterson, P.K.; Chao, C.C. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation, 2000, 7(3), 153-159.
[http://dx.doi.org/10.1159/000026433] [PMID: 10754403]
[156]
Bezzi, P.; Domercq, M.; Brambilla, L.; Galli, R.; Schols, D.; De Clercq, E.; Vescovi, A.; Bagetta, G.; Kollias, G.; Meldolesi, J.; Volterra, A. CXCR4-activated astrocyte glutamate release via TNFα Amplification by microglia triggers neurotoxicity. Nat. Neurosci., 2001, 4(7), 702-710.
[http://dx.doi.org/10.1038/89490] [PMID: 11426226]
[157]
Vezzani, A.; Moneta, D.; Richichi, C.; Aliprandi, M.; Burrows, S.J.; Ravizza, T.; Perego, C.; De Simoni, M.G. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia, 2002, 43, 30-35.
[http://dx.doi.org/10.1046/j.1528-1157.43.s.5.14.x] [PMID: 12121291]
[158]
Wang, S.; Cheng, Q.; Malik, S.; Yang, J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther., 2000, 292(2), 497-504.
[PMID: 10640285]
[159]
Alhadidi, Q.; Shah, Z.A. Cofilin mediates lps-induced microglial cell activation and associated neurotoxicity through activation of NF-κB and JAK–STAT pathway. Mol. Neurobiol., 2018, 55(2), 1676-1691.
[http://dx.doi.org/10.1007/s12035-017-0432-7] [PMID: 28194647]
[160]
Ko, E.K.; Chorich, L.P.; Sullivan, M.E.; Cameron, R.S.; Layman, L.C. JAK/STAT signaling pathway gene expression is reduced following Nelf knockdown in GnRH neurons. Mol. Cell. Endocrinol., 2018, 470, 151-159.
[http://dx.doi.org/10.1016/j.mce.2017.10.009] [PMID: 29050862]
[161]
Lund, I.V.; Hu, Y.; Raol, Y.H.; Benham, R.S.; Faris, R.; Russek, S.J.; Brooks-Kayal, A.R. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci. Signal., 2008, 1(41), ra9.
[http://dx.doi.org/10.1126/scisignal.1162396] [PMID: 18922788]
[162]
Khazipov, R. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764.
[http://dx.doi.org/10.1101/cshperspect.a022764] [PMID: 26747834]
[163]
Baulac, M.; Boer, H.; Elger, C.; Glynn, M.; Kälviäinen, R.; Little, A.; Mifsud, J.; Perucca, E.; Pitkänen, A.; Ryvlin, P. Epilepsy priorities in Europe: A report of the ILAE ‐ IBE Epilepsy Advocacy Europe Task Force. Epilepsia, 2015, 56(11), 1687-1695.
[http://dx.doi.org/10.1111/epi.13201] [PMID: 26415919]
[164]
Han, C.L.; Liu, Y.P.; Guo, C.J.; Du, T.T.; Jiang, Y.; Wang, K.L.; Shao, X.Q.; Meng, F.G.; Zhang, J.G. The lncRNA H19 binding to let‐7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif., 2020, 53(8), e12856.
[http://dx.doi.org/10.1111/cpr.12856] [PMID: 32648622]
[165]
Tian, D.S.; Peng, J.; Murugan, M.; Feng, L.J.; Liu, J.L.; Eyo, U.B.; Zhou, L.J.; Mogilevsky, R.; Wang, W.; Wu, L.J. Chemokine CCL2–CCR2 signaling induces neuronal cell death via STAT3 Activation and IL-1β Production after Status Epilepticus. J. Neurosci., 2017, 37(33), 7878-7892.
[http://dx.doi.org/10.1523/JNEUROSCI.0315-17.2017] [PMID: 28716963]
[166]
Earnshaw, B.A.; Bressloff, P.C. Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. J. Neurosci., 2006, 26(47), 12362-12373.
[http://dx.doi.org/10.1523/JNEUROSCI.3601-06.2006] [PMID: 17122061]
[167]
Nicolas, C.S.; Peineau, S.; Amici, M.; Csaba, Z.; Fafouri, A.; Javalet, C.; Collett, V.J.; Hildebrandt, L.; Seaton, G.; Choi, S.L.; Sim, S.E.; Bradley, C.; Lee, K.; Zhuo, M.; Kaang, B.K.; Gressens, P.; Dournaud, P.; Fitzjohn, S.M.; Bortolotto, Z.A.; Cho, K.; Collingridge, G.L. The Jak/STAT pathway is involved in synaptic plasticity. Neuron, 2012, 73(2), 374-390.
[http://dx.doi.org/10.1016/j.neuron.2011.11.024] [PMID: 22284190]
[168]
Postnikova, T.Y.; Diespirov, G.P.; Amakhin, D.V.; Vylekzhanina, E.N.; Soboleva, E.B.; Zaitsev, A.V. Impairments of long-term synaptic plasticity in the hippocampus of young rats during the latent phase of the lithium-pilocarpine model of temporal lobe epilepsy. Int. J. Mol. Sci., 2021, 22(24), 13355.
[http://dx.doi.org/10.3390/ijms222413355] [PMID: 34948152]
[169]
Leite, J.P.; Neder, L.; Arisi, G.M.; Carlotti, C.G., Jr; Assirati, J.A.; Moreira, J.E. Plasticity, synaptic strength, and epilepsy: What can we learn from ultrastructural data? Epilepsia, 2005, 46(s5), 134-141.
[http://dx.doi.org/10.1111/j.1528-1167.2005.01021.x] [PMID: 15987268]
[170]
Ohkawa, T.; Satake, S.; Yokoi, N.; Miyazaki, Y.; Ohshita, T.; Sobue, G.; Takashima, H.; Watanabe, O.; Fukata, Y.; Fukata, M. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J. Neurosci., 2014, 34(24), 8151-8163.
[http://dx.doi.org/10.1523/JNEUROSCI.4415-13.2014] [PMID: 24920620]
[171]
Planagumà, J.; Leypoldt, F.; Mannara, F.; Gutiérrez-Cuesta, J.; Martín-García, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; Lakadamyali, M.; Graus, F.; Maldonado, R.; Dalmau, J. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain, 2015, 138(1), 94-109.
[http://dx.doi.org/10.1093/brain/awu310] [PMID: 25392198]
[172]
Planagumà, J.; Haselmann, H.; Mannara, F.; Petit-Pedrol, M.; Grünewald, B.; Aguilar, E.; Röpke, L.; Martín-García, E.; Titulaer, M.J.; Jercog, P.; Graus, F.; Maldonado, R.; Geis, C.; Dalmau, J. Ephrin‐B2 prevents N‐methyl‐D‐aspartate receptor antibody effects on memory and neuroplasticity. Ann. Neurol., 2016, 80(3), 388-400.
[http://dx.doi.org/10.1002/ana.24721] [PMID: 27399303]
[173]
Moscato, E.H.; Peng, X.; Jain, A.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Acute mechanisms underlying antibody effects in anti–N‐methyl‐D‐aspartate receptor encephalitis. Ann. Neurol., 2014, 76(1), 108-119.
[http://dx.doi.org/10.1002/ana.24195] [PMID: 24916964]
[174]
Wright, S.; Hashemi, K.; Stasiak, L.; Bartram, J.; Lang, B.; Vincent, A.; Upton, A.L. Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model. Brain, 2015, 138(11), 3159-3167.
[http://dx.doi.org/10.1093/brain/awv257] [PMID: 26373601]
[175]
Gleichman, A.J.; Panzer, J.A.; Baumann, B.H.; Dalmau, J.; Lynch, D.R. Antigenic and mechanistic characterization of anti‐ AMPA receptor encephalitis. Ann. Clin. Transl. Neurol., 2014, 1(3), 180-189.
[http://dx.doi.org/10.1002/acn3.43] [PMID: 24707504]
[176]
Peng, X.; Hughes, E.G.; Moscato, E.H.; Parsons, T.D.; Dalmau, J.; Balice-Gordon, R.J. Cellular plasticity induced by anti–α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol., 2015, 77(3), 381-398.
[http://dx.doi.org/10.1002/ana.24293] [PMID: 25369168]
[177]
Egbenya, D.L.; Hussain, S.; Lai, Y.C.; Xia, J.; Anderson, A.E.; Davanger, S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol. Cell. Neurosci., 2018, 92, 93-103.
[http://dx.doi.org/10.1016/j.mcn.2018.07.004] [PMID: 30064010]
[178]
Malkin, S.L.; Amakhin, D.V.; Veniaminova, E.A.; Kim, K.K.; Zubareva, O.E.; Magazanik, L.G.; Zaitsev, A.V. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience, 2016, 327, 146-155.
[http://dx.doi.org/10.1016/j.neuroscience.2016.04.024] [PMID: 27109923]
[179]
Fukata, Y.; Lovero, K.L.; Iwanaga, T.; Watanabe, A.; Yokoi, N.; Tabuchi, K.; Shigemoto, R.; Nicoll, R.A.; Fukata, M. Disruption of LGI1–linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3799-3804.
[http://dx.doi.org/10.1073/pnas.0914537107] [PMID: 20133599]
[180]
Petit-Pedrol, M.; Sell, J.; Planagumà, J.; Mannara, F.; Radosevic, M.; Haselmann, H.; Ceanga, M.; Sabater, L.; Spatola, M.; Soto, D.; Gasull, X.; Dalmau, J.; Geis, C. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain, 2018, 141(11), 3144-3159.
[http://dx.doi.org/10.1093/brain/awy253] [PMID: 30346486]
[181]
A., T.V. Selective JAKinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs, 2019, 33(1), 15-32.
[182]
Słuczanowska-Głąbowska, S.; Ziegler-Krawczyk, A.; Szumilas, K.; Pawlik, A. Role of janus kinase inhibitors in therapy of psoriasis. J. Clin. Med., 2021, 10(19), 4307.
[http://dx.doi.org/10.3390/jcm10194307] [PMID: 34640327]
[183]
Aggarwal, P.; Sonthalia, S. Oral tofacitinib: Contemporary appraisal of its role in dermatology. Indian Dermatol. Online J., 2019, 10(5), 503-518.
[http://dx.doi.org/10.4103/idoj.IDOJ_474_18] [PMID: 31544068]
[184]
Kvist-Hansen, A.; Hansen, P.R.; Skov, L. Systemic treatment of psoriasis with JAK Inhibitors: A review. Dermatol. Ther. (Heidelb.), 2020, 10(1), 29-42.
[http://dx.doi.org/10.1007/s13555-019-00347-w] [PMID: 31893355]
[185]
Xie, R.; Deng, C.; Wang, Q.; Kanik, K.S.; Nicholas, T.; Menon, S. Population pharmacokinetics of tofacitinib in patients with psoriatic arthritis. Int. J. Clin. Pharmacol. Ther., 2019, 57(9), 464-473.
[http://dx.doi.org/10.5414/CP203516] [PMID: 31319908]
[186]
Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; Li, X.; Biehl, A.J.; Ochoa-Navas, I.; Manna, Z.; Shi, Y.; Thomas, D.; Chen, J.; Biancotto, A.; Apps, R.; Cheung, F.; Kotliarov, Y.; Babyak, A.L.; Zhou, H.; Shi, R.; Stagliano, K.; Tsai, W.L.; Vian, L.; Gazaniga, N.; Giudice, V.; Lu, S.; Brooks, S.R.; MacKay, M.; Gregersen, P.; Mehta, N.N.; Remaley, A.T.; Diamond, B.; O’Shea, J.J.; Gadina, M.; Kaplan, M.J. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun., 2021, 12(1), 3391.
[http://dx.doi.org/10.1038/s41467-021-23361-z] [PMID: 34099646]
[187]
Patoulias, D.; Doumas, M.; Papadopoulos, C.; Karagiannis, A. Janus kinase inhibitors and major COVID-19 outcomes: Time to forget the two faces of Janus! A meta-analysis of randomized controlled trials. Clin. Rheumatol., 2021, 40(11), 4671-4674.
[http://dx.doi.org/10.1007/s10067-021-05884-4] [PMID: 34431004]
[188]
Murugesan, H.; Cs, G.; Nasreen, H.S.; Santhanam, S.M.G.; Ravi, S.; Es, S.S. An evaluation of efficacy and safety of tofacitinib, a jak inhibitor in the management of hospitalized patients with mild to moderate covid-19 - an open-label randomized controlled study. J. Assoc. Physicians India, 2022, 69(12), 11-12.
[PMID: 35057599]
[189]
Mascarenhas, J.; Hoffman, R. Ruxolitinib: The first FDA approved therapy for the treatment of myelofibrosis. Clin. Cancer Res., 2012, 18(11), 3008-3014.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3145] [PMID: 22474318]
[190]
Gadina, M.; Chisolm, D.A.; Philips, R.L.; McInness, I.B.; Changelian, P.S.; O’Shea, J.J. Translating JAKs to Jakinibs. J. Immunol., 2020, 204(8), 2011-2020.
[http://dx.doi.org/10.4049/jimmunol.1901477] [PMID: 32253269]
[191]
Iwamoto, N.; Sato, S.; Kurushima, S.; Michitsuji, T.; Nishihata, S.; Okamoto, M.; Tsuji, Y.; Endo, Y.; Shimizu, T.; Sumiyoshi, R.; Suzuki, T.; Okada, A.; Koga, T.; Kawashiri, S.; Fujikawa, K.; Igawa, T.; Aramaki, T.; Ichinose, K.; Tamai, M.; Nakamura, H.; Mizokami, A.; Origuchi, T.; Ueki, Y.; Eguchi, K.; Kawakami, A. Real-world comparative effectiveness and safety of tofacitinib and baricitinib in patients with rheumatoid arthritis. Arthritis Res. Ther., 2021, 23(1), 197.
[http://dx.doi.org/10.1186/s13075-021-02582-z] [PMID: 34301311]
[192]
King, B.; Ko, J.; Forman, S.; Ohyama, M.; Mesinkovska, N.; Yu, G.; McCollam, J.; Gamalo, M.; Janes, J.; Edson-Heredia, E.; Holzwarth, K.; Dutronc, Y. Efficacy and safety of the oral Janus kinase inhibitor baricitinib in the treatment of adults with alopecia areata: Phase 2 results from a randomized controlled study. J. Am. Acad. Dermatol., 2021, 85(4), 847-853.
[http://dx.doi.org/10.1016/j.jaad.2021.05.050] [PMID: 34090959]
[193]
Silverberg, J.I.; Boguniewicz, M.; Waibel, J.; Weisman, J.; Strowd, L.; Sun, L.; Ding, Y.; Feely, M.; Nunes, F.P.; Simpson, E.L. Clinical tailoring of baricitinib 2 mg in atopic dermatitis: Baseline body surface area and rapid onset of action identifies response at week 16. Dermatol. Ther. (Heidelb.), 2022, 12(1), 137-148.
[http://dx.doi.org/10.1007/s13555-021-00640-7] [PMID: 34846636]
[194]
Thoms, B.L.; Gosselin, J.; Libman, B.; Littenberg, B.; Budd, R.C. Efficacy of combination therapy with the JAK inhibitor baricitinib in the treatment of COVID-19. SN Compr. Clin. Med., 2022, 4(1), 42.
[http://dx.doi.org/10.1007/s42399-022-01121-4] [PMID: 35079694]
[195]
Rocha, C.M.; Alves, A.M.; Bettanin, B.F.; Majolo, F.; Gehringer, M.; Laufer, S.; Goettert, M.I. Current jakinibs for the treatment of rheumatoid arthritis: A systematic review. Inflammopharmacology, 2021, 29(3), 595-615.
[http://dx.doi.org/10.1007/s10787-021-00822-x] [PMID: 34046798]
[196]
Ma, C.; Lee, J.K.; Mitra, A.R.; Teriaky, A.; Choudhary, D.; Nguyen, T.M.; Vande Casteele, N.; Khanna, R.; Panaccione, R.; Feagan, B.G.; Jairath, V. Systematic review with meta-analysis: Efficacy and safety of oral Janus kinase inhibitors for inflammatory bowel disease. Aliment. Pharmacol. Ther., 2019, 50(1), 5-23.
[http://dx.doi.org/10.1111/apt.15297] [PMID: 31119766]
[197]
Denti, D.; Caldin, M.; Ventura, L.; De Lucia, M. Prolonged twice‐daily administration of oclacitinib for the control of canine atopic dermatitis: A retrospective study of 53 client‐owned atopic dogs. Vet. Dermatol., 2022, 33(2), 149-e42.
[http://dx.doi.org/10.1111/vde.13053] [PMID: 35014745]
[198]
Rynhoud, H.; Gibson, J.S.; Meler, E.; Soares Magalhães, R.J. The association between the use of oclacitinib and antibacterial therapy in dogs with allergic dermatitis: A retrospective case-control study. Front. Vet. Sci., 2021, 8, 631443.
[http://dx.doi.org/10.3389/fvets.2021.631443] [PMID: 33681331]
[199]
Ferreira, S.; Guttman-Yassky, E.; Torres, T. Selective JAK1 inhibitors for the treatment of atopic dermatitis: Focus on upadacitinib and abrocitinib. Am. J. Clin. Dermatol., 2020, 21(6), 783-798.
[http://dx.doi.org/10.1007/s40257-020-00548-6] [PMID: 32776305]
[200]
Sandborn, W.J.; Feagan, B.G.; Loftus, E.V., Jr; Peyrin-Biroulet, L.; Van Assche, G.; D’Haens, G.; Schreiber, S.; Colombel, J.F.; Lewis, J.D.; Ghosh, S.; Armuzzi, A.; Scherl, E.; Herfarth, H.; Vitale, L.; Mohamed, M.E.F.; Othman, A.A.; Zhou, Q.; Huang, B.; Thakkar, R.B.; Pangan, A.L.; Lacerda, A.P.; Panes, J. Efficacy and safety of upadacitinib in a randomized trial of patients with crohn’s disease. Gastroenterology, 2020, 158(8), 2123-2138.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.01.047] [PMID: 32044319]
[201]
Mysler, E.; Lizarraga, A. Phase III trials of JAK1 selective inhibitors in rheumatoid arthritis. Rheumatology (Oxford), 2021, 60, ii17-ii23.
[http://dx.doi.org/10.1093/rheumatology/keaa823] [PMID: 33950225]
[202]
Harris, C.; Cummings, J.R.F. JAK1 inhibition and inflammatory bowel disease. Rheumatology (Oxford), 2021, 60, ii45-ii51.
[http://dx.doi.org/10.1093/rheumatology/keaa896] [PMID: 33950226]
[203]
Richez, C.; Truchetet, M.E. Evaluating filgotinib for the treatment of rheumatoid arthritis. Expert Opin. Pharmacother., 2021, 22(18), 2435-2444.
[http://dx.doi.org/10.1080/14656566.2021.1967929] [PMID: 34402699]
[204]
LiverTox. Clinical and research information on drug-induced liver injury. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, 2012.
[205]
Angelini, J.; Talotta, R.; Roncato, R.; Fornasier, G.; Barbiero, G.; Dal Cin, L.; Brancati, S.; Scaglione, F. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future. Biomolecules, 2020, 10(7), 1002.
[http://dx.doi.org/10.3390/biom10071002] [PMID: 32635659]
[206]
Berdeja, J.; Palandri, F.; Baer, M.R.; Quick, D.; Kiladjian, J.J.; Martinelli, G.; Verma, A.; Hamid, O.; Walgren, R.; Pitou, C.; Li, P.L.; Gerds, A.T. Phase 2 study of gandotinib (LY2784544) in patients with myeloproliferative neoplasms. Leuk. Res., 2018, 71, 82-88.
[http://dx.doi.org/10.1016/j.leukres.2018.06.014] [PMID: 30025280]
[207]
Zhu, H.; Jian, Z.; Zhong, Y.; Ye, Y.; Zhang, Y.; Hu, X.; Pu, B.; Gu, L.; Xiong, X. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front. Immunol., 2021, 12, 714943.
[http://dx.doi.org/10.3389/fimmu.2021.714943] [PMID: 34367186]
[208]
Bharti, A.C.; Donato, N.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol., 2003, 171(7), 3863-3871.
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[209]
Matsuno, K.; Masuda, Y.; Uehara, Y.; Sato, H.; Muroya, A.; Takahashi, O.; Yokotagawa, T.; Furuya, T.; Okawara, T.; Otsuka, M.; Ogo, N.; Ashizawa, T.; Oshita, C.; Tai, S.; Ishii, H.; Akiyama, Y.; Asai, A. Identification of a New Series of STAT3 Inhibitors by Virtual Screening. ACS Med. Chem. Lett., 2010, 1(8), 371-375.
[http://dx.doi.org/10.1021/ml1000273] [PMID: 24900220]
[210]
Don-Doncow, N.; Escobar, Z.; Johansson, M.; Kjellström, S.; Garcia, V.; Munoz, E.; Sterner, O.; Bjartell, A.; Hellsten, R. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J. Biol. Chem., 2014, 289(23), 15969-15978.
[http://dx.doi.org/10.1074/jbc.M114.564252] [PMID: 24755219]
[211]
Sethi, G.; Chatterjee, S.; Rajendran, P.; Li, F.; Shanmugam, M.K.; Wong, K.F.; Kumar, A.P.; Senapati, P.; Behera, A.K.; Hui, K.M.; Basha, J.; Natesh, N.; Luk, J.M.; Kundu, T.K. Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Mol. Cancer, 2014, 13(1), 66.
[http://dx.doi.org/10.1186/1476-4598-13-66] [PMID: 24655440]
[212]
Wei, N.; Li, J.; Fang, C.; Chang, J.; Xirou, V.; Syrigos, N.K.; Marks, B.J.; Chu, E.; Schmitz, J.C. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene, 2019, 38(10), 1676-1687.
[http://dx.doi.org/10.1038/s41388-018-0547-y] [PMID: 30348989]
[213]
Xie, Q.; Yang, Z.; Huang, X.; Zhang, Z.; Li, J.; Ju, J.; Zhang, H.; Ma, J. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J. Hematol. Oncol., 2019, 12(1), 60.
[http://dx.doi.org/10.1186/s13045-019-0744-3] [PMID: 31186039]
[214]
Nelson, E.A.; Walker, S.R.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Gashin, L.B.; Terrell, S.; Klitgaard, J.L.; Santo, L.; Addorio, M.R.; Ebert, B.L.; Griffin, J.D.; Frank, D.A. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood, 2011, 117(12), 3421-3429.
[http://dx.doi.org/10.1182/blood-2009-11-255232] [PMID: 21233313]
[215]
Simpson, H.M.; Furusawa, A.; Sadashivaiah, K.; Civin, C.I.; Banerjee, A. STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma. Oncotarget, 2018, 9(24), 16792-16806.
[http://dx.doi.org/10.18632/oncotarget.24698] [PMID: 29682185]
[216]
Halim, C.E.; Deng, S.; Ong, M.S.; Yap, C.T. Involvement of STAT5 in Oncogenesis. Biomedicines, 2020, 8(9), 316.
[http://dx.doi.org/10.3390/biomedicines8090316] [PMID: 32872372]
[217]
Wang, X.; Zeng, J.; Shi, M.; Zhao, S.; Bai, W.; Cao, W.; Tu, Z.; Huang, Z.; Feng, W. Targeted blockage of signal transducer and activator of transcription 5 signaling pathway with decoy oligodeoxynucleotides suppresses leukemic K562 cell growth. DNA Cell Biol., 2011, 30(2), 71-78.
[http://dx.doi.org/10.1089/dna.2010.1112] [PMID: 21091189]
[218]
Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs, 2017, 77(5), 521-546.
[http://dx.doi.org/10.1007/s40265-017-0701-9] [PMID: 28255960]
[219]
Shim, S.H.; Sung, M.W.; Park, S.W.; Heo, D.S. Absence of STAT1 disturbs the anticancer effect induced by STAT3 inhibition in head and neck carcinoma cell lines. Int. J. Mol. Med., 2009, 23(6), 805-810.
[PMID: 19424608]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy