Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Novel PPAR-β/δ Agonists from Kaempferol, Quercetin, and Resveratrol Derivatives by Targeting Cancer: An Integrative Molecular Docking and Dynamics Simulation Approach

Author(s): Sangeeta Ballav, Kiran Bharat Lokhande, Vishal Kumar Sahu, Rohit Singh Yadav, K. Venkateswara Swamy and Soumya Basu*

Volume 21, Issue 4, 2024

Published on: 17 January, 2023

Page: [749 - 762] Pages: 14

DOI: 10.2174/1570180820666221214152939

Price: $65

Abstract

Background: Drug resistance in cancer is a serious threat to human well-being. There is a dire need to develop novel and efficient lead molecules to treat the disease. In lieu of anti-cancer activities, Peroxisome proliferator–activated receptors (PPARs)-β/δ proven to be potential therapeutic targets against cancer. However, there are yet no PPAR-β/δ agonists reported for clinical use.

Objective: The present study features in silico screening and identification of 8708 derivatives based on backbone of natural compounds like Kaempferol, Quercetin and Resveratrol against PPAR-β/δ using molecular docking, and molecular dynamics (MD) simulations.

Methods: Initial screening of 8708 derivatives was done by recruiting Lipinski’s rule of five. Docking calculations were assessed through FlexX software tool. GROMACS was used to analyze dynamic perturbations and binding free energy (MM/GBSA) analysis of the top compounds. SwissADME was used to analyze pharmacokinetic properties.

Results: The results of molecular docking indicated that 2-[2-(2,4-Dihydroxyphenyl)-2- oxoethoxy]benzoate (DOB), (E)-1-(3,4,5-Trihydroxyphenyl)-3-(3,4-dihydroxyphenyl) propene (TDP) and 2-Hydroxy-3-(2,6,7-trihydroxy-3-oxo-3H-xanthen-9-YL) benzoic acid (HTOB); respective derivatives of Kaempferol, Resveratrol and Quercetin strongly binds to the active site residues of PPAR-β/δ. Furthermore, ADME (absorption, distribution, metabolism & excretion) profile conferred their high druglikeness properties. On monitoring their dynamic perturbations, HTOB acquired the most favorable interaction and stability within the vicinity of PPAR-β/δ protein.

Conclusion: These outcomes constitute preliminary studies and the obtained lead derivatives could be great options to treat various types of cancer and formulate as oral drug candidates.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Yao, P.L.; Morales, J.L.; Zhu, B.; Kang, B.H.; Gonzalez, F.J.; Peters, J.M. Activation of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) inhibits human breast cancer cell line tumorigenicity. Mol. Cancer Ther., 2014, 13(4), 1008-1017.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0836] [PMID: 24464939]
[3]
Montagner, A.; Wahli, W.; Tan, N.S. Nuclear receptor peroxisome proliferator activated receptor (PPAR) β/δ in skin wound healing and cancer. Eur. J. Dermatol., 2015, 25(Suppl. 1), 4-11.
[PMID: 26287030]
[4]
Strosznajder, A.K.; Wójtowicz, S. Jeżyna, M.J.; Sun, G.Y.; Strosznajder, J.B. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med., 2021, 23(1), 86-98.
[http://dx.doi.org/10.1007/s12017-020-08629-9] [PMID: 33210212]
[5]
Veiga, F.M.S.; Graus-Nunes, F.; Rachid, T.L.; Barreto, A.B.; Mandarim-de-Lacerda, C.A.; Souza-Mello, V. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie, 2017, 140, 106-116.
[http://dx.doi.org/10.1016/j.biochi.2017.07.003] [PMID: 28711683]
[6]
Ferreira, B.L.; Ramirez-Moral, I.; Otto, N.A.; Salomão, R.; de Vos, A.F.; van der Poll, T. The PPAR-γ agonist pioglitazone exerts proinflammatory effects in bronchial epithelial cells during acute Pseudomonas aeruginosa pneumonia. Clin. Exp. Immunol., 2022, 207(3), 370-377.
[http://dx.doi.org/10.1093/cei/uxab036] [PMID: 35553637]
[7]
Mackenzie, L.S.; Lione, L. Harnessing the benefits of PPARβ/δ agonists. Life Sci., 2013, 93(25-26), 963-967.
[http://dx.doi.org/10.1016/j.lfs.2013.10.022] [PMID: 24184294]
[8]
Wang, X.; Wang, G.; Shi, Y.; Sun, L.; Gorczynski, R.; Li, Y-J.; Xu, Z.; Spaner, D.E. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis, 2016, 5(6), e232.
[http://dx.doi.org/10.1038/oncsis.2016.41] [PMID: 27270614]
[9]
Botta, M.; Audano, M.; Sahebkar, A.; Sirtori, C.; Mitro, N.; Ruscica, M. PPAR agonists and metabolic syndrome: An established role? Int. J. Mol. Sci., 2018, 19(4), 1197.
[http://dx.doi.org/10.3390/ijms19041197] [PMID: 29662003]
[10]
Amin, A.R.M.R.; Kucuk, O.; Khuri, F.R.; Shin, D.M. Perspectives for cancer prevention with natural compounds. J. Clin. Oncol., 2009, 27(16), 2712-2725.
[http://dx.doi.org/10.1200/JCO.2008.20.6235] [PMID: 19414669]
[11]
Verschoyle, R.D.; Steward, W.P.; Gescher, A.J. Putative cancer chemopreventive agents of dietary origin-how safe are they? Nutr. Cancer, 2007, 59(2), 152-162.
[http://dx.doi.org/10.1080/01635580701458186] [PMID: 18001209]
[12]
Narii, N.; Sobue, T.; Zha, L.; Kitamura, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Yamaji, T.; Tsugane, S. Vegetable and fruit intake and the risk of bladder cancer: Japan Public Health Center-based prospective study. Br. J. Cancer, 2022, 126(11), 1647-1658.
[http://dx.doi.org/10.1038/s41416-022-01739-0] [PMID: 35241777]
[13]
Wang, X.; Yang, Y.; An, Y.; Fang, G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed. Pharmacother., 2019, 117, 109086.
[http://dx.doi.org/10.1016/j.biopha.2019.109086] [PMID: 31200254]
[14]
Jo, E.; Park, S.J.; Choi, Y.S.; Jeon, W.K.; Kim, B.C. Kaempferol suppresses transforming growth factor-β1–induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia, 2015, 17(7), 525-537.
[http://dx.doi.org/10.1016/j.neo.2015.06.004] [PMID: 26297431]
[15]
Ji, X.; Cao, J.; Zhang, L.; Zhang, Z.; Shuai, W.; Yin, W. Kaempferol protects renal fibrosis through activating the BMP-7-Smad1/5 signaling pathway. Biol. Pharm. Bull., 2020, 43(3), 533-539.
[http://dx.doi.org/10.1248/bpb.b19-01010] [PMID: 32115512]
[16]
Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One, 2015, 10(10), e0141370.
[http://dx.doi.org/10.1371/journal.pone.0141370] [PMID: 26491966]
[17]
Ballav, S.; Lokhande, K.B.; Dabhi, I.; Inje, S.; Ranjan, A.; Swamy, K.V.; Basu, S. Designing novel quercetin derivatives as matrix metalloproteinase-9 inhibitors in colon carcinoma: An in vitro and in silico approach. J. Dental Res. Rev., 2020, 6(5), 30-35.
[18]
Roshanazadeh, M.; Babaahmadi Rezaei, H.; Rashidi, M. Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran. J. Basic Med. Sci., 2021, 24(7), 928-934.
[PMID: 34712423]
[19]
Lee, Y.; Shin, H.; Kim, J. In vivo anti-cancer effects of resveratrol mediated by NK cell activation. J. Innate Immun., 2021, 13(2), 94-106.
[http://dx.doi.org/10.1159/000510315] [PMID: 32937636]
[20]
Kim, B.W.; Lee, E.R.; Min, H.M.; Jeong, H.S.; Ahn, J.Y.; Kim, J.H.; Choi, H.Y.; Choi, H.; Kim, E.Y.; Park, S.P.; Cho, S.G. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther., 2008, 7(7), 1080-1089.
[http://dx.doi.org/10.4161/cbt.7.7.6164] [PMID: 18443432]
[21]
Dell’Albani, P.; Di Marco, B.; Grasso, S.; Rocco, C.; Foti, M.C. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur. J. Pharm. Sci., 2017, 101, 56-65.
[http://dx.doi.org/10.1016/j.ejps.2017.01.036] [PMID: 28153636]
[22]
Kundu, J.K.; Surh, Y.J. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett., 2008, 269(2), 243-261.
[http://dx.doi.org/10.1016/j.canlet.2008.03.057] [PMID: 18550275]
[23]
Beekmann, K.; Rubió, L.; de Haan, L.H.J.; Actis-Goretta, L.; van der Burg, B.; van Bladeren, P.J.; Rietjens, I.M.C.M. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct., 2015, 6(4), 1098-1107.
[http://dx.doi.org/10.1039/C5FO00076A] [PMID: 25765892]
[24]
Calleri, E.; Pochetti, G.; Dossou, K.S.S.; Laghezza, A.; Montanari, R.; Capelli, D.; Prada, E.; Loiodice, F.; Massolini, G.; Bernier, M.; Moaddel, R. Resveratrol and its metabolites bind to PPARs. ChemBioChem, 2014, 15(8), 1154-1160.
[http://dx.doi.org/10.1002/cbic.201300754] [PMID: 24796862]
[25]
Ahmed, H.A.; Alkali, I.Y. In silico molecular docking studies of some phytochemicals against peroxisome proliferator activated receptor gamma (PPAR-γ). GSC Biol. Pharm. Sci., 2018, 5(2), 1-5.
[26]
Coman, C.; Socaciu, C. Molecular modeling of quercetin binding to the peroxisome proliferator-activated receptor-gamma. Bulletin UASVM Agriculture., 2011, 68(2)
[27]
Milenković D.; Dimitrić Marković J.M.; Dimić D.; Jeremić S.; Amić D.; Stanojević Pirković M.; Marković Z.S. Structural characterization of kaempferol: A spectroscopic and computational study. Maced. J. Chem. Chem. Eng., 2019, 38(1), 49.
[http://dx.doi.org/10.20450/mjcce.2019.1333]
[28]
Gurula, H.; Loganathan, T.; Vashum, Y.; Pannerselvam, S.; Vetrivel, U.; Samuel, S. In silico screening of potent ppar gamma agonists among natural anti-cancer compounds of Indian origin. Asian J. Pharm. Clin. Res., 2016, 9(4), 320-324.
[29]
Yeh, S.L.; Yeh, C.L.; Chan, S.T.; Chuang, C.H. Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Med., 2011, 77(10), 992-998.
[http://dx.doi.org/10.1055/s-0030-1250735] [PMID: 21267808]
[30]
Chuang, C.H.; Yeh, C.L.; Yeh, S.L.; Lin, E.S.; Wang, L.Y.; Wang, Y.H. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J. Nutr. Biochem., 2016, 33, 45-53.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.011] [PMID: 27260467]
[31]
Inoue, H.; Jiang, X.F.; Katayama, T.; Osada, S.; Umesono, K.; Namura, S. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci. Lett., 2003, 352(3), 203-206.
[http://dx.doi.org/10.1016/j.neulet.2003.09.001] [PMID: 14625020]
[32]
Pettersson, I.; Ebdrup, S.; Havranek, M.; Pihera, P. Kořínek, M.; Mogensen, J.P.; Jeppesen, C.B.; Johansson, E.; Sauerberg, P. Design of a partial PPARδ agonist. Bioorg. Med. Chem. Lett., 2007, 17(16), 4625-4629.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.079] [PMID: 17560785]
[33]
Release, S. 2019–2: Protein Preparation Wizard, New York, NY; Schrodinger, LLC: New York, NY, 2019.
[34]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[35]
Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical p Ka predictions. J. Chem. Theory Comput., 2011, 7(2), 525-537.
[http://dx.doi.org/10.1021/ct100578z] [PMID: 26596171]
[36]
Bursulaya, B.D.; Totrov, M.; Abagyan, R.; Brooks, C.L., III Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des., 2003, 17(11), 755-763.
[http://dx.doi.org/10.1023/B:JCAM.0000017496.76572.6f] [PMID: 15072435]
[37]
Schrödinger Release 2018-4: Desmond Molecular Dynamics System. D. E. Shaw Research: NewYork, NY, 2018.
[38]
Páll, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.; Gray, A.; Hess, B.; Lindahl, E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys., 2020, 153(13), 134110.
[http://dx.doi.org/10.1063/5.0018516] [PMID: 33032406]
[39]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[40]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[41]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[42]
Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029.
[http://dx.doi.org/10.1371/journal.pone.0012029] [PMID: 20808434]
[43]
Zhao, H.; Huang, D. Hydrogen bonding penalty upon ligand binding. PLoS One, 2011, 6(6), e19923.
[http://dx.doi.org/10.1371/journal.pone.0019923] [PMID: 21698148]
[44]
Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240.
[http://dx.doi.org/10.1126/sciadv.1501240] [PMID: 27051863]
[45]
Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; Alcaro, S. Kaempferol as selective human MAO-A inhibitor: Analytical detection in calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem., 2016, 64(6), 1394-1400.
[http://dx.doi.org/10.1021/acs.jafc.5b06043] [PMID: 26821152]
[46]
Al-Nour, M.Y.; Ibrahim, M.M.; Elsaman, T. Ellagic acid, kaempferol, and quercetin from Acacia nilotica: Promising combined drug with multiple mechanisms of action. Curr. Pharmacol. Rep., 2019, 5(4), 255-280.
[http://dx.doi.org/10.1007/s40495-019-00181-w] [PMID: 32226726]
[47]
Pathak, R.K.; Gupta, A.; Shukla, R.; Baunthiyal, M. Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of Hyperuricemia: A molecular docking and simulation study. Comput. Biol. Chem., 2018, 76, 32-41.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.015] [PMID: 29906649]
[48]
Lobanov, M.Iu.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. (Mosk.), 2008, 42(4), 701-706.
[PMID: 18856071]
[49]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[50]
Lomzov, A.A.; Vorobjev, Y.N.; Pyshnyi, D.V. Evaluation of the gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J. Phys. Chem. B, 2015, 119(49), 15221-15234.
[http://dx.doi.org/10.1021/acs.jpcb.5b09645] [PMID: 26569147]
[51]
Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. Trials Commun., 2018, 11, 156-164.
[http://dx.doi.org/10.1016/j.conctc.2018.08.001] [PMID: 30112460]

© 2024 Bentham Science Publishers | Privacy Policy