Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Triazole: A New Perspective in Medicinal Chemistry and Material Science

Author(s): Pedro Alves Bezerra Morais, Clara Lirian Javarini, Thays Cardoso Valim, Carla Santana Francisco, Lara Chaves de Freitas Ferreira, Ramon Ramires Trancoso Bottocim, Álvaro Cunha Neto and Valdemar Lacerda Júnior*

Volume 26, Issue 18, 2022

Published on: 23 December, 2022

Page: [1691 - 1702] Pages: 12

DOI: 10.2174/1385272827666221213145147

Price: $65

Abstract

Triazole, which can exist in two isomeric forms: 1,2,3- and 1,2,4-triazole, is considered to be a privileged scaffold with recognized biological and pharmaceutical potential. Furthermore, due to their physicochemical properties, the applications of triazoles have been explored in fields ranging from medicinal chemistry to materials science. Triazoles have not only drawn the attention of the scientific community for all the aforementioned properties but also due to their ability to be incorporated into other bioactive and functional molecules. The connection between two pharmacophores makes it possible to potentiate specific biological activities or add different properties. Interest in the compatibility of the triazole nucleus with peptide structures is highlighted in the development of new therapeutic targets. In epigenetics, triazole is linked to various compounds that are used in the creation of new drugs that could potentially inhibit histone-modifying enzymes. Other new and potentially more effective materials that can take advantage of a triazole moiety include light-emitting diodes and solar cells, among others. Hence, we propose a novel approach to the promising applications of triazolic ring, a compound that has been gaining prominence in organic chemistry due to its applicability to many different fields.

Graphical Abstract

[1]
Morais, P.A.B.; Francisco, C.S.; de Paula, H.; Ribeiro, R.; Eloy, M.A.; Javarini, C.L.; Neto, Á.C.; Júnior, V.L. Semisynthetic triazoles as an approach in the discovery of novel lead compounds. Curr. Org. Chem., 2021, 25(10), 1097-1179.
[http://dx.doi.org/10.2174/1385272825666210126100227]
[2]
Nemallapudi, B.R.; Guda, D.R.; Ummadi, N.; Avula, B.; Zyryanov, G.V.; Reddy, C.S. New methods for synthesis of 1,2 3-triazoles: A review. Polycycl. Aromat. Compd., 2020, 1-19.
[3]
Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev., 2011, 255(5-6), 485-546.
[http://dx.doi.org/10.1016/j.ccr.2010.10.038]
[4]
Olesiejuk, M.; Kudelko, A.; Swiatkowski, M.; Kruszynski, R. Synthesis of 4-alkyl-4H-1,2,4-triazole derivatives by Suzuki cross-coupling reactions and their luminescence properties. Molecules, 2019, 24(3), 652.
[http://dx.doi.org/10.3390/molecules24030652] [PMID: 30759857]
[5]
Saroha, B.; Kumar, G.; Kumar, S.; Kumari, M.; Rani, M.; Raghav, N.; Sahoo, P.K.; Ghosh, S.; Mahata, S.; Nasare, V.D. Ultrasound assisted a one pot multicomponent and greener synthesis of 1,2,3-triazole incorporated aurone hybrids: Cathepsin B inhibition, anti-cancer activity against AGS cell line, and in-silico docking evaluation. Curr. Res. Green Sustain. Chem., 2022, 5, 100295.
[http://dx.doi.org/10.1016/j.crgsc.2022.100295]
[6]
Saroha, B.; Kumar, G.; Kumar, S.; Kumari, M.; Rani, M.; Raghav, N.; Sahoo, P.K.; Ghosh, S.; Mahata, S.; Nasare, V.D. Novel 1,2,3-triazole-aurone hybrids as cathepsin B inhibitors: One-pot synthesis, anti-proliferative, and drug modeling studies. Eur. J. Med. Chem. Reports, 2022, 5, 100056.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100056]
[7]
Alves Eloy, M.; Ribeiro, R.; Martins Meireles, L.; Antonio de Sousa Cutrim, T.; Santana Francisco, C.; Lirian Javarini, C.; Borges, W.S.; Costa, A.V.; Queiroz, V.T.; Scherer, R.; Lacerda, V., Jr; Alves Bezerra Morais, P. Thymol as an interesting building block for promising fungicides against Fusarium solani. J. Agric. Food Chem., 2021, 69(25), 6958-6967.
[http://dx.doi.org/10.1021/acs.jafc.0c07439] [PMID: 34152748]
[8]
Glanzmann, N.; Antinarelli, L.M.R.; da Costa Nunes, I.K.; Pereira, H.M.G.; Coelho, E.A.F.; Coimbra, E.S.; da Silva, A.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed. Pharmacother., 2021, 141, 111857.
[http://dx.doi.org/10.1016/j.biopha.2021.111857] [PMID: 34323702]
[9]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[10]
Rečnik, L.M.; Kandioller, W.; Mindt, T.L. 1,4- Disubstituted 1,2,3-triazoles as amide bond surrogates for the stabilisation of linear peptides with biological activity. Molecules, 2020, 25(16), 3576.
[http://dx.doi.org/10.3390/molecules25163576] [PMID: 32781656]
[11]
Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenhäuser, F.; Ackermann, L. Late-stage C(sp2)-H and C(sp3)-H glycosylation of C -aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem. Sci. (Camb.), 2020, 11(25), 6521-6526.
[http://dx.doi.org/10.1039/D0SC01260B] [PMID: 34094117]
[12]
Tornøe, C.W.; Sanderson, S.J.; Mottram, J.C.; Coombs, G.H.; Meldal, M. Combinatorial library of peptidotriazoles: identification of [1,2,3]-triazole inhibitors against a recombinant Leishmania mexicana cysteine protease. J. Comb. Chem., 2004, 6(3), 312-324.
[http://dx.doi.org/10.1021/cc020085v] [PMID: 15132590]
[13]
Güell, I.; Micaló, L.; Cano, L.; Badosa, E.; Ferre, R.; Montesinos, E.; Bardají, E.; Feliu, L.; Planas, M. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides, 2012, 33(1), 9-17.
[http://dx.doi.org/10.1016/j.peptides.2011.12.003] [PMID: 22198367]
[14]
Valverde, I.E.; Lecaille, F.; Lalmanach, G.; Aucagne, V.; Delmas, A.F. Synthesis of a biologically active triazole-containing analogue of cystatin A through successive peptidomimetic alkyne-azide ligations. Angew. Chem. Int. Ed., 2012, 51(3), 718-722.
[http://dx.doi.org/10.1002/anie.201107222] [PMID: 22144344]
[15]
Wu, Y.; Kaur, A.; Fowler, E.; Wiedmann, M.M.; Young, R.; Galloway, W.R.J.D.; Olsen, L.; Sore, H.F.; Chattopadhyay, A.; Kwan, T.T.L.; Xu, W.; Walsh, S.J.; de Andrade, P.; Janecek, M.; Arumugam, S.; Itzhaki, L.S.; Lau, Y.H.; Spring, D.R. Toolbox of diverse linkers for navigating the cellular efficacy landscape of stapled peptides. ACS Chem. Biol., 2019, 14(3), 526-533.
[http://dx.doi.org/10.1021/acschembio.9b00063] [PMID: 30702850]
[16]
Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685]
[17]
Oukoloff, K.; Coquelle, N.; Bartolini, M.; Naldi, M.; Le Guével, R.; Bach, S.; Josselin, B.; Ruchaud, S.; Catto, M.; Pisani, L.; Denora, N.; Iacobazzi, R.M.; Silman, I.; Sussman, J.L.; Buron, F.; Colletier, J.P.; Jean, L.; Routier, S.; Renard, P.Y. Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur. J. Med. Chem., 2019, 168, 58-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.063] [PMID: 30798053]
[18]
Paul, R.; Dutta, D.; Paul, R.; Dash, J. Target‐directed azide‐alkyne cycloaddition for assembling HIV‐1 TAR RNA binding ligands. Angew. Chem. Int. Ed., 2020, 59(30), 12407-12411.
[http://dx.doi.org/10.1002/anie.202003461] [PMID: 32329147]
[19]
Azam, L.; McIntosh, J.M. Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA. J. Neurochem., 2012, 122(6), 1137-1144.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07867.x] [PMID: 22774872]
[20]
Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev., 2014, 114(11), 5815-5847.
[http://dx.doi.org/10.1021/cr400401e] [PMID: 24720541]
[21]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[http://dx.doi.org/10.1016/j.bmc.2017.09.029] [PMID: 28988749]
[22]
Knuhtsen, A. Whitmore, C.; McWhinnie, F.S.; McDougall, L.; Whiting, R.; Smith, B.O.; Timperley, C.M.; Green, A.C.; Kinnear, K.I.; Jamieson, A.G. α-Conotoxin GI triazole-peptidomimetics: potent and stable blockers of a human acetylcholine receptor. Chem. Sci. (Camb.), 2019, 10(6), 1671-1676.
[http://dx.doi.org/10.1039/C8SC04198A]
[23]
Junior, E.F.C.; Guimarães, C.F.R.C.; Franco, L.L.; Alves, R.J.; Kato, K.C.; Martins, H.R.; de Souza Filho, J.D.; Bemquerer, M.P.; Munhoz, V.H.O.; Resende, J.M.; Verly, R.M. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity. Amino Acids, 2017, 49(8), 1389-1400.
[http://dx.doi.org/10.1007/s00726-017-2441-2] [PMID: 28573520]
[24]
Cui, H.K.; Guo, Y.; He, Y.; Wang, F.L.; Chang, H.N.; Wang, Y.J.; Wu, F.M.; Tian, C.L.; Liu, L. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew. Chem. Int. Ed., 2013, 52(36), 9558-9562.
[http://dx.doi.org/10.1002/anie.201302197] [PMID: 23804284]
[25]
Liu, B.; Huang, H.; Yang, Z.; Liu, B.; Gou, S.; Zhong, C.; Han, X.; Zhang, Y.; Ni, J.; Wang, R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides, 2017, 88, 115-125.
[http://dx.doi.org/10.1016/j.peptides.2016.12.016] [PMID: 28040477]
[26]
Liu, B.; Zhang, W.; Gou, S.; Huang, H.; Yao, J.; Yang, Z.; Liu, H.; Zhong, C.; Liu, B.; Ni, J.; Wang, R. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J. Pept. Sci., 2017, 23(11), 824-832.
[http://dx.doi.org/10.1002/psc.3031] [PMID: 28833783]
[27]
Xu, K.; Huang, L.; Xu, Z.; Wang, Y.; Bai, G.; Wu, Q.; Wang, X.; Yu, S.; Jiang, Y. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des. Devel. Ther., 2015, 9, 1459-1467.
[PMID: 25792806]
[28]
Zhang, W.; Sui, G.; Li, Y.; Fang, M.; Yang, X.; Ma, X.; Zhou, W. Synthesis and in vitro antifungal activities of novel benzamide derivatives containing a triazole moiety. Chem. Pharm. Bull. (Tokyo), 2016, 64(6), 616-624.
[http://dx.doi.org/10.1248/cpb.c16-00056] [PMID: 27250796]
[29]
Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, synthesis, and biological activity of new triazole and nitro-triazole derivatives as antifungal agents. Molecules, 2017, 22(7), 1150.
[http://dx.doi.org/10.3390/molecules22071150] [PMID: 28698522]
[30]
Grob, N.M.; Häussinger, D.; Deupi, X.; Schibli, R.; Behe, M.; Mindt, T.L. Triazolo-peptidomimetics: Novel radiolabeled minigastrin analogs for improved tumor targeting. J. Med. Chem., 2020, 63(9), 4484-4495.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01936] [PMID: 32302139]
[31]
Lancaster, K.; Morris, J.P.; Connelly, J. J. Neuroimaging epigenetics: Challenges and recommendations for best practices. Neuroscience, 2018, 370, 88-100.
[http://dx.doi.org/10.1016/j.neuroscience.2017.08.004] [PMID: 28801185]
[32]
Wu, F.; Zhang, J.; Shang, E.; Zhang, J.; Li, X.; Zhu, B.; Lei, X. Synthesis and evaluation of a new type of small molecule epigenetic modulator containing imidazo[1,2-b][1,2,4]triazole motif. Front Chem., 2018, 6, 642.
[http://dx.doi.org/10.3389/fchem.2018.00642] [PMID: 30627529]
[33]
Mou, Z.; Gao, J.; Miao, H.; Zhang, L.; Su, L.; Wang, B.; Luan, Y. Design and synthesis of novel histone deacetylase 6 inhibitors with benzyl-triazole as the core skeleton. Biosci. Trends, 2019, 13(3), 267-272.
[http://dx.doi.org/10.5582/bst.2019.01054] [PMID: 31155552]
[34]
Iida, T.; Itoh, Y.; Takahashi, Y.; Yamashita, Y.; Kurohara, T.; Miyake, Y.; Oba, M.; Suzuki, T. Design, Synthesis, and Biological Evaluation of Lysine Demethylase 5 C Degraders. ChemMedChem, 2021, 16(10), 1609-1618.
[http://dx.doi.org/10.1002/cmdc.202000933] [PMID: 33470543]
[35]
Miao, H.; Gao, J.; Mou, Z.; Wang, B.; Zhang, L.; Su, L.; Han, Y.; Luan, Y. Design, synthesis and biological evaluation of 4-piperidin-4-yl-triazole derivatives as novel histone deacetylase inhibitors. Biosci. Trends, 2019, 13(2), 197-203.
[http://dx.doi.org/10.5582/bst.2019.01055] [PMID: 31019142]
[36]
Li, Z.; Ding, L.; Li, Z.; Wang, Z.; Suo, F.; Shen, D.; Zhao, T.; Sun, X.; Wang, J.; Liu, Y.; Ma, L.; Zhao, B.; Geng, P.; Yu, B.; Zheng, Y.; Liu, H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm. Sin. B, 2019, 9(4), 794-808.
[http://dx.doi.org/10.1016/j.apsb.2019.01.001] [PMID: 31384539]
[37]
Ma, F.; Jiang, S.; Zhang, C. Recent advances in histone modification and histone modifying enzyme assays. Expert Rev. Mol. Diagn., 2019, 19(1), 27-36.
[http://dx.doi.org/10.1080/14737159.2019.1559053] [PMID: 30563379]
[38]
Ramarao-Milne, P.; Kondrashova, O.; Barry, S.; Hooper, J.D.; Lee, J.S.; Waddell, N. Histone modifying enzymes in gynaecological cancers. Cancers (Basel), 2021, 13(4), 816.
[http://dx.doi.org/10.3390/cancers13040816] [PMID: 33669182]
[39]
Brown, T.; Cao, M.; Zheng, Y.G. Synthesis and activity of triazole-adenosine analogs as protein arginine methyltransferase 5 inhibitors. Molecules, 2022, 27(12), 3779.
[http://dx.doi.org/10.3390/molecules27123779] [PMID: 35744905]
[40]
Miyake, Y.; Itoh, Y.; Suzuma, Y.; Kodama, H.; Kurohara, T.; Yamashita, Y.; Narozny, R.; Hanatani, Y.; Uchida, S.; Suzuki, T. Metalloprotein-catalyzed click reaction for in situ generation of a potent inhibitor. ACS Catal., 2020, 10(10), 5383-5392.
[http://dx.doi.org/10.1021/acscatal.0c00369]
[41]
Aboeldahab, A.M.A.; Beshr, E.A.M.; Shoman, M.E.; Rabea, S.M.; Aly, O.M. Spirohydantoins and 1,2,4-triazole-3-carboxamide derivatives as inhibitors of histone deacetylase: Design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2018, 146, 79-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.021] [PMID: 29396364]
[42]
Kalinin, D.V.; Jana, S.K.; Pfafenrot, M.; Chakrabarti, A.; Melesina, J.; Shaik, T.B.; Lancelot, J.; Pierce, R.J.; Sippl, W.; Romier, C.; Jung, M.; Holl, R. Structure‐based design, synthesis, and biological evaluation of triazole‐based smHDAC8 inhibitors. ChemMedChem, 2020, 15(7), 571-584.
[http://dx.doi.org/10.1002/cmdc.201900583] [PMID: 31816172]
[43]
Holshouser, S.; Cafiero, R.; Robinson, M.; Kirkpatrick, J.; Casero, R.A., Jr; Hyacinth, H.I.; Woster, P.M. Epigenetic Reexpression of hemoglobin F using reversible LSD1 inhibitors: potential therapies for sickle cell disease. ACS Omega, 2020, 5(24), 14750-14758.
[http://dx.doi.org/10.1021/acsomega.0c01585] [PMID: 32596612]
[44]
Bernstein, C. DNA methylation and establishing memory. Epigenet. Insights, 2022, 15, 25168657211072499.
[http://dx.doi.org/10.1177/25168657211072499] [PMID: 35098021]
[45]
Luo, Y.; Qu, K.; Kuai, L.; Ru, Y.; Huang, K.; Yan, X.; Xing, M. Epigenetics in psoriasis: perspective of DNA methylation. Mol. Genet. Genom., 2021, 296(5), 1027-1040.
[http://dx.doi.org/10.1007/s00438-021-01804-y] [PMID: 34137900]
[46]
Hayashi, K. Altered DNA methylation in kidney disease: useful markers and therapeutic targets. Clin. Exp. Nephrol., 2022, 26(4), 309-315.
[http://dx.doi.org/10.1007/s10157-022-02181-5] [PMID: 35024974]
[47]
Yang, T.; Liu, X.; Kumar, S.K.; Jin, F.; Dai, Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev., 2022, 51, 100872.
[http://dx.doi.org/10.1016/j.blre.2021.100872] [PMID: 34384602]
[48]
Urbanova, M.; Buocikova, V.; Trnkova, L.; Strapcova, S.; Kajabova, V.H.; Melian, E.B.; Novisedlakova, M.; Tomas, M.; Dubovan, P.; Earl, J.; Bizik, J.; Svastova, E.; Ciernikova, S.; Smolkova, B. DNA Methylation Mediates EMT gene expression in human pancreatic ductal adenocarcinoma cell lines. Int. J. Mol. Sci., 2022, 23(4), 2117.
[http://dx.doi.org/10.3390/ijms23042117] [PMID: 35216235]
[49]
Cao, Y.N.; Li, Q.Z.; Liu, Y.X.; Jin, W.; Hou, R. Discovering the key genes and important DNA methylation regions in breast cancer. Hereditas, 2022, 159(1), 7.
[http://dx.doi.org/10.1186/s41065-022-00220-5] [PMID: 35063044]
[50]
Ortiz-Barahona, V.; Joshi, R.S.; Esteller, M. Use of DNA methylation profiling in translational oncology. Semin. Cancer Biol., 2022, 83, 523-535.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.011] [PMID: 33352265]
[51]
Dilanyan, S.V.; Hovsepyan, T.R.; Nersesyan, L.E.; Agaronyan, A.S.; Danielyan, I.S.; Minasyan, N.S.; Harutyunyan, A.A. New bis-4H-1,2,4-triazoles and their in vitro study as DNA methylation inhibitors. Russ. J. Gen. Chem., 2020, 90(5), 787-793.
[http://dx.doi.org/10.1134/S1070363220050047]
[52]
Hovsepyan, T.R.; Hakobyan, M.R.; Muradyan, R.E.; Nersesyan, L.E.; Agaronyan, A.S.; Danielyan, I.S.; Minasyan, N.S. Synthesis of new substituted 1,2,4-triazoles and 1,3,4-thiadiazoles and their effects on DNA methylation level. Russ. J. Gen. Chem., 2019, 89(4), 673-679.
[http://dx.doi.org/10.1134/S1070363219040066]
[53]
Hovsepyan, T.R.; Dilanyan, S.V.; Minasyan, N.S.; Arsenyan, F.G.; Nersesyan, L.E.; Agaronyan, A.S.; Danielyan, I.S. New DNA methylation inhibitors based on 1,2,4-triazole thioether derivatives. Russ. J. Gen. Chem., 2018, 88(7), 1390-1396.
[http://dx.doi.org/10.1134/S1070363218070071]
[54]
Diaz-Ortiz, A.; Prieto, P.; Carrillo, J.; Martin, R.; Torres, I. Applications of metal-free 1,2,4-triazole derivatives in materials science. Curr. Org. Chem., 2015, 19(7), 568-584.
[http://dx.doi.org/10.2174/1385272819666150309234921]
[55]
Constantinides, C.P.; Koutentis, P.A. Stable N-and N/S- rich heterocyclic radicals: synthesis and applications. Adv. Heterocycl. Chem., 2016, 119, 173-207.
[http://dx.doi.org/10.1016/bs.aihch.2016.03.001]
[56]
Dobrzański, L.A. Significance of materials science for the future development of societies. J. Mater. Process. Technol., 2006, 175(1-3), 133-148.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.04.003]
[57]
Olesiejuk, M.; Kudelko, A.; Świątkowski, M. Highly luminescent 4H-1,2,4-triazole derivatives: synthesis, molecular structure and photophysical properties. Materials (Basel), 2020, 13(24), 5627.
[http://dx.doi.org/10.3390/ma13245627] [PMID: 33321753]
[58]
Torres-Moya, I.; Carrillo, J.R.; Díaz-Ortiz, Á.; Prieto, P. New organic materials based on multitask 2H-benzo[d]1,2,3-triazole Moiety. Chemosensors (Basel), 2021, 9(9), 267.
[http://dx.doi.org/10.3390/chemosensors9090267]
[59]
Chen, X.K.; Chen, X.M.; Xi, Y.R.; Sun, W.C.; Wang, Y.T.; Wu, Y.S.; Kang, M-H.; Tang, G-M. The position of NH2-subsituted group controlled the luminescent properties based on 4-amino-4H-1,2,4-triazole: Syntheses, crystal structures and Hirshfeld analyses. J. Solid State Chem., 2022, 305, 122647.
[http://dx.doi.org/10.1016/j.jssc.2021.122647]
[60]
Sukhanov, G.T.; Filippova, Y.V.; Gatilov, Y.V.; Sukhanova, A.G.; Krupnova, I.A.; Bosov, K.K.; Pivovarova, E.V.; Krasnov, V.I. Energetic materials based on N-substituted 4(5)-nitro-1,2,3-triazoles. Materials (Basel), 2022, 15(3), 1119.
[http://dx.doi.org/10.3390/ma15031119] [PMID: 35161066]
[61]
Rodrigues, L.D.; Sunil, D.; Chaithra, D.; Bhagavath, P. 1,2,3/1,2,4-Triazole containing liquid crystalline materials: An up-to-date review of their synthetic design and mesomorphic behavior. J. Mol. Liq., 2020, 297, 111909.
[http://dx.doi.org/10.1016/j.molliq.2019.111909]
[62]
Karam, N.H.; Sultan, M.T.; Badri, D.H.; Al-Dujaili, A.H. Mesogenic materials incorporating 4H-1,2,4-triazol-3-thiol moiety: Synthesis, characterization and liquid crystals study. J. Mol. Struct., 2018, 1171, 404-410.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.031]
[63]
Ovalle, S.; Westphal, E.; Gallardo, H. Ionic liquid crystals with 1,2,3-triazole + tolane core and a pendant imidazolium unit: mesophases from one- to three-dimensional molecular organisation by the variation of alkoxy chains number and spacer length. Liq. Cryst., 2018, 45(6), 942-952.
[http://dx.doi.org/10.1080/02678292.2018.1441461]
[64]
Kotian, S.Y.; Mohan, C.D.; Merlo, A.A.; Rangappa, S.; Nayak, S.C.; Rai, K.M.L.; Rangappa, K.S. Small molecule based five-membered heterocycles: A view of liquid crystalline properties beyond the biological applications. J. Mol. Liq., 2020, 297, 111686.
[http://dx.doi.org/10.1016/j.molliq.2019.111686]
[65]
Ruan, A.; Guo, H.; Yang, C.; Yang, F. Novel cyclotriveratrylene columnar liquid crystal with three alkyl chains: The balance between the number and length of alkyl chains for liquid crystalline behavior. Mol. Cryst. Liq. Cryst. (Phila. PA.), 2017, 658(1), 59-68.
[http://dx.doi.org/10.1080/15421406.2017.1414256]
[66]
Cervera-Procas, R.; Serrano, J.L.; Omenat, A. A highly versatile polymer network based on liquid crystalline dendrimers. Int. J. Mol. Sci., 2021, 22(11), 5740.
[http://dx.doi.org/10.3390/ijms22115740] [PMID: 34072169]
[67]
Elazhary, I.; Laamari, M.R.; Boutouil, A.; Bahsis, L.; El Haddad, M.; Anane, H.; Stiriba, S-E. Comparative study of 1,2,3-triazole derivatives as corrosion inhibitors of mild steel in sulphuric acid solution. Anti-Corros. Methods Mater., 2019, 66(5), 544-555.
[http://dx.doi.org/10.1108/ACMM-10-2018-2018]
[68]
Hrimla, M.; Bahsis, L.; Laamari, M.R.; Julve, M.; Stiriba, S.E. An overview on the performance of 1,2,3-triazole derivatives as corrosion inhibitors for metal surfaces. Int. J. Mol. Sci., 2021, 23(1), 16.
[http://dx.doi.org/10.3390/ijms23010016] [PMID: 35008481]
[69]
Meng, X.; Chen, M.; Bai, R.; He, L. Cationic Iridium Complexes with 3,4,5-Triphenyl-4 H -1,2,4-Triazole Type Cyclometalating Ligands: Synthesis, Characterizations, and Their Use in Light-Emitting Electrochemical Cells. Inorg. Chem., 2020, 59(14), 9605-9617.
[http://dx.doi.org/10.1021/acs.inorgchem.0c00645] [PMID: 32643934]
[70]
Yu, R.; Song, Y.; Chen, M.; He, L. Green to blue-green-emitting cationic iridium complexes with a CF3-substituted phenyl-triazole type cyclometalating ligand: synthesis, characterization and their use for efficient light-emitting electrochemical cells. Dalton Trans., 2021, 50(23), 8084-8095.
[http://dx.doi.org/10.1039/D1DT01320C] [PMID: 34018518]
[71]
Au, C.; Wang, T.; Acevedo, N.C. Development of a low resolution 1H NMR spectroscopic technique for the study of matrix mobility in fresh and freeze-thawed hen egg yolk. Food Chem., 2016, 204, 159-166.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.085] [PMID: 26988489]
[72]
Trung, V.Q.; Linh, N.N.; Duong, T.T.T.; Chinh, N.T.; Linh, D.K.; Hung, H.M.; Oanh, D.T.Y. Synthesis and characterization of novel poly. [4-phenyl-3-(thiophen-3-ylmethyl)-1 H -1,2,4-triazole-5(4 H)-thione]. Vietnam J. Chem., 2019, 57(6), 770-776.
[http://dx.doi.org/10.1002/vjch.2019000141]
[73]
Lu, B.; Gu, H.; Xu, J.; Liu, X.; Chen, S.; Jian, N. Hydrogen bond-crosslinked intrinsic stretchable electrochromic polymer and manufacture method., Chinese Patent CN107814917, 2020.
[74]
Zhang, B.; Li, J.; Tang, A.; Geng, Y.; Guo, Q.; Zhou, E. Utilizing benzotriazole-fused DAD-type heptacyclic ring to construct n-type polymer for all-polymer solar cell application. ACS Appl. Energy Mater., 2021, 4(4), 4217-4223.
[http://dx.doi.org/10.1021/acsaem.1c00584]
[75]
Henderson, W.H.; Richardson, J. Methods for triazole synthesis, U.S. Patent 9,051,282 B2, 2015.
[76]
Sadretdinova, Z.R.; Akhmetov, A.R.; Tulyabaev, A.R.; Budnikova, Y.H.; Dudkina, Y.B.; Tuktarov, A.R.; Dzhemilev, U.M. Synthesis of fullerenyl-1,2,3-triazoles by reaction of fullerenyl azide with terminal acetylenes. Org. Biomol. Chem., 2021, 19(42), 9299-9305.
[http://dx.doi.org/10.1039/D1OB01483H] [PMID: 34647569]
[77]
Zhi-Hua, L.; Yu-Xia, W.; Dan, Q.; Zai-Jun, L.; Zhi-Guo, G. AAO assisted 1D confined assembly and 2D surface filming of irone triazole nanomaterial and spin-crossover properties. CHINESE J Inorg Chem., 2017, 33(12), 2311-2321.
[78]
Khalil, K.D.; Riyadh, S.M.; Gomha, S.M.; Ali, I. Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1,2,3]triazoles. Int. J. Biol. Macromol., 2019, 130, 928-937.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.019] [PMID: 30844456]
[79]
shirali, S.; Beni, A.S. Preparation and characterization of novel hybrid nanomaterial catalyst MCM-41@AzaCrown-SB-Cu and its application in synthesis of 1, 2, 3-triazole derivatives in click chemistry. J. Porous Mater., 2020, 27(6), 1601-1611.
[http://dx.doi.org/10.1007/s10934-020-00924-x]
[80]
Khalili, D.; Kavoosi, L.; Khalafi-Nezhad, A. Copper aluminate spinel in click chemistry: An efficient heterogeneous nanocatalyst for the highly regioselective synthesis of triazoles in water. Synlett, 2019, 30(19), 2136-2142.
[http://dx.doi.org/10.1055/s-0039-1690719]
[81]
Mahdavinasab, M.; Hamzehloueian, M.; Sarrafi, Y. Preparation and application of magnetic chitosan/graphene oxide composite supported copper as a recyclable heterogeneous nanocatalyst in the synthesis of triazoles. Int. J. Biol. Macromol., 2019, 138, 764-772.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.013] [PMID: 31284011]
[82]
Esmaeili-Shahri, H.; Eshghi, H.; Lari, J.; Rounaghi, S.A. Click approach to the three-component synthesis of novel β-hydroxy-1,2,3-triazoles catalysed by new (Cu/Cu 2 O) nanostructure as a ligand-free, green and regioselective nanocatalyst in water. Appl. Organomet. Chem., 2018, 32(1), e3947.
[http://dx.doi.org/10.1002/aoc.3947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy