Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress of Calcium-Based Catalysts in Organic Transformations

Author(s): Dipakkumar Bariya, Chandni Halpani and Satyendra Mishra*

Volume 26, Issue 18, 2022

Published on: 26 December, 2022

Page: [1661 - 1675] Pages: 15

DOI: 10.2174/1385272827666221212163027

Price: $65

Abstract

This article aims to draw the attention of the scientific community toward the use of calcium-based reagents in various organic transformations. These complexes are capable of activation and nucleophilic addition of olefins, carbonyls, nitro groups of catalysts, epoxides, methyl aromatics and alcohols. These complexes are capable of activating different functional groups for nucleophilic addition to alkene, carbonyl, nitro, epoxide, methylarene and alcohol groups. Calcium-based catalysts have broad tolerance to substrates, reaction pathways, and appear to be sustainable alternatives to transition metals, rare earth metals, for a variety of organic transformations. The scope of this review is limited to catalytic alterations mediated by calcium complexes. This is the first broad review article that covers all aspects of calciummediated reactions up to the year 2022.

Next »
Graphical Abstract

[1]
Bandna, J.V.; Jaitak, V.; Kaul, V.K.; Singh, B. Synthesis of novel acetates of β-caryophyllene under solvent-free Lewis acid catalysis. Nat. Prod. Res., 2009, 23(15), 1445-1450.
[http://dx.doi.org/10.1080/14786410903031500] [PMID: 19809918]
[2]
Mahha, Y.; Salles, L.; Piquemal, J.; Briot, E.; Atlamsani, A.; Brégeault, J. Environmentally friendly epoxidation of olefins under phase-transfer catalysis conditions with hydrogen peroxide. J. Catal., 2007, 249(2), 338-348.
[http://dx.doi.org/10.1016/j.jcat.2007.05.001]
[3]
Begouin, J.M.; Niggemann, M. Calcium-based Lewis acid catalysts. Chemistry, 2013, 19(25), 8030-8041.
[http://dx.doi.org/10.1002/chem.201203496] [PMID: 23712417]
[4]
Hill, M.S.; Liptrot, D.J.; Weetman, C. Alkaline earths as main group reagents in molecular catalysis. Chem. Soc. Rev., 2016, 45(4), 972-988.
[http://dx.doi.org/10.1039/C5CS00880H] [PMID: 26797470]
[5]
Barrett, A.G.M.; Brinkmann, C.; Crimmin, M.R.; Hill, M.S.; Hunt, P.; Procopiou, P.A. Heavier group 2 metals and intermolecular hydroamination: a computational and synthetic assessment. J. Am. Chem. Soc., 2009, 131(36), 12906-12907.
[http://dx.doi.org/10.1021/ja905615a] [PMID: 19705841]
[6]
Fairley, M.; Davin, L.; Hernán-Gómez, A.; García-Álvarez, J.; O’Hara, C.T.; Hevia, E. s-Block cooperative catalysis: Alkali metal magnesiate-catalysed cyclisation of alkynols. Chem. Sci. (Camb.), 2019, 10(22), 5821-5831.
[http://dx.doi.org/10.1039/C9SC01598A] [PMID: 31293771]
[7]
Walter, M.D.; Wolmershäuser, G.; Sitzmann, H. Calcium, strontium, barium, and ytterbium complexes with cyclooctatetraenyl or cyclononatetraenyl ligands. J. Am. Chem. Soc., 2005, 127(49), 17494-17503.
[http://dx.doi.org/10.1021/ja0550071] [PMID: 16332102]
[8]
Antoniotti, S.; Dalla, V.; Duñach, E. Metal triflimidates: better than metal triflates as catalysts in organic synthesis--the effect of a highly delocalized counteranion. Angew. Chem. Int. Ed., 2010, 49(43), 7860-7888.
[http://dx.doi.org/10.1002/anie.200906407] [PMID: 20715025]
[9]
Anastas, P.T. Choice reviews online. In: Handbook of Green Chemistry; Wiley-VCH, 2011; p. 48.
[10]
Latha, D.S.; Yaragorla, S. C. (sp3)-H functionalization of 2-methyl azaarenes: Highly facile approach to aza-heterocyclic compounds. Eur. J. Org. Chem., 2020, 2020(15), 2155-2179.
[http://dx.doi.org/10.1002/ejoc.201901899]
[11]
Datta, S.; Gamer, M.T.; Roesky, P.W. Aminotroponiminate complexes of the heavy alkaline earth and the divalent lanthanide metals as catalysts for the hydroamination/cyclization reaction. Organometallics, 2008, 27(6), 1207-1213.
[http://dx.doi.org/10.1021/om701014d]
[12]
Datta, S.; Roesky, P.W.; Blechert, S. Aminotroponate and aminotroponiminate calcium amides as catalysts for the hydroamination/cyclization catalysis. Organometallics, 2007, 26(18), 4392-4394.
[http://dx.doi.org/10.1021/om700507h]
[13]
Crimmin, M.R.; Casely, I.J.; Hill, M.S. Calcium-mediated intramolecular hydroamination catalysis. J. Am. Chem. Soc., 2005, 127(7), 2042-2043.
[http://dx.doi.org/10.1021/ja043576n] [PMID: 15713071]
[14]
Poisson, T.; Yamashita, Y.; Kobayashi, S. Catalytic asymmetric protonation of chiral calcium enolates via 1,4-addition of malonates. J. Am. Chem. Soc., 2010, 132(23), 7890-7892.
[http://dx.doi.org/10.1021/ja102555a] [PMID: 20481615]
[15]
Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. Development of catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium complexes. J. Am. Chem. Soc., 2008, 130(40), 13321-13332.
[http://dx.doi.org/10.1021/ja8032058] [PMID: 18783222]
[16]
Harder, S.; Feil, F.; Knoll, K. Novel calcium half-sandwich complexes for the living and stereoselective polymerization of styrene. Angew. Chem., 2001, 113(22), 4391-4394.
[http://dx.doi.org/10.1002/1521-3757(20011119)113:22<4391::AID-ANGE4391>3.0.CO;2-H]
[17]
Harder, S.; Feil, F.; Knoll, K. Novel calcium half-sandwich complexes for the living and stereoselective polymerization of styrene. Angew. Chem. Int. Ed., 2001, 40(22), 4261-4264.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4261::AID-ANIE4261>3.0.CO;2-J] [PMID: 29712082]
[18]
Feil, F.; Harder, S. New stereochemical assignments of 13C NMR signals for predominantly syndiotactic polystyrene. Macromolecules, 2003, 36(9), 3446-3448.
[http://dx.doi.org/10.1021/ma0342473]
[19]
Harder, S.; Feil, F. Dimeric benzylcalcium complexes: Influence of THF in stereoselective styrene polymerization. Organometallics, 2002, 21(11), 2268-2274.
[http://dx.doi.org/10.1021/om020092w]
[20]
Kobayashi, S.; Yamashita, Y. Alkaline earth metal catalysts for asymmetric reactions. Acc. Chem. Res., 2011, 44(1), 58-71.
[http://dx.doi.org/10.1021/ar100101b] [PMID: 20979379]
[21]
Harder, S. From limestone to catalysis: application of calcium compounds as homogeneous catalysts. Chem. Rev., 2010, 110(7), 3852-3876.
[http://dx.doi.org/10.1021/cr9003659] [PMID: 20420358]
[22]
Barrett, A.G.M.; Crimmin, M.R.; Hill, M.S.; Procopiou, P.A. Heterofunctionalization catalysis with organometallic complexes of calcium, strontium and barium. Proc. R Soc. A Math. Phys. Eng. Sci., 2010, 466(2116), 927-963.
[23]
Feil, F.; Harder, S. α, α -Bis(trimethylsilyl)-substituted benzyl complexes of potassium and calcium. Organometallics, 2000, 19(24), 5010-5015.
[http://dx.doi.org/10.1021/om0006209]
[24]
Harder, S.; Feil, F.; Weeber, A. Structure of a benzylcalcium diastereomer: An initiator for the anionic polymerization of styrene. Organometallics, 2001, 20(6), 1044-1046.
[http://dx.doi.org/10.1021/om000945p]
[25]
Feil, F.; Müller, C.; Harder, S. α-Methyl-benzylcalcium complexes: Syntheses, structures and reactivity. J. Organomet. Chem., 2003, 683(1), 56-63.
[http://dx.doi.org/10.1016/S0022-328X(03)00405-4]
[26]
Feil, F.; Harder, S. Hypersilyl-substituted complexes of group 1 and 2 metals: Syntheses, structures and use in styrene polymerisation. Eur. J. Inorg. Chem., 2003, 2003(18), 3401-3408.
[http://dx.doi.org/10.1002/ejic.200300149]
[27]
Piesik, D.F.J.; Häbe, K.; Harder, S. Ca-mediated styrene polymerization: Tacticity control by ligand design. Eur. J. Inorg. Chem., 2007, 2007(36), 5652-5661.
[http://dx.doi.org/10.1002/ejic.200700802]
[28]
Crimmin, M.R.; Arrowsmith, M.; Barrett, A.G.M.; Casely, I.J.; Hill, M.S.; Procopiou, P.A. Intramolecular hydroamination of aminoalkenes by calcium and magnesium complexes: A synthetic and mechanistic study. J. Am. Chem. Soc., 2009, 131(28), 9670-9685.
[http://dx.doi.org/10.1021/ja9003377] [PMID: 19552442]
[29]
Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Bismuth-catalyzed intermolecular hydroamination of 1,3-dienes with carbamates, sulfonamides, and carboxamides. J. Am. Chem. Soc., 2006, 128(5), 1611-1614.
[http://dx.doi.org/10.1021/ja056112d] [PMID: 16448133]
[30]
Galeandro-Diamant, T.; Lafantaisie, M.; Ollevier, T. Calcium trifluoromethanesulfonate. Encycl. Reagents Org. Synth, 2014, 1-2.
[http://dx.doi.org/10.1002/047084289X.rn01683]
[31]
Eshtukova-Shcheglova, E.A.; Perevoshchikova, K.A.; Eshtukov-Shcheglov, A.V.; Cheshkov, D.A.; Maslov, M.A. Amination of epoxides as a convenient approach for lipophilic polyamines synthesis. Fine Chem. Technol., 2022, 17(4), 323-334.
[http://dx.doi.org/10.32362/2410-6593-2022-17-4-323-334]
[32]
Chini, M.; Crotti, P.; Macchia, F. Regioalternating selectivity in the metal salt catalyzed aminolysis of styrene oxide. J. Org. Chem., 1991, 56(20), 5939-5942.
[http://dx.doi.org/10.1021/jo00020a042]
[33]
Chini, M.; Crotti, P.; Macchia, F. Metal salts as new catalysts for mild and efficient aminolysis of oxiranes. Tetrahedron Lett., 1990, 31(32), 4661-4664.
[http://dx.doi.org/10.1016/S0040-4039(00)97701-3]
[34]
Cepanec, I.; Litvić, M.; Mikuldaš, H.; Bartolinčić, A.; Vinković, V. Calcium trifluoromethanesulfonate-catalysed aminolysis of epoxides. Tetrahedron, 2003, 59(14), 2435-2439.
[http://dx.doi.org/10.1016/S0040-4020(03)00292-8]
[35]
Chaulagain, M.R.; Aron, Z.D. A diastereoselective three-component coupling approach to highly substituted pyrrolidines. J. Org. Chem., 2010, 75(23), 8271-8274.
[http://dx.doi.org/10.1021/jo101304q] [PMID: 21033730]
[36]
Izod, K.; Clegg, W.; Liddle, S.T. Parallels between the chemistry of calcium(II) and Ytterbium(II). Synthesis and crystal structure of a calcium alkoxo-phosphide cuboidal complex. Organometallics, 2000, 19(18), 3640-3643.
[http://dx.doi.org/10.1021/om000357b]
[37]
Harder, S. The chemistry of CaII and YbII: Astoundingly similar but not equal! Angew. Chem. Int. Ed., 2004, 43(20), 2714-2718.
[http://dx.doi.org/10.1002/anie.200353557] [PMID: 18629998]
[38]
Maudez, W.; Meuwly, M.; Fromm, K.M. Analogy of the coordination chemistry of alkaline earth metal and lanthanide Ln(2+) ions: the isostructural zoo of mixed metal cages [IM(OtBu)4Li(thf)4(OH)] (M=Ca, Sr, Ba, Eu), [MM’6(OPh)8(thf)6] (M=Ca, Sr, Ba, Sm, Eu, M′=Li, Na), and their derivatives with 1,2-dimethoxyethane. Chemistry, 2007, 13(29), 8302-8316.
[http://dx.doi.org/10.1002/chem.200700597] [PMID: 17639546]
[39]
Kazmaier, U. Direct Michael, aldol, and Mannich additions catalyzed by alkaline earth metals. Angew. Chem. Int. Ed., 2009, 48(32), 5790-5792.
[http://dx.doi.org/10.1002/anie.200901261] [PMID: 19479913]
[40]
Luche, J.L.; Rodriguez-Hahn, L.; Crabbé, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc. Chem. Commun., 1978, 0(14), 601-602.
[http://dx.doi.org/10.1039/C39780000601]
[41]
Luche, J.L. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J. Am. Chem. Soc., 1978, 100(7), 2226-2227.
[http://dx.doi.org/10.1021/ja00475a040]
[42]
Gemal, A.L.; Luche, J.L. Lanthanoids in organic synthesis. 6. Reduction of. alpha.-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. J. Am. Chem. Soc., 1981, 103(18), 5454-5459.
[http://dx.doi.org/10.1021/ja00408a029]
[43]
Fujii, H.; Oshima, K.; Utimoto, K. A facile and selective 1,2-reduction of conjugated ketones with NaBH4 in the presence of CaCl 2. Chem. Lett., 1991, 20(10), 1847-1848.
[http://dx.doi.org/10.1246/cl.1991.1847]
[44]
Forkel, N.V.; Henderson, D.A.; Fuchter, M.J. Lanthanide replacement in organic synthesis: Luche-type reduction of αβ-unsaturated ketones in the presence of calcium triflate. Green Chem., 2012, 14(8), 2129-2132.
[http://dx.doi.org/10.1039/c2gc35619h]
[45]
Forkel, N.V.; Henderson, D.A.; Fuchter, M.J. Calcium-mediated stereoselective reduction of αβ-epoxy ketones. Tetrahedron Lett., 2014, 55(40), 5511-5514.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.050]
[46]
Reissig, H.U.; Zimmer, R. Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. Chem. Rev., 2003, 103(4), 1151-1196.
[http://dx.doi.org/10.1021/cr010016n] [PMID: 12683780]
[47]
Schneider, T.F.; Kaschel, J.; Werz, D.B. A new golden age for donor-acceptor cyclopropanes. Angew. Chem. Int. Ed., 2014, 53(22), 5504-5523.
[http://dx.doi.org/10.1002/anie.201309886] [PMID: 24771660]
[48]
Yaragorla, S.; Singh, G.; Lal Saini, P.; Reddy, M.K. Microwave assisted, Ca(II)-catalyzed Ritter reaction for the green synthesis of amides. Tetrahedron Lett., 2014, 55(33), 4657-4660.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.068]
[49]
Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Elsevier Science Serials, 1990.
[50]
Braun, C.M.; Congdon, E.A.; Nolin, K.A. Diastereoselective 1,3-dipolar cycloaddition of nitrones to donor-acceptor cyclopropanes catalyzed by a calcium(II) complex. J. Org. Chem., 2015, 80(3), 1979-1984.
[http://dx.doi.org/10.1021/jo502686t] [PMID: 25560882]
[51]
Yaragorla, S.; Singh, G.; Dada, R.C. (sp3)–H functionalization of methyl azaarenes: a calcium-catalyzed facile synthesis of (E)-2-styryl azaarenes and 2-aryl-1,3-bisazaarenes. Tetrahedron Lett., 2015, 56(43), 5924-5929.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.035]
[52]
Yaragorla, S.; Dada, R.; Singh, G. Alkaline-earth-catalyzed sp3 C–H functionalization of methyl azaarenes and its use in a one-pot four-component synthesis of azaarenyl benzylpyrazolones. Synlett, 2015, 27(6), 912-918.
[http://dx.doi.org/10.1055/s-0035-1560385]
[53]
Congdon, E.A.; Nolin, K.A. Calcium catalyzed mukaiyama–mannich addition of silyl enol ethers to nitrones. Catal. Commun., 2016, 79, 35-38.
[http://dx.doi.org/10.1016/j.catcom.2016.02.003]
[54]
Yaragorla, S.; Dada, R.; Singh, G.; Pareek, A.; Rana, M.; Sharma, A.K. Ca(II)-catalyzed regioselective cascade synthesis of oxindolyl- naphthofurans through meyer-schuster type rearrangement. ChemistrySelect, 2016, 1(21), 6902-6906.
[http://dx.doi.org/10.1002/slct.201601349]
[55]
Yaragorla, S.; Pareek, A.; Dada, R.; Almansour, A.I.; Arumugam, N. Calcium(II) catalyzed regioselective dehydrative cross-coupling reactions: Practical synthesis of internal alkenes and benzopyrans. Tetrahedron Lett., 2016, 57(52), 5841-5845.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.027]
[56]
Yaragorla, S.; Dada, R.; Pareek, A.; Singh, G. A calcium catalysed regioselective (5- exo dig) tandem process for the synthesis of fully substituted furans. RSC Advances, 2016, 6(34), 28865-28870.
[http://dx.doi.org/10.1039/C6RA03042D]
[57]
Yaragorla, S.; Saini, P.L.; Pareek, A.; Almansour, A.I.; Arumugam, N. A facile one-pot domino reaction for the stereoselective synthesis of acryl derivatives promoted by Ca(OTf)2. Tetrahedron Lett., 2016, 57(19), 2034-2038.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.098]
[58]
Yaragorla, S.; Pareek, A.; Dada, R. Regioselective annulation of propargyl alcohols with ambident-enols: A Ca(II)-catalyzed trisubstituted benzochromene synthesis. Tetrahedron Lett., 2017, 58(49), 4642-4647.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.077]
[59]
Singh, G.; Yaragorla, S. Highly efficient one-pot tandem friedlander annulation and chemo-selective C sp3 –H functionalization under calcium catalysis. RSC Advances, 2017, 7(31), 18874-18882.
[http://dx.doi.org/10.1039/C6RA28642A]
[60]
Zhang, L.; Sun, J.; Kozmin, S.A. Gold and platinum catalysis of enyne cycloisomerization. Adv. Synth. Catal., 2006, 348(16-17), 2271-2296.
[http://dx.doi.org/10.1002/adsc.200600368]
[61]
Mathiew, M.; Tan, J.K.; Chan, P.W.H. Gold‐catalyzed double cycloisomerization of 1‐ene‐4,10‐diynyl esters to bicyclo[6.3.0]undeca‐2,4,9‐trienyl esters. Angew. Chem. Int. Ed., 2018, 57(43), 14235-14239.
[http://dx.doi.org/10.1002/anie.201809376] [PMID: 30179295]
[62]
Sun, J.; Conley, M.P.; Zhang, L.; Kozmin, S.A. Au- and pt-catalyzed cycloisomerizations of 1,5-enynes to cyclohexadienes with a broad alkyne scope. J. Am. Chem. Soc., 2006, 128(30), 9705-9710.
[http://dx.doi.org/10.1021/ja063384n] [PMID: 16866525]
[63]
Yaragorla, S.; Pareek, A.; Dada, R. Cycloisomerization of oxindole-derived 1,5-enynes: A calcium(II)-catalyzed one-pot, solvent-free synthesis of phenanthridinones, 3-(cyclopentenylidene)indolin-2-ones and 3-spirocyclic indolin-2-ones. Adv. Synth. Catal., 2017, 359(17), 3068-3075.
[http://dx.doi.org/10.1002/adsc.201700569]
[64]
Yaragorla, S.; Dada, R.; Pareek, A. Regioselective synthesis of 1,4 & 1,5-Enynes through a Ca(II)- catalyzed cross-dehydrative-coupling of styrenes and propargyl alcohols. ChemistrySelect, 2018, 3(2), 495-499.
[http://dx.doi.org/10.1002/slct.201702278]
[65]
Yaragorla, S.; Pareek, A. Electrophilic cyclization of 2-aminophenylprop-1-yn-3-ols into 3-Iodo-6-(aryldiazenyl)quinolines by using a one-pot azo-coupling and iodocyclization sequence. Eur. J. Org. Chem., 2018, 2018(16), 1863-1871.
[http://dx.doi.org/10.1002/ejoc.201800248]
[66]
Yaragorla, S.; Rajesh, P.; Pareek, A.; Kumar, A. Ca(II)-mediated regioselective one-pot sequential annulation of acyclic compounds to polycyclic fluorenopyrans. Adv. Synth. Catal., 2018, 360(22), 4422-4428.
[http://dx.doi.org/10.1002/adsc.201801030]
[67]
Yaragorla, S.; Pareek, A. Regioselective intramolecular annulations of ambident β-enamino esters: A diversity-oriented synthesis of nitrogen-containing privileged molecules. Tetrahedron Lett., 2018, 59(10), 909-913.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.064]
[68]
Yaragorla, S.; Dada, R.; Rajesh, P.; Sharma, M. Highly regioselective synthesis of oxindolyl-pyrroles and quinolines via a one-pot, sequential meyer–schuster rearrangement, anti-michael addition/C (sp 3) –H functionalization, and azacyclization. ACS Omega, 2018, 3(3), 2934-2946.
[http://dx.doi.org/10.1021/acsomega.8b00147] [PMID: 30023853]
[69]
Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann. Chem., 1928, 460(1), 98-122.
[http://dx.doi.org/10.1002/jlac.19284600106]
[70]
Dewar, M.J.S.; Olivella, S.; Stewart, J.J.P. Mechanism of the diels-alder reaction: reactions of butadiene with ethylene and cyanoethylenes. J. Am. Chem. Soc., 1986, 108(19), 5771-5779.
[http://dx.doi.org/10.1021/ja00279a018] [PMID: 22175326]
[71]
Yates, P.; Eaton, P. Acceleration of the diels-alder reaction by aluminum chloride. J. Am. Chem. Soc., 1960, 82(16), 4436-4437.
[http://dx.doi.org/10.1021/ja01501a085]
[72]
Kalepu, R.; Mishra, S. Lewis acid catalyst system for Diels–Alder reaction. J. Chem. Sci., 2020, 132(1), 48.
[http://dx.doi.org/10.1007/s12039-020-1749-8]
[73]
Halpani, C.G.; Mishra, S. Lewis acid catalyst system for Claisen-Schmidt reaction under solvent free condition. Tetrahedron Lett., 2020, 61(31), 152175.
[http://dx.doi.org/10.1016/j.tetlet.2020.152175]
[74]
Laulhé, S.; Gori, S.S.; Nantz, M.H. A chemoselective, one-pot transformation of aldehydes to nitriles. J. Org. Chem., 2012, 77(20), 9334-9337.
[http://dx.doi.org/10.1021/jo301133y] [PMID: 22928794]
[75]
Erman, M.B.; Snow, J.W.; Williams, M.J. A new efficient method for the conversion of aldehydes into nitriles using ammonia and hydrogen peroxide. Tetrahedron Lett., 2000, 41(35), 6749-6752.
[http://dx.doi.org/10.1016/S0040-4039(00)01168-0]
[76]
Rokade, B.V.; Prabhu, K.R. Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes. J. Org. Chem., 2012, 77(12), 5364-5370.
[http://dx.doi.org/10.1021/jo3008258] [PMID: 22616901]
[77]
McEwen, W.E.; Conrad, W.E.; VanderWerf, C.A. The schmidt reaction applied to aldehydes and epoxides. J. Am. Chem. Soc., 1952, 74(5), 1168-1171.
[http://dx.doi.org/10.1021/ja01125a010]
[78]
Boyer, J.H.; Hamer, J. The acid-catalyzed reaction of alkyl azides upon carbonyl compounds. J. Am. Chem. Soc., 1955, 77(4), 951-954.
[http://dx.doi.org/10.1021/ja01609a045]
[79]
Zhuang, Y.J.; Liu, J.; Kang, Y.B. Tin or gallium-catalyzed cyanide-transition metal-free synthesis of nitriles from aldehydes or oximes. Tetrahedron Lett., 2016, 57(50), 5700-5702.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.034]
[80]
Quinn, D.J.; Haun, G.J.; Moura-Letts, G. Direct synthesis of nitriles from aldehydes with hydroxylamine-O-sulfonic acid in acidic water. Tetrahedron Lett., 2016, 57(34), 3844-3847.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.047]
[81]
Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Organoselenium-catalyzed mild dehydration of aldoximes: an unexpected practical method for organonitrile synthesis. Org. Lett., 2014, 16(5), 1346-1349.
[http://dx.doi.org/10.1021/ol500075h] [PMID: 24564392]
[82]
Oishi, T.; Yamaguchi, K.; Mizuno, N. Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia. Angew. Chem. Int. Ed., 2009, 48(34), 6286-6288.
[http://dx.doi.org/10.1002/anie.200900418] [PMID: 19334030]
[83]
Bariya, D.; Mishra, S. Lewis acid catalyzed nitrile synthesis from aldehyde. Tetrahedron Lett., 2022, 94, 153711.
[http://dx.doi.org/10.1016/j.tetlet.2022.153711]
[84]
Basson, A.J.; McLaughlin, M.G. Functionalisation of isoindolinones via a calcium catalysed Hosomi–Sakurai allylation. Chem. Commun. (Camb.), 2019, 55(57), 8317-8320.
[http://dx.doi.org/10.1039/C9CC02450F] [PMID: 31257381]
[85]
Mahapatra, S.; Woroch, C.P.; Butler, T.W.; Carneiro, S.N.; Kwan, S.C.; Khasnavis, S.R.; Gu, J.; Dutra, J.K.; Vetelino, B.C.; Bellenger, J.; am Ende, C.W.; Ball, N.D. SuFEx activation with Ca(NTf 2) 2: A unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org. Lett., 2020, 22(11), 4389-4394.
[http://dx.doi.org/10.1021/acs.orglett.0c01397] [PMID: 32459499]
[86]
Qi, C.; Gandon, V.; Leboeuf, D. Calcium(II)-catalyzed alkenylation of N -acyliminiums and related ions with vinylboronic acids. Adv. Synth. Catal., 2017, 359(15), 2671-2675.
[http://dx.doi.org/10.1002/adsc.201700214]
[87]
Haubenreisser, S.; Niggemann, M. Calcium-catalyzed direct amination of π-activated alcohols. Adv. Synth. Catal., 2011, 353(2-3), 469-474.
[http://dx.doi.org/10.1002/adsc.201000768]
[88]
Niggemann, M.; Meel, M.J. Calcium-catalyzed Friedel-Crafts alkylation at room temperature. Angew. Chem. Int. Ed., 2010, 49(21), 3684-3687.
[http://dx.doi.org/10.1002/anie.200907227] [PMID: 20391443]
[89]
Bandini, M.; Tragni, M. π-Activated alcohols: An emerging class of alkylating agents for catalytic Friedel–Crafts reactions. Org. Biomol. Chem., 2009, 7(8), 1501-1507.
[http://dx.doi.org/10.1039/b823217b] [PMID: 19343234]
[90]
Poulsen, T.B.; Jørgensen, K.A. Catalytic asymmetric Friedel-Crafts alkylation reactions--copper showed the way. Chem. Rev., 2008, 108(8), 2903-2915.
[http://dx.doi.org/10.1021/cr078372e] [PMID: 18500844]
[91]
Bandini, M.; Emer, E.; Tommasi, S.; Umani-Ronchi, A. Innovative catalytic protocols for the ring-closing Friedel-crafts-type alkylation and alkenylation of arenes. Eur. J. Org. Chem., 2006, 2006(16), 3527-3544.
[http://dx.doi.org/10.1002/ejoc.200500995]
[92]
Bandini, M.; Melloni, A.; Umani-Ronchi, A. New catalytic approaches in the stereoselective Friedel-Crafts alkylation reaction. Angew. Chem. Int. Ed., 2004, 43(5), 550-556.
[http://dx.doi.org/10.1002/anie.200301679] [PMID: 14743405]
[93]
Chitra, S.; Pandiarajan, K. Calcium fluoride: An efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)thione: An improved high yielding protocol for the Biginelli reaction. Tetrahedron Lett., 2009, 50(19), 2222-2224.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.162]
[94]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[95]
Suresh; Sandhu, J.S. Past, present and future of the Biginelli reaction: A critical perspective. Arkivoc, 2012, (1), 66-133.
[96]
Biginelli, P. Aldehyde-urea derivatives of aceto and oxaloacetic acids. Gazz. Chim. Ital., 1893, 23(1), 360-413.
[97]
Kappe, C.O.; Shishkin, O.V.; Uray, G.; Verdino, P. X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 2000, 56(13), 1859-1862.
[http://dx.doi.org/10.1016/S0040-4020(00)00116-2]
[98]
Suzuki, I.; Suzumura, Y.; Takeda, K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett., 2006, 47(45), 7861-7864.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.019]
[99]
Vanden Eynden, M.J.; Stambuli, J.P. Calcium-catalyzed pictet-spengler reactions. Org. Lett., 2008, 10(22), 5289-5291.
[http://dx.doi.org/10.1021/ol802173r] [PMID: 18954062]
[100]
Vanden Eynden, M.J.; Kunchithapatham, K.; Stambuli, J.P. Calcium-promoted Pictet-Spengler reactions of ketones and aldehydes. J. Org. Chem., 2010, 75(24), 8542-8549.
[http://dx.doi.org/10.1021/jo1019283] [PMID: 21090691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy