Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Non-LGE Cardiac Magnetic Resonance Imaging in Patients with Cardiac Amyloidosis

Author(s): Athanasios Rempakos, Adamantia Papamichail, Konstantinos Loritis, Emmanouil Androulakis, Nikki Lama and Alexandros Briasoulis*

Volume 29, Issue 7, 2023

Published on: 21 December, 2022

Page: [527 - 534] Pages: 8

DOI: 10.2174/1381612829666221212100114

Price: $65

Abstract

Cardiac involvement is the leading cause of death in patients with cardiac amyloidosis. Early recognition is crucial as it can significantly change the course of the disease. Until now, the imaging modality of choice for diagnosing cardiac amyloidosis has been cardiac magnetic resonance imaging (CMR) with late gadolinium enhancement (LGE). LGE-CMR in patients with cardiac amyloidosis reveals characteristic LGE patterns that lead to a diagnosis while also correlating well with disease prognosis. However, LGE-CMR has numerous drawbacks that the newer CMR modality, T1 mapping, aims to improve. T1 mapping can be further subdivided into native T1 mapping, which does not require the use of contrast, and ECV measurement, which requires the use of contrast. Numerous T1 mapping techniques have been developed, each one with its own advantages and disadvantages when it comes to procedure difficulty and image quality. A literature review to identify relevant published articles was performed by two authors. This review aimed to present the value of T1 mapping in diagnosing cardiac amyloidosis, quantifying the amyloid burden, and evaluating the prognosis of patients with amyloidosis with cardiac involvement.

[1]
Blancas-Mejía LM, Ramirez-Alvarado M. Systemic amyloidoses. Annu Rev Biochem 2013; 82(1): 745-74.
[http://dx.doi.org/10.1146/annurev-biochem-072611-130030] [PMID: 23451869]
[2]
Benson MD, Buxbaum JN, Eisenberg DS, et al. Amyloid nomenclature 2020: Update and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2020; 27(4): 217-22.
[http://dx.doi.org/10.1080/13506129.2020.1835263] [PMID: 33100054]
[3]
Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis. Clin Med 2018; 18 (Suppl. 2): s30-5.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s30] [PMID: 29700090]
[4]
Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: A review. J Am Heart Assoc 2012; 1(2): e000364.
[http://dx.doi.org/10.1161/JAHA.111.000364] [PMID: 23130126]
[5]
Escher F, Senoner M, Doerler J, et al. When and how do patients with cardiac amyloidosis die? Clin Res Cardiol 2020; 109(1): 78-88.
[http://dx.doi.org/10.1007/s00392-019-01490-2] [PMID: 31134330]
[6]
Bajwa F, O’Connor R, Ananthasubramaniam K. Epidemiology and clinical manifestations of cardiac amyloidosis. Heart Fail Rev 2021.
[PMID: 34694575]
[7]
Oda S, Kidoh M, Nagayama Y, et al. Trends in diagnostic imaging of cardiac amyloidosis: Emerging knowledge and concepts. Radiographics 2020; 40(4): 961-81.
[http://dx.doi.org/10.1148/rg.2020190069] [PMID: 32442047]
[8]
Jellis CL, Kwon DH. Myocardial T1 mapping: Modalities and clinical applications. Cardiovasc Diagn Ther 2014; 4(2): 126-37.
[PMID: 24834410]
[9]
Waldmeier D, Herzberg J, Stephan FP, Seemann M, Arenja N. Advanced imaging in cardiac amyloidosis. Biomedicines 2022; 10(4): 903.
[http://dx.doi.org/10.3390/biomedicines10040903] [PMID: 35453653]
[10]
Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping. JACC Cardiovasc Imaging 2016; 9(1): 67-81.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.005] [PMID: 26762877]
[11]
Burt JR, Zimmerman SL, Kamel IR, Halushka M, Bluemke DA. Myocardial T1 mapping: Techniques and potential applications. Radiographics 2014; 34(2): 377-95.
[http://dx.doi.org/10.1148/rg.342125121] [PMID: 24617686]
[12]
Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: Estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 2013; 15(1): 56.
[http://dx.doi.org/10.1186/1532-429X-15-56] [PMID: 23800276]
[13]
Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magn Reson Med 2004; 52(1): 141-6.
[http://dx.doi.org/10.1002/mrm.20110] [PMID: 15236377]
[14]
Messroghli DR, Walters K, Plein S, et al. Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007; 58(1): 34-40.
[http://dx.doi.org/10.1002/mrm.21272] [PMID: 17659622]
[15]
Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method. J Cardiovasc Magn Reson 2012; 14(1): 63.
[http://dx.doi.org/10.1186/1532-429X-14-63] [PMID: 22963517]
[16]
Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12(1): 69.
[http://dx.doi.org/10.1186/1532-429X-12-69] [PMID: 21092095]
[17]
Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 2013; 70(3): 664-70.
[http://dx.doi.org/10.1002/mrm.24867] [PMID: 23857710]
[18]
Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 2014; 71(6): 2082-95.
[http://dx.doi.org/10.1002/mrm.24878] [PMID: 23881866]
[19]
Weingärtner S, Akçakaya M, Basha T, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 2014; 71(3): 1024-34.
[http://dx.doi.org/10.1002/mrm.24761] [PMID: 23650078]
[20]
Roujol S, Weingärtner S, Foppa M, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: A head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 2014; 272(3): 683-9.
[http://dx.doi.org/10.1148/radiol.14140296] [PMID: 24702727]
[21]
Heidenreich JF, Weng AM, Donhauser J, et al. T1- and ECV-mapping in clinical routine at 3 T: Differences between MOLLI, ShMOLLI and SASHA. BMC Med Imaging 2019; 19(1): 59.
[http://dx.doi.org/10.1186/s12880-019-0362-0] [PMID: 31370821]
[22]
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV measurement. JACC Cardiovasc Imaging 2019; 12(11): 2332-44.
[http://dx.doi.org/10.1016/j.jcmg.2019.06.031] [PMID: 31542529]
[23]
Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac magnetic resonance fingerprinting. JACC Cardiovasc Imaging 2018; 11(12): 1837-53.
[http://dx.doi.org/10.1016/j.jcmg.2018.08.028] [PMID: 30522686]
[24]
Maestrini V, Treibel TA, White SK, Fontana M, Moon JC. T1 mapping for characterization of intracellular and extracellular myocardial diseases in heart failure. Curr Cardiovasc Imaging Rep 2014; 7(9): 9287.
[http://dx.doi.org/10.1007/s12410-014-9287-8] [PMID: 25152807]
[25]
Radenkovic D, Weingärtner S, Ricketts L, Moon JC, Captur G. T1 mapping in cardiac MRI. Heart Fail Rev 2017; 22(4): 415-30.
[http://dx.doi.org/10.1007/s10741-017-9627-2] [PMID: 28623475]
[26]
Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis. JACC Cardiovasc Imaging 2020; 13(6): 1368-83.
[http://dx.doi.org/10.1016/j.jcmg.2019.07.015] [PMID: 31607664]
[27]
Yilmaz A, Bauersachs J, Bengel F, et al. Diagnosis and treatment of cardiac amyloidosis: Position statement of the German Cardiac Society (DGK). Clin Res Cardiol 2021; 110(4): 479-506.
[http://dx.doi.org/10.1007/s00392-020-01799-3] [PMID: 33459839]
[28]
Chacko L, Martone R, Cappelli F, Fontana M. Cardiac amyloidosis: Updates in imaging. Curr Cardiol Rep 2019; 21(9): 108.
[http://dx.doi.org/10.1007/s11886-019-1180-2] [PMID: 31375984]
[29]
Pennell DJ, Maceira AM. Magnetic resonance imaging in cardiac amyloidosis editorials published in JACC: Cardiovascular imaging reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular imaging or the American College of Cardiology. JACC Cardiovasc Imaging 2009; 2(12): 1378-80.
[http://dx.doi.org/10.1016/j.jcmg.2009.10.001] [PMID: 20083071]
[30]
Syed IS, Glockner JF, Feng D, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 2010; 3(2): 155-64.
[http://dx.doi.org/10.1016/j.jcmg.2009.09.023] [PMID: 20159642]
[31]
Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132(16): 1570-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016567] [PMID: 26362631]
[32]
Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 2015; 20(2): 133-44.
[http://dx.doi.org/10.1007/s10741-014-9470-7] [PMID: 25549885]
[33]
Barison A, Aquaro GD, Pugliese NR, et al. Measurement of myocardial amyloid deposition in systemic amyloidosis: Insights from cardiovascular magnetic resonance imaging. J Intern Med 2015; 277(5): 605-14.
[http://dx.doi.org/10.1111/joim.12324] [PMID: 25346163]
[34]
Desport E, Bridoux F, Sirac C, et al. AL Amyloidosis. Orphanet J Rare Dis 2012; 7(1): 54.
[http://dx.doi.org/10.1186/1750-1172-7-54] [PMID: 22909024]
[35]
Hosch W, Bock M, Libicher M, et al. MR-relaxometry of myocardial tissue: Significant elevation of T1 and T2 relaxation times in cardiac amyloidosis. Invest Radiol 2007; 42(9): 636-42.
[http://dx.doi.org/10.1097/RLI.0b013e318059e021] [PMID: 17700279]
[36]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6(4): 488-97.
[http://dx.doi.org/10.1016/j.jcmg.2012.11.013] [PMID: 23498672]
[37]
Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014; 7(2): 157-65.
[http://dx.doi.org/10.1016/j.jcmg.2013.10.008] [PMID: 24412190]
[38]
Fontana M, Banypersad SM, Treibel TA, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A cardiac MR imaging study. Radiology 2015; 277(2): 388-97.
[http://dx.doi.org/10.1148/radiol.2015141744] [PMID: 25997029]
[39]
Baggiano A, Boldrini M, Martinez-Naharro A, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2020; 13(1): 69-80.
[http://dx.doi.org/10.1016/j.jcmg.2019.03.026] [PMID: 31202744]
[40]
Pan JA, Kerwin MJ, Salerno M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis. JACC Cardiovasc Imaging 2020; 13(6): 1299-310.
[http://dx.doi.org/10.1016/j.jcmg.2020.03.010] [PMID: 32498919]
[41]
Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging 2013; 38(6): 1591-5.
[http://dx.doi.org/10.1002/jmri.24078] [PMID: 23450747]
[42]
Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging 2012; 5(9): 897-907.
[http://dx.doi.org/10.1016/j.jcmg.2012.04.006] [PMID: 22974802]
[43]
Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 2019; 12(5): 810-9.
[http://dx.doi.org/10.1016/j.jcmg.2018.02.006] [PMID: 29550324]
[44]
Martinez-Naharro A, Abdel-Gadir A, Treibel TA, et al. CMR-verified regression of cardiac AL amyloid after chemotherapy. JACC Cardiovasc Imaging 2018; 11(1): 152-4.
[http://dx.doi.org/10.1016/j.jcmg.2017.02.012] [PMID: 28412427]
[45]
Wang TKM, Brizneda MV, Kwon DH, et al. Reference ranges, diagnostic and prognostic utility of native T1 mapping and extracellular volume for cardiac amyloidosis: A meta-analysis. J Magn Reson Imaging 2021; 53(5): 1458-68.
[http://dx.doi.org/10.1002/jmri.27459] [PMID: 33274809]
[46]
Chatzantonis G, Bietenbeck M, Elsanhoury A, et al. Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: A multi-centre study. Clin Res Cardiol 2021; 110(4): 555-68.
[http://dx.doi.org/10.1007/s00392-020-01771-1] [PMID: 33170349]
[47]
Chacko L, Boldrini M, Martone R, et al. Cardiac magnetic resonance-derived extracellular volume mapping for the quantification of hepatic and splenic amyloid. Circ Cardiovasc Imaging 2021; 14(4): e012506.
[http://dx.doi.org/10.1161/CIRCIMAGING.121.012506] [PMID: 33876651]
[48]
Lama N, Briasoulis A, Karavasilis E, et al. The utility of splenic imaging parameters in cardiac magnetic resonance for the diagnosis of immunoglobulin light-chain amyloidosis. Insights Imaging 2022; 13(1): 55.
[http://dx.doi.org/10.1186/s13244-022-01194-8] [PMID: 35348907]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy