Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Detection of Cerebrovascular Diseases using Novel Discrete Component Wavelet Cosine Transform

Author(s): Bandana Pal and Shruti Jain*

Volume 19, Issue 2, 2023

Published on: 29 December, 2022

Page: [137 - 149] Pages: 13

DOI: 10.2174/1573409919666221209151534

Price: $65

Abstract

Aims: Detecting and classifying a brain tumor amid a sole image can be problematic for doctors, although improvements can be made with medical image fusions.

Background: A brain tumor develops in the tissues surrounding the brain or the skull and has a major impact on human life. Primary tumors begin within the brain, whereas secondary tumors, identified as brain metastasis tumors, are generated outside the brain.

Objective: This paper proposes hybrid fusion techniques to fuse multi-modal images. The evaluations are based on performance metrics, and the results are compared with conventional ones.

Methods: In this paper, pre-processing is done considering enhancement methods like Binarization, Contrast Stretching, Median Filter, & Contrast Limited Adaptive Histogram Equalization (CLAHE). Authors have proposed three techniques, PCA-DWT, DCT-PCA, and Discrete ComponentWaveletCosine Transform (DCWCT), which were used to fuse CT-MR images of brain tumors.

Results: The different features were evaluated from the fused images, which were classified using various machine learning approaches. Maximum accuracy of 97.9% and 93.5% is obtained using DCWCT for Support Vector Machine (SVM) and k Nearest Neighbor (kNN), respectively, considering the combination of both feature's shape & Grey Level Difference Statistics. The model is validated using another online dataset.

Conclusion: It has been observed that the classification accuracy for detecting cerebrovascular disease is better after employing the proposed image fusion technique.

[2]
The Importance Of New Technology In The Healthcare Industry Available from: https://www.dr-bill.ca/blog/technology/the-importance-of-new-technology-in-the-healthcare-industry
[3]
Smeulders, A.W.M.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22(12), 1349-1380.
[http://dx.doi.org/10.1109/34.895972]
[4]
Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; Rubinstein, L.; Shankar, L.; Dodd, L.; Kaplan, R.; Lacombe, D.; Verweij, J. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer, 2009, 45(2), 228-247.
[http://dx.doi.org/10.1016/j.ejca.2008.10.026] [PMID: 19097774]
[5]
Vijan, A.; Dubey, P.; Jain, S. Comparative analysis of various image fusion techniques for brain magnetic resonance images. Procedia Comput. Sci., 2020, 167, 413-422.
[http://dx.doi.org/10.1016/j.procs.2020.03.250]
[6]
Lanaras, C.; Baltsavias, E.; Schindler, K. Estimating the relative spatial and spectral sensor response for hyperspectral and multispectral image fusion. In: Proceedings of the Asian Conference on Remote Sensing (ACRS), Colombo, Sri Lanka17–21 October2016.
[7]
Dogra, J.; Jain, S.; Sood, M. Glioma extraction from MR images employing gbks graph cut technique. Visual Computer, Springer, 2019, 35(10), 1-17.
[8]
Dogra, J.; Jain, S.; Sood, M. Gradient‐based kernel selection technique for tumour detection and extraction of medical images using graph cut. IET Image Process., 2020, 14(1), 84-93.
[http://dx.doi.org/10.1049/iet-ipr.2018.6615]
[9]
Davis, M. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs., 2016, 20(5)(Suppl.), S2-S8.
[http://dx.doi.org/10.1188/16.CJON.S1.2-8] [PMID: 27668386]
[10]
Arikan, M.; Fröhler, B.; Möller, T. Semi-automatic brain tumor segmentation using support vector machines and interactive seed selection. Proc. MICCAI-BRATS Workshop 2016, 2016, pp. 1-3.
[11]
Corso, J.J.; Sharon, E.; Dube, S.; El-Saden, S.; Sinha, U.; Yuille, A. Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging, 2008, 27(5), 629-640.
[http://dx.doi.org/10.1109/TMI.2007.912817] [PMID: 18450536]
[12]
Pappachan, J.; Kirkham, F.J. Cerebrovascular disease and stroke. Arch. Dis. Child., 2008, 93(10), 890-898. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677268/
[13]
Clinical Methods: The History, Physical, and Laboratory Examinations. Available from: https://www.ncbi.nlm.nih.gov/books/NBK378/
[15]
Ambily, P.K.; James, S.P.; Mohan, R.R. Brain tumor detection using image fusion and neural network. Inter. J. Eng. Res. General Sci., 2015, 3(2), 1383-1388.
[16]
Wang, M.; Shang, X. A fast image fusionwith discrete cosine transform. IEEE Signal Processing Letters; IEEE, 2020, 27, 990-994.
[17]
Kumar, B.K.S.; Swamy, M.N.S.; Ahmad, M.O. Multiresolution DCT decomposition for multifocus image fusion Proc. of Canadian Conference on Electrical and Computer Engineering (CCECE)Regina, Canada2013, pp. 1-4.
[http://dx.doi.org/10.1109/CCECE.2013.6567721]
[18]
Wang, Z.; Cui, P.; Li, F.; Chang, E.; Yang, S. A data-driven study of image feature extraction and fusion. Inf. Sci., 2014, 281, 536-558.
[http://dx.doi.org/10.1016/j.ins.2014.02.030]
[19]
Snehkunj, R.; Jani, A.N.; Jani, N.N. Brain MRI/CT images feature extraction to enhance abnormalities quantification. Indian J. Sci. Technol., 2018, 11(1), 1-10.
[http://dx.doi.org/10.17485/ijst/2018/v11i1/120361]
[20]
Sivakumar, P.; Velmurugan, S.P.; Sampson, J. Implementation of differential evolution algorithm to perform image fusion for identifying brain tumor. In: 3C Technology. Innovation Glosses Applied to SMEs, Special ed; , 2020, pp. 301-311.
[http://dx.doi.org/10.17993/3ctecno.2020.specialissue4.301-311]
[21]
Maya, A.T.; Suryono, S.; Anam, C. Image contrast improvement in image fusion between CT and MRI images of brain cancer patients. IJSRST, 2021, 8(1), 104-110.
[22]
Masood, S.; Sharif, M.; Yasmin, M.; Shahid, M.A.; Rehman, A. Image fusion methods: A survey. J. Eng. Sci. Technol. Rev., 2017, 10(6), 186-195.
[http://dx.doi.org/10.25103/jestr.106.24]
[23]
Jain, S.; Sachdeva, M.; Dubey, P.; Vijan, A. Multi-sensor image fusion using intensity hue saturation technique. In. 3rd International Conference on Advanced Informatics for Computing Research, Solan, IndiaJune 15-16 2019, pp. 147-157.
[http://dx.doi.org/10.1007/978-981-15-0111-1_14]
[24]
Pal, B.; Mahajan, S.; Jain, S. Medical image fusion employing enhancement techniques. In: Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, IndiaDec 26-27, 2020, pp. 223-226.
[25]
Rajalingam, B.; Priya, R. A novel approach for multimodal medical image fusion using hybrid fusion algorithms for disease analysis. Int. J. Pure Appl. Math., 2017, 117(15), 599-619.
[26]
Deepa, B. Performance analysis of various image fusion techniques for detection of brain abnormality. Inter. J. Comput. Math. Sci., 2017, 6(9), 168-176.
[27]
Li, Y. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation. 2017, 8(1), 121-129.
[28]
Yang, Y.; Huang, S.; Gao, J.; Qian, Z. Multi-focus image fusion using an effective discrete wavelet transform based algorithm. Meas. Sci. Rev., 2014, 14(2), 102-108.
[http://dx.doi.org/10.2478/msr-2014-0014]
[29]
Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput., 2003, 21(11), 977-1000.
[http://dx.doi.org/10.1016/S0262-8856(03)00137-9]
[30]
The Whole Brain Atlas. Cerebrovascular Disease (stroke or brain attack). Available from: http://www.med.harvard.edu/AANLIB/home.html
[31]
Mohideen, S.K.; Perumal, S.A.; Sathik, M.M. Image de-noising using discrete wavelet transform. IJCSNS Inter. J. Comp. Sci. Netw. Secur., 2018, 8(1), 213-214.
[32]
Pal, B.; Mahajan, S. A comparative study of traditional image fusion techniques with a novel hybrid method. International Conference on Computational Performance Evaluation (ComPE); North - Eastern Hill University, Shillong, Meghalaya, India, Jul 2-4. , 2020, pp. 820-825.
[33]
Bhardwaj, C.; Jain, S.; Sood, M. Automatic blood vessel extraction of fundus images employing fuzzy approach. Ind. J. Electr. Eng. Inform. (IJEEI), 2019, 7(4), 757-771.
[34]
Prashar, N.; Sood, M.; Jain, S. A novel cardiac arrhythmia processing using machine learning techniques. Int. J. Image Graph., 2020, 20(3), 2050023.
[http://dx.doi.org/10.1142/S0219467820500230]
[35]
Jain, S. Classification of protein kinase B using discrete wavelet transform. Inter. J. Inform. Technol., 2018, 10(2), 211-216.
[http://dx.doi.org/10.1007/s41870-018-0090-7]
[36]
Winarno, A.; Setiadi, D.R.I.M.; Arrasyid, A.A.; Sari, C.A.; Rachmawanto, E.H. Image watermarking using low wavelet subband based on 8×8 sub-block DCT. In. International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia2017, pp. 11-15.
[http://dx.doi.org/10.1109/ISEMANTIC.2017.8251835]
[37]
Salau, A.O.; Jain, S. Feature extraction: A survey of the types, techniques and applications. 5th International Conference on Signal Processing and Communication (ICSC-2019)March 07- 09, 2019
[http://dx.doi.org/10.1109/ICSC45622.2019.8938371]
[38]
Sharma, S.; Jain, S.; Bhusri, S. Two class classification of breast lesions using statistical and transform domain features. J. Glob. Pharma Technol., 2017, 9(7), 18-24.
[39]
Bhusri, S.; Jain, S.; Virmani, J. Classification of breast lesions using the difference of statistical features. Res. J. Pharm. Biol. Chem. Sci., 2016, 1366.
[40]
Bhusri, S.; Jain, S.; Virmani, J. Breast lesions classification using the amalagation of morphological and texture features. Inter. J. Pharma Biosci(IJPBS), 2016, 7(2), 617-624.
[41]
Rana, S.; Jain, S.; Virmani, J. SVM-Based characterization of focal kidney lesions from B-Mode ultrasound images. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(4), 837.
[44]
Jain, S.; Chauhan, D.S. Instance-based learning of marker proteins of carcinoma cells for cell death/ survival. Comput. Methods Biomech. Biomed. Eng. Imag. Visual., 8(3), 313-322.
[http://dx.doi.org/10.1080/21681163.2019.1692236]
[45]
Dogra, J.; Jain, S.; Sood, M. Glioma classification of MR brain tumor employing machine learning. Int. J. Innov. Technol. Explor. Eng., 2019, 8(8), 2676-2682.
[46]
Jain, S. Computer-aided detection system for the classification of non-small cell lung lesions using SVM. Curr. Comput. Aided Drug Des., 2021, 16(6), 833-840.
[http://dx.doi.org/10.2174/1573409916666200102122021] [PMID: 31899680]
[47]
Li, R.; Zhang, W.; Suk, H.I.; Wang, L.; Li, J.; Shen, D.; Ji, S. Deep learning based imaging data completion for improved brain disease diagnosis. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention MICCAI-BRATS, , pp. 305-312.2014
[48]
Jain, S.; Paul, S. Recent trends in image and signal processing in computer vision; Springer Nature: Switzerland AG, 2020.
[49]
Shutter Stock, CT Scan of Brain showing Intracerebral Haemorrhage - Axial View. Available from: https://www.shutterstock.com/de/image-photo/ct-scan-brain-showing-intracerebral-haemorrhage-722186461

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy