Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Emerging Trends and Future Challenges of Nanovaccine Delivery via Nasal Route

Author(s): Hitesh Kumar Dewangan*, Akash Raghuvanshi and Kamal Shah

Volume 24, Issue 3, 2023

Published on: 11 January, 2023

Page: [261 - 273] Pages: 13

DOI: 10.2174/1389450124666221205162256

Price: $65

Abstract

The mucosal surfaces are the key site of the entrance, protection, and stability of several pathogens. Considering that >90% of pathogens gain access to the body via mucosal sites, using mucosal vaccination to generate protective immunity at mucosal sites could overcome. Some of the micro and nano carrier-based nasal delivery systems produce cellular, humoral and mucosal immunity. The nasal route vaccination may protect multiple distant mucosal sites like-rectal, vaginal, oral, and pulmonary. Also, it is a convenient and cost-effective vaccination mode with improved patient compliance. Several nasal vaccine delivery systems are currently being supplied in the form of liposomes, micro/nano particulates, which have shown immunity in animal models. Especially particulate nanovaccine has a special character related to long-term immunogenicity and high efficiency. The significance and the ability of the nasal route vaccination programs are unexplained and complications; therefore, effective delivery strategies will promote the production of nasal vaccines. The present study focuses on vaccine delivery strategies and their effects on the immune system. Also, the study discusses the benefits of mucosal-associated immune response over the conventional delivery system for vaccine via the nasal route.

Graphical Abstract

[1]
Alagusundaram M, Chengaiah B, Gnanaprakash K, Ramkanth S. Nasal drug delivery system - An overview. Int J Res Pharm Sci 2010; 1(4): 454-65.
[2]
Mestecky J, Moldoveanu Z, Michalek S, et al. Current options for vaccine delivery systems by mucosal routes. J Control Release 1997; 48(2-3): 243-57.
[http://dx.doi.org/10.1016/S0168-3659(97)00036-9]
[3]
Alnasser SA. Review on nasal drug delivery system and its contribution in therapeutic management. Asian J Pharm Clin Res 2019; 12(1): 40-5.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i1.29443]
[4]
Riese P, Sakthivel P, Trittel S, Guzmán CA. Intranasal formulations: Promising strategy to deliver vaccines. Expert Opin Drug Deliv 2014; 11(10): 1619-34.
[http://dx.doi.org/10.1517/17425247.2014.931936] [PMID: 24962722]
[5]
Vidgren MT, Kublik H. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev 1998; 29(1-2): 157-77.
[http://dx.doi.org/10.1016/S0169-409X(97)00067-7] [PMID: 10837586]
[6]
Widdicombe J. Microvascular anatomy of the nose. Allergy 1997; 52(40): 7-11.
[http://dx.doi.org/10.1111/j.1398-9995.1997.tb04877.x] [PMID: 9353554]
[7]
Rao L, Tian R, Chen X. Cell-membrane-mimicking Nanodecoys against infectious diseases. ACS Nano 2020; 14(3): 2569-74.
[http://dx.doi.org/10.1021/acsnano.0c01665] [PMID: 32129977]
[8]
Prada I, Meldolesi J. Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci 2016; 17(8): 1296.
[http://dx.doi.org/10.3390/ijms17081296] [PMID: 27517914]
[9]
de Souza E, Silva JM, Hanchuk TD, et al. Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interfaces 2016; 8(26): 16564-72.
[http://dx.doi.org/10.1021/acsami.6b03342] [PMID: 27284685]
[10]
Dewangan HK, Singh N, Megh KS, Singh S. Lakshmi. Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. J Microencapsul 2022; 39: 125-35.
[http://dx.doi.org/10.1080/02652048.2022.2051625] [PMID: 35282781]
[11]
Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 2014; 13(3): 7022-8.
[http://dx.doi.org/10.4238/2014.March.19.2] [PMID: 24682984]
[12]
Khandelwal N, Kaur G, Chaubey KK, et al. Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Res 2014; 190: 1-7.
[http://dx.doi.org/10.1016/j.virusres.2014.06.011] [PMID: 24979044]
[13]
Patel RM, Pinto JM. Olfaction: Anatomy, physiology, and disease. Clin Anat 2014; 27(1): 54-60.
[http://dx.doi.org/10.1002/ca.22338] [PMID: 24272785]
[14]
Alex AT, Joseph A, Shavi G, Rao JV, Udupa N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv 2016; 23(7): 2144-53.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[15]
Hasegawa M, Kern EB. The human nasal cycle. Mayo Clin Proc 1977; 52(1): 28-34.
[PMID: 609283]
[16]
Neskey D, Eloy JA, Casiano RR. Nasal, septal, and turbinate anatomy and embryology. Otolaryngol Clin North Am 2009; 42(2): 193-205.
[http://dx.doi.org/10.1016/j.otc.2009.01.008] [PMID: 19328886]
[17]
Davis SS. Nasal vaccines. Adv Drug Deliv Rev 2001; 51(1-3): 21-42.
[http://dx.doi.org/10.1016/S0169-409X(01)00162-4] [PMID: 11516777]
[18]
Ramvikas M, Arumugam M, Chakrabarti SR, Jaganathan KS. Micro and nanotechnology in vaccine development. Nasal Vaccine Deliv 2017; 279-301.
[19]
Ozer AY. Alternative Applications for Drug Delivery: Nasal and Pulmonary Routes. In: Mozafari MR, Ed. Nanomaterials and Nanosystems for Biomedical Applications. Springer: Dordrecht 2007.
[20]
Sharma S. Discussion about nasal drug delivery. World J Pharm Res 2018; 7(17): 1389-405.
[21]
Chien YW, Chang SF. Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst 1987; 4(2): 67-194.
[PMID: 3319200]
[22]
Munkholm M, Mortensen J. Mucociliary clearance: Pathophysiological aspects. Clin Physiol Funct Imaging 2014; 34(3): 171-7.
[http://dx.doi.org/10.1111/cpf.12085] [PMID: 24119105]
[23]
Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release 2003; 87(1-3): 187-98.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[24]
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019; 108(2): 851-9.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[25]
Masuda N, Mantani Y, Yoshitomi C, et al. Immunohistochemical study on the secretory host defense system with lysozyme and secretory phospholipase A2 throughout rat respiratory tract. J Vet Med Sci 2018; 80(2): 323-32.
[http://dx.doi.org/10.1292/jvms.17-0503] [PMID: 29225322]
[26]
Som PM, Naidich TP. Illustrated review of the embryology and development of the facial region, part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol 2013; 34(12): 2233-40.
[http://dx.doi.org/10.3174/ajnr.A3415] [PMID: 23493891]
[27]
Corr SC, Gahan CC, Hill C. M-cells: Origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 2008; 52(1): 2-12.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00359.x] [PMID: 18081850]
[28]
Sharma S, Mukkur TK, Benson HA, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci 2009; 98(3): 812-43.
[http://dx.doi.org/10.1002/jps.21493] [PMID: 18661544]
[29]
Illum L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J Pharm Sci 2007; 96(3): 473-83.
[http://dx.doi.org/10.1002/jps.20718] [PMID: 17117404]
[30]
Singh V, Garg A, Dewangan HK. Recent advances in drug design and delivery across biological barriers using computational models. Lett Drug Des Discov 2022.
[31]
Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009; 4: 299-319.
[http://dx.doi.org/10.2147/IJN.S4937] [PMID: 20054434]
[32]
Kaur G, Narang RK, Rath G, Goyal AK. Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol 2012; 40(1-2): 75-96.
[http://dx.doi.org/10.3109/10731199.2011.592494] [PMID: 21806501]
[33]
Lee WH, Loo CY, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci 2015; 10: 481-9.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[34]
Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 2004; 4(9): 699-710.
[http://dx.doi.org/10.1038/nri1439] [PMID: 15343369]
[35]
Gitlin N, Hepatitis B. Diagnosis, prevention, and treatment. Clin Chem 1997; 43(8 Pt 2): 1500-6.
[http://dx.doi.org/10.1093/clinchem/43.8.1500] [PMID: 9265901]
[36]
Degli Esposti S, Shah D. Hepatitis B in pregnancy: Challenges and treatment. Gastroenterol Clin North Am 2011; 40(2): 355-72. [viii.]
[http://dx.doi.org/10.1016/j.gtc.2011.03.005] [PMID: 21601784]
[37]
Lycke N. Recent progress in mucosal vaccine development: Potential and limitations. Nat Rev Immunol 2012; 12(8): 592-605.
[http://dx.doi.org/10.1038/nri3251] [PMID: 22828912]
[38]
Kang H, Yan M, Yu Q, Yang Q. Characteristics of nasal-associated lymphoid tissue (NALT) and nasal absorption capacity in chicken. PLoS One 2013; 8(12): e84097.
[http://dx.doi.org/10.1371/journal.pone.0084097] [PMID: 24391892]
[39]
Cisney ED, Fernandez S, Hall SI, Krietz GA, Ulrich RG. Examining the role of nasopharyngeal-associated lymphoreticular tissue (NALT) in mouse responses to vaccines. J Vis Exp 2021; 66: 3960.
[40]
Sharma V, Dewangan HK, Maurya L, Vats K, Verma H. Rational design and in-vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina. J Drug Deliv Sci Technol 2019; 54: 101337.
[http://dx.doi.org/10.1016/j.jddst.2019.101337]
[41]
Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: How, why and what for? J Pharm Pharm Sci 2009; 12(3): 288-311.
[http://dx.doi.org/10.18433/J3NC79] [PMID: 20067706]
[42]
Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm 2019; 572: 118813.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118813] [PMID: 31678521]
[43]
Zaman M, Chandrudu S, Toth I. Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res 2013; 3: 100-9.
[http://dx.doi.org/10.1007/s13346-012-0085-z]
[44]
Amin M, Jaafari MR, Tafaghodi M. Impact of chitosan coating of anionic liposomes on clearance rate, mucosal and systemic immune responses following nasal administration in rabbits. Colloids Surf B Biointerfaces 2009; 74(1): 225-9.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.024] [PMID: 19699067]
[45]
Walker WT, Liew A, Harris A, Cole J, Lucas JS. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir Med 2013; 107(3): 380-6.
[http://dx.doi.org/10.1016/j.rmed.2012.11.021] [PMID: 23290188]
[46]
Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC. Nanogel vaccines targeting dendritic cells: Contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 2013; 166(2): 95-105.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.015] [PMID: 23220107]
[47]
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol 2018; 9: 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[48]
Pezzotti P, Bellino S, Prestinaci F, et al. The impact of immunization programs on 10 vaccine preventable diseases in Italy: 1900-2015. Vaccine 2018; 36(11): 1435-43.
[http://dx.doi.org/10.1016/j.vaccine.2018.01.065] [PMID: 29428176]
[49]
Jiao M, Zhang P, Meng J, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci 2018; 6(4): 726-45.
[http://dx.doi.org/10.1039/C7BM01020F] [PMID: 29308496]
[50]
Jung SY, Kang KW, Lee EY, et al. Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine 2018; 36(24): 3468-76.
[http://dx.doi.org/10.1016/j.vaccine.2018.04.082] [PMID: 29739720]
[51]
Dewangan HK, Singh S, Mishra R, Dubey RK. A review on application of nanoadjuvant as delivery system. Int J Appl Pharm 2020; 12(4): 24-33.
[http://dx.doi.org/10.22159/ijap.2020v12i4.36856]
[52]
Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev 1998; 29(1-2): 3-12.
[http://dx.doi.org/10.1016/S0169-409X(97)00058-6] [PMID: 10837577]
[53]
Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev 2001; 51(1-3): 5-19.
[http://dx.doi.org/10.1016/S0169-409X(01)00172-7] [PMID: 11516776]
[54]
Qiao D, Liu L, Chen Y, et al. Potency of a scalable nanoparticulate subunit vaccine. Nano Lett 2018; 18(5): 3007-16.
[http://dx.doi.org/10.1021/acs.nanolett.8b00478] [PMID: 29694053]
[55]
Accomasso L, Cristallini C, Giachino C. Risk assessment and risk minimization in Nanomedicine: A need for predictive, alternative, and 3Rs strategies. Front Pharmacol 2018; 9: 228.
[http://dx.doi.org/10.3389/fphar.2018.00228] [PMID: 29662451]
[56]
Dewangan HK. The emerging role of nanosuspensions for drug delivery and stability. Curr Nanomed 2021; 11(4): 213-23.
[http://dx.doi.org/10.2174/2468187312666211222123307]
[57]
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55(3): 220-30.
[http://dx.doi.org/10.1007/s12275-017-7058-3] [PMID: 28243941]
[58]
Yadav D, Dewangan HK. PEGYLATION: An important approach for novel drug delivery system. J Biomater Sci Polym Ed 2021; 32(2): 266-80.
[PMID: 32942961]
[59]
de Jonge MI, Hamstra HJ, Jiskoot W, et al. Intranasal immunisation of mice with liposomes containing recombinant meningococcal OpaB and OpaJ proteins. Vaccine 2004; 22(29-30): 4021-8.
[http://dx.doi.org/10.1016/j.vaccine.2004.03.047] [PMID: 15364452]
[60]
Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 1998; 29(1-2): 13-38.
[http://dx.doi.org/10.1016/S0169-409X(97)00059-8] [PMID: 10837578]
[61]
Dewangan HK. Different approaches for nanovaccine formulation and characterization. Easychair 2021.
[http://dx.doi.org/10.1088/1757-899X/1116/1/012042]
[62]
Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y. Liposomes act as stronger sub-unit vaccine adjuvants when compared to microspheres. J Drug Target 2008; 16(7): 543-54.
[http://dx.doi.org/10.1080/10611860802228558] [PMID: 18686124]
[63]
Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine 2008; 26(18): 2225-33.
[http://dx.doi.org/10.1016/j.vaccine.2008.02.058] [PMID: 18396362]
[64]
Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J Anat 1996; 189(Pt 3): 503-5.
[PMID: 8982823]
[65]
Ali J, Ali M, Baboota S, et al. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des 2010; 16(14): 1644-53.
[http://dx.doi.org/10.2174/138161210791164108] [PMID: 20210751]
[66]
Mahdavi M, Mavandadnejad F, Yazdi MH, et al. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J Infect Public Health 2017; 10(1): 102-9.
[http://dx.doi.org/10.1016/j.jiph.2016.02.006] [PMID: 27026241]
[67]
Garg A, Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Crit Rev Ther Drug Carrier Syst 2020; 37(2): 183-204.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020033273] [PMID: 32865905]
[68]
Hu KF, Lövgren-Bengtsson K, Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev 2001; 51(1-3): 149-59.
[http://dx.doi.org/10.1016/S0169-409X(01)00165-X] [PMID: 11516786]
[69]
Dewangan HK. Rational application of nanoadjuvant for mucosal vaccine delivery system. J Immunol Methods 2020; 481-482: 112791.
[http://dx.doi.org/10.1016/j.jim.2020.112791] [PMID: 32387695]
[70]
Rivera-Patron M, Moreno M, Baz M, Roehe PM, Cibulski SP, Silveira F. ISCOM-like nanoparticles formulated with Quillaja brasiliensis saponins are promising adjuvants for seasonal influenza vaccines. Vaccines (Basel) 2021; 9(11): 1-18.
[http://dx.doi.org/10.3390/vaccines9111350] [PMID: 34835281]
[71]
Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: The second decade. Immunol Cell Biol 2005; 83(2): 119-28.
[http://dx.doi.org/10.1111/j.1440-1711.2005.01319.x] [PMID: 15748208]
[72]
Garg H, Mehmetoglu-Gurbuz T, Joshi A. Virus Like Particles (VLP) as multivalent vaccine candidate against chikungunya, Japanese Encephalitis, Yellow Fever and Zika Virus. Sci Rep 2020; 10(1): 4017.
[http://dx.doi.org/10.1038/s41598-020-61103-1] [PMID: 32132648]
[73]
Noad R, Roy P. Virus-like particles as immunogens. Trends Microbiol 2003; 11(9): 438-44.
[http://dx.doi.org/10.1016/S0966-842X(03)00208-7] [PMID: 13678860]
[74]
Tabachnick WJ. Climate change and the arboviruses: Lessons from the evolution of the dengue and yellow fever viruses. Annu Rev Virol 2016; 3(1): 125-45.
[http://dx.doi.org/10.1146/annurev-virology-110615-035630] [PMID: 27482902]
[75]
Dewangan HK, Sharma A, Mishra A, Singour P. Mucoadhesive microspheres of atorvastatin calcium: Rational design, evaluation and enhancement of bioavailability. Indian J Pharm Edu Res 2021; 55(3): 1-9.
[http://dx.doi.org/10.5530/ijper.55.3s.180]
[76]
van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 2014; 116(9): 1088-107.
[http://dx.doi.org/10.1002/ejlt.201400219] [PMID: 25400504]
[77]
Dewangan HKA. Review: Chitosan as natural versatile material for biomedical and diseases treatment. Int J Innov Sci Eng Tech 2020; 7(11): 2348-7968.
[78]
Ugozzoli M, Santos G, Donnelly J, O’Hagan DT. Potency of a genetically detoxified mucosal adjuvant derived from the heat-labile enterotoxin of Escherichia coli (LTK63) is not adversely affected by the presence of preexisting immunity to the adjuvant. J Infect Dis 2001; 183(2): 351-4.
[http://dx.doi.org/10.1086/317923] [PMID: 11110644]
[79]
Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int J Biol Macromol 2018; 111: 804-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.073] [PMID: 29343454]
[80]
Dewangan HK, Singh S, Maurya L, Srivastava A, Hepatitis B. Hepatitis B antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization in BALB/c mice. Curr Drug Deliv 2018; 15(8): 1204-15.
[http://dx.doi.org/10.2174/1567201815666180604110457] [PMID: 29866006]
[81]
Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model. Artif Cells Nanomed Biotechnol 2018; 46(8): 2033-42.
[PMID: 29179600]
[82]
Lebre F, Borchard G, Faneca H, Pedroso de Lima MC, Borges O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol Pharm 2016; 13(2): 472-82.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00707] [PMID: 26651533]
[83]
Dewangan HK, Tomar S. Nanovaccine for transdermal delivery. J Drug Del Sci Tech 2021; 102988.
[84]
Lin YF, Deng MC, Tseng LP, et al. Adjuvant effect of liposome in chicken result from induction of nitric oxide. Biomed Mater 2011; 6(1): 015011.
[http://dx.doi.org/10.1088/1748-6041/6/1/015011] [PMID: 21239850]
[85]
Yadav HKS, Dibi M, Mohammad A, Srouji EA. Nanovaccines formulation and applications-a review. J Drug Deliv Sci Technol 2018; 44: 380-7.
[86]
Hamouda T, Chepurnov A, Mank N, et al. Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum Vaccin 2010; 6(7): 585-94.
[http://dx.doi.org/10.4161/hv.6.7.11818] [PMID: 20421727]
[87]
Makidon PE, Bielinska AU, Nigavekar SS, et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One 2008; 3(8): e2954.
[http://dx.doi.org/10.1371/journal.pone.0002954] [PMID: 18698426]
[88]
Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: Regulation through compartmentalization. Nat Rev Immunol 2009; 9(8): 535-42.
[http://dx.doi.org/10.1038/nri2587] [PMID: 19556980]
[89]
Igietseme JU, Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun 2000; 68(12): 6798-806.
[http://dx.doi.org/10.1128/IAI.68.12.6798-6806.2000] [PMID: 11083798]
[90]
Sjölander S, Drane D, Davis R, Beezum L, Pearse M, Cox J. Intranasal immunisation with influenza-ISCOM induces strong mucosal as well as systemic antibody and cytotoxic T-lymphocyte responses. Vaccine 2001; 19(28-29): 4072-80.
[http://dx.doi.org/10.1016/S0264-410X(01)00110-4] [PMID: 11427284]
[91]
Hu KF, Elvander M, Merza M, Akerblom L, Brandenburg A, Morein B. The immunostimulating complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody responses. Clin Exp Immunol 1998; 113(2): 235-43.
[http://dx.doi.org/10.1046/j.1365-2249.1998.00650.x] [PMID: 9717973]
[92]
Matassov D, Cupo A, Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol 2007; 20(3): 441-52.
[http://dx.doi.org/10.1089/vim.2007.0027] [PMID: 17931114]
[93]
Durrer P, Glück U, Spyr C, et al. Mucosal antibody response induced with a nasal virosome-based influenza vaccine. Vaccine 2003; 21(27-30): 4328-34.
[http://dx.doi.org/10.1016/S0264-410X(03)00457-2] [PMID: 14505915]
[94]
Yao Q, Vuong V, Li M, Compans RW. Intranasal immunization with SIV virus-like particles (VLPs) elicits systemic and mucosal immunity. Vaccine 2002; 20(19-20): 2537-45.
[http://dx.doi.org/10.1016/S0264-410X(02)00160-3] [PMID: 12057610]
[95]
Ramirez K, Wahid R, Richardson C, et al. Intranasal vaccination with an adjuvanted Norwalk virus-like particle vaccine elicits antigen-specific B memory responses in human adult volunteers. Clin Immunol 2012; 144(2): 98-108.
[http://dx.doi.org/10.1016/j.clim.2012.05.006] [PMID: 22710446]
[96]
Nagatomo D, Taniai M, Ariyasu H, et al. Cholesteryl pullulan encapsulated TNF-a nanoparticles are an effective mucosal vaccine adjuvant against influenza virus. BioMed Res Int 2015; 2015: 471468.
[http://dx.doi.org/10.1155/2015/471468] [PMID: 26421290]
[97]
Wu Y, Wei W, Zhou M, et al. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials 2012; 33(7): 2351-60.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.068] [PMID: 22192540]
[98]
Singh M, Briones M, O’Hagan DT. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release 2001; 70(3): 267-76.
[http://dx.doi.org/10.1016/S0168-3659(00)00330-8] [PMID: 11182197]
[99]
Garmise RJ, Mar K, Crowder TM, et al. Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech 2006; 7(1): E131-7.
[http://dx.doi.org/10.1208/pt070119] [PMID: 28290034]
[100]
Tafaghodi M, Eskandari M. The mucosal adjuvant potential of cross-linked dextran microspheres as dry powder. Iran J Basic Med Sci 2012; 15(3): 873-9.
[PMID: 23493463]
[101]
Jaganathan KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 2006; 24(19): 4201-11.
[http://dx.doi.org/10.1016/j.vaccine.2006.01.011] [PMID: 16446012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy