[1]
Kumar, R.; Boon, R.A.; Maegdefessel, L.; Dimmeler, S.; Jo, H. Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ. Res., 2019, 124(4), 619-630.
[2]
Quintana, R.A.; Taylor, W.R.J.C.R. Cellular mechanisms of aortic aneurysm formation. Circ Res., 2019, 124(4), 607-618.
[3]
Tromp, G.; Kuivaniemi, H.; Hinterseher, I.; Carey, D.J. Novel genetic mechanisms for aortic aneurysms. Curr. Atheroscler. Rep., 2010, 12(4), 259-266.
[4]
Wiegreffe, C.; Christ, B.; Huang, R.; Scaal, M. J. D. D. Remodeling of aortic smooth muscle during avian embryonic development. Dev. Dyn., 2010, 238(3), 624-21.
[6]
Ruddy, J.M.; Jones, J.A.; Spinale, F.G.; Ikonomidis, J.S. Regional heterogeneity within the aorta: Relevance to aneurysm disease. J. Thorac. Cardiovas.c Surg., 2008, 136(5), 1123-1130.
[7]
Wolinsky, H.; Glagov, S.J. Comparison of abdominal and thoracic aortic medial structure in mammals. Deviation of man from the usual pattern. Circ. Res., 1970, 25(6), 677-686.
[9]
Ji, Z.; Austin, R. C. J. B. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors., 2010, 35(2), 120-129.
[11]
Rateri, D.L.; Howatt, D.A.; Moorleghen, J.J.; Charnigo, R.; Cassis, L.A.; Daugherty, A.J. Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am. J. Pathol., 2011, 179(3), 1542-1548.
[13]
Staffan, H.; Jasmin, S.; Alexander, P.J. PVAT and its relation to brown, beige, and white adipose tissue in development and function. Front. Physiol., 2018, 9, 70.
[15]
Ye, T.; Zhang, G.; Liu, H.; Shi, J.; Qiu, H.; Liu, Y.; Han, F.; Hou, N.J.F.E. Relationships between perivascular adipose tissue and abdominal aortic aneurysms. Front. Endocrinol., 2021, (12), 704845.
[17]
Li, X.; Ma, Z.; Zhu, Y.Z. Regional heterogeneity of perivascular adipose tissue: morphology, origin, and secretome. Front. Pharmacol., 2021, 12, 697720.
[18]
Padilla, J.; Jenkins, N.T. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(7), R543-R552.
[20]
Wenhao, X.; Xiangjie, Z.; Garcia-Barrio, M.T.; Jifeng, Z.; Jiandie, L.; Eugene, C.Y.; Zhisheng, J.; Lin, C. MitoNEET in perivascular adipose tissue blunts atherosclerosis under mild cold condition in mice. Front. Physiol., 2017, 8, 1032.
[25]
Modulation of thiopental-induced vascular relaxation and contraction by perivascular adipose tissue and endothelium. Br J Anaesth., 2012, 109(2), 177-84.
[27]
Dias-Neto, M.; Meekel, J.; Schaik, T.G.V.; Hoozemans, J.; Yeung, K.K.J.E.J.V.; Surgery, E. High density of periaortic adipose tissue in abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg., 2018, 56(5), 663-671.
[31]
Wagster, D.; Vorkapic, E.; Stijn, C.M.W.V.; Kim, J.; Lusis, A.J.; Eriksson, P.; Tangirala, R.K.J.S.R. Elevated adiponectin levels suppress perivascular and aortic inflammation and prevent angii-induced advanced abdominal aortic aneurysms. Sci. Rep., 2016, (6), 31414.
[33]
Yun, H.; Xi, F.W.; Zhi, Q.L.; Yin, C.J.; Lian, S.Z.J.B.J.M.B.R. Adiponectin is protective against endoplasmic reticulum stress-induced apoptosis of endothelial cells in sepsis. Braz. J. Med. Biol. Res., 2018, 51(12), e7747.
[35]
Wang, Y.; Liang, B.; Lau, W. B.; Du, Y.; Guo, R.; Yan, Z.; Gan, L.; Yan, W.; Zhao, J.; Gao, E.J.A. Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling. Autophagy, 2017, 13(11), 1855-1869.
[36]
Li, J. M.; Lu, W.; Ye, J.; Han, Y.; Wang, L. S. Association between expression of AMPK pathway and adiponectin, leptin, and vascular endothelial function in rats with coronary heart disease. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 905-914.
[40]
Ying, Z.; Yuan, H.; Bu, P.; Shen, Y. H.; Liu, T.; Song, S.; Hou, X. J. B.; Communications, B. R. Recombinant leptin attenuates abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun., 2018, 503, 1450-1456.
[41]
Yu, W.; Ait-Oufella, H.; Herbin, O.; Bonnin, P.; Ramkhelawon, B.; Taleb, S.; Jin, H.; Offenstadt, G.; Combadière, C.; Investigation, L. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice. J. Clin. Invest., 2010, 120(2), 422-32.
[42]
Szabo, S.J.; Kim, S.T.; Costa, G.L.; Zhang, X.; Fathman, C.G.; Glimcher, L.H. A novel transcription factor, T-bet, directs th1 lineage commitment. Cell, 2015, 100(6), 655-669.
[46]
Zhou, H.; Zhang, Z.; Qian, G.; Zhou, J. J. F.; Pharmacology, C. Omentinattenuates adipose tissue inflammation via restoration of TXNIP/NLRP3 signaling in high-fat diet induced obese mice. Fundam. Clin. Pharmacol., 2020, 34(6), 721-735.
[47]
Wang, Y.; Sun, M.; Wang, Z.; Li, X.; Zhu, Y.; Li, Y.J. Omentin-1 ameliorates the attachment of the leukocyte THP-1 cells to HUVECs by targeting the transcriptional factor KLF2. Biochem. Biophys. Res. Commun., 2018, 498(1), 152-156.
[48]
Fang, L.; Koji, O.; Naoya, O.; Hayato, O.; Mizuho, H.I.; Hiroshi, K.; Bando, Y.K.; Rei, S.; Yuuki, S.; Katsuhiro, K.J.C.R. Omentin attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout mice. Cardiovasc. Res., 2021, 118(6), 1597-1610.
[52]
Jiang, Y. K.; Deng, H. Y.; Qiao, Z. Y.; Gong, F. X. J. A. o. P. Biochemistry, Visfatin level and gestational diabetes mellitus: A systematic review and meta-analysis. 2021, (5), 468-478.
[58]
Kengo, S.; Remina, S.; Maho, Y.; Tomoyuki, Y.; Koichiro, S.; Taisuke, O.; Yusaku, M.; Taka-Aki, M.; Hatsue, I.U.; Tsutomu, H.J. Anti-atherogenic effects of vaspin on human aortic smooth muscle cell/macrophage responses and hyperlipidemic mouse plaque phenotype. Int J Mol Sci., 2018, 19(6), 1732.
[60]
Liu, S.; Dong, Y.; Wang, T.; Zhao, S.; Yang, K.; Chen, X.; Zheng, C. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA.hy926 cells. Diabetes Res. Clin. Pract., 2014, 103(3), 482-488.
[61]
Xiao, J.; Xiao, Z.-J.; Liu, Z.-G.; Gong, H.-Y.; Yuan, Q.; Wang, S.; Li, Y.-J..; Jiang, D.-J. Involvement of dimethylarginine dimethylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells. Diabetes Metab. Res. Rev., 2009, 25(3), 242-9.
[62]
Watson, A.; Nong, Z.; Yin, H.; O'Neil, C.; Fox, S.; Balint, B.; Guo, L.; Leo, O.; Chu, M.W.A.; Gros, R.J.; Pickering, G. Nicotinamide phosphoribosyltransferase in smooth muscle cells maintains genome integrity, resists aortic medial degeneration, and is suppressed in human thoracic aortic aneurysm disease. Circ Res., 2017, 120(12), 1889-1902.
[63]
Xu, W.; Chao, Y.; Liang, M.; Huang, K.; Wang, C. CTRP13 mitigates abdominal aortic aneurysm formation via NAMPT1. Mol. Ther., 2021, 29(1), 324-337.
[64]
Nóbrega, N.; Araújo, N.F.; Reis, D.; Facine, L.M.; Miranda, C.A.S.; Mota, G.C.; Aires, R.D.; Capettini, L.; Cruz, J.D.S.; Bonaventura, D. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation. Nitric Oxide, 2019, 84, 50-59.
[65]
Bussey, C.E.; Withers, S.B.; Saxton, S.N.; Mbchb, N.B.; Bsc, R.G.A.; Heagerty, A.M. β 3 -adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived nitric oxide and vascular relaxation in small arteries running title: vasodilator pvat function in small arteries. Br. J. Pharmacol., 2018, 175(18), 3685-3698.
[66]
Liao, J.; Yin, H.; Huang, J.; Hu, M. J. C.; Pharmacology, E. Physiology, Dysfunction of perivascular adipose tissue in mesenteric artery is restored by aerobic exercise in high-fat diet induced obesity. Clin. Exp. Pharmacol. Physiol., 2020, 48(5), 697-703.
[70]
Fang, X. Z.; Zhou, T.; Xu, J. Q.; Wang, Y. X.; Shang, Y. J. C. Bioscience, Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell. Biosci., 2021, 11(1), 13.
[72]
Zeng, W.-Z.; Marshall, K.L.; Min, S.; Daou, I.; Chapleau, M.W.; Abboud, F.M.; Liberles, S.D.; Patapoutian, A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science, 2018, 362(6413), 464-467..
[74]
Yiannikouris, F.; Karounos, M.; Charnigo, R.; English, V.L.; Rateri, D.L.; Daugherty, A.; Lisa, A. CassisAdipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2012, 302(2), R244-51.
[77]
Mullick, A.E.; Yeh, S.T.; Graham, M.J.; Engelhardt, J.A.; Crooke, R.M.J.H. Blood pressure lowering and safety improvements with liver angiotensinogen inhibition in models of hypertension and kidney injury. Hypertension, 2017, 70(3), 566-576.
[78]
Uijl, E.; Colafella, K.; Sun, Y.; Ren, L.; Danser, A.J.H. Strong and sustained antihypertensive effect of small interfering RNA targeting liver angiotensinogen. Hypertension, 2019, 73(6), 1249-1257.
[79]
Chang, L.; Xiong, W.; Zhao, X.; Fan, Y.; Guo, Y.; Garcia-Barrio, M.; Zhang, J.; Jiang, Z.; Lin, J. D.; Chen, Y. E. J. C. Bmal1 in perivascular adipose tissue regulates resting phase blood pressure through transcriptional regulation of angiotensinogen. Circulation., 2018, 138(1), 67-79.
[80]
Folkesson, M.; Vorkapic, E.; Gulbins, E.; Japtok, L.; Kleuser, B.; Welander, M.; Länne, T.; Wågsäter, D. Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. J. Vasc. Surg., 2017, 65(4), 1171-1179.
[81]
Jpmab, C.; Dnd, E.; Nba, B.; Gc, E.; Sm, E.; Grs, B.; Lm, E.; Jha, B.; Dm, F.; Ece, B. J. E. J. o. V.; Surgery, E. Jorn P.M., Marina D.-N., Natalija B., Gloria C., Claudia S.-M., Gawin R. S., Adelino L.-M., Jennifer H., Dimitra M., Etto C. E., Ron B., Jan D. B., Kak K. Y. Inflammatory gene expression of human perivascular adipose tissue in abdominal aortic aneurysms. ScienceDirect., 2021, 61(6), 1008-1016.
[82]
Rossi, C.; Santini, E.; Chiarugi, M.; Salvati, A.; Comassi, M.; Vitolo, E.; Madec, S.; Solini, A. The complex P2X7receptor/inflammasome in perivascular fat tissue of heavy smokers. Eur. J. Clin. Invest., 2014, 44(3), 295-302.
[83]
Wang, C.N.; Yang, G.H.; Wang, Z.Q.; Liu, C.W.; Li, T.J.; Lai, Z.C.; Miao, S.Y.; Wang, L.F.; Liu, B.J. Role of perivascular adipose tissue in nicotineinduced endothelial cell inflammatory responses. Mol. Med. Rep., 2016, 14(6), 5713-5718.
[85]
Saxton, S.N.; Withers, S.B.; Heagerty, A.M.J.C.D. Therapy. emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovasc. Drugs Ther., 2019, 33(2), 245-259.
[86]
Trayhurn, P.; Wang, B.; Wood, S.I. Hypoxia in adipose tissue: A basis for the dysregulation of tissue function in obesity? Br. J. Nutr., 2014, 100(2), 227-35.
[87]
Greenstein, A.S.; Khavandi, K.; Withers, S.B.; Sonoyama, K.; Clancy, O.; Jeziorska, M.; Laing, I.; Yates, A.P.; Pemberton, P.W.; Malik, R.A.J.C. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation, 2009, 119(12), 1661-1670.
[89]
Li, H.; Wang, Y. P.; Zhang, L. N.; Tian, G. J. E. B. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats. Exp. Biol. Med. (Maywood)., 2014, 239(8), 954-965.