Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Pharmacokinetics and Tissue Distribution of Nasal Spray of a Novel Muscarinic Receptor Blocker, 101BHG-D01, in Dogs and Rats

Author(s): Hao Wei, Lei Wu, Yongliang Jia, Jian Shen, Yanyou Li, Peng Sun, Qiangmin Xie, Xiaoping Chen, Yicheng Xie*, Yingshuo Wang* and Ziming Zhao*

Volume 23, Issue 13, 2022

Published on: 21 December, 2022

Page: [1080 - 1088] Pages: 9

DOI: 10.2174/1389200224666221201123254

Price: $65

Abstract

Background: 101BHG-D01 is a novel selective anti-muscarinic (M) 3 receptor-blocking drug. 101BHGD01 nasal spray is intended to be used to relieve sneezing and runny nose symptoms caused by allergic rhinitis.

Methods: In this study, we examined the plasma pharmacokinetics, tissue distribution, and major excretion mode of 101BHG-D01 in Beagle dogs and rats following nasal spray and intranasal administration, respectively, using HPLCMS/ MS.

Results/Discussion: We found that the pharmacokinetics of 101BHG-D01 was linear in dogs. 101BHG-D01 entered the bloodstream rapidly following nasal spray. Its plasma half-life was approximately 6 h and resided at least 24 h in the body. Moreover, 101BHG-D01 retained a significant amount in the nasal cavity. Finally, we found that 101BHGD01 was eliminated mainly in the form of stools in rats.

Conclusion: In conclusion, we provided pertinent reference information regarding the design and optimization of drug delivery regimens for clinical trials.

« Previous
Graphical Abstract

[1]
Waser, P.G. The cholinergic receptor. J. Pharm. Pharmacol., 2011, 12(1), 577-594.
[http://dx.doi.org/10.1111/j.2042-7158.1960.tb12714.x] [PMID: 13783279]
[2]
Nishtala, P.S.; Salahudeen, M.S.; Hilmer, S.N. Anticholinergics: theoretical and clinical overview. Expert Opin. Drug Saf., 2016, 15(6), 753-768.
[http://dx.doi.org/10.1517/14740338.2016.1165664] [PMID: 26966981]
[3]
Panos, R. Efficacy and safety of eco-friendly inhalers: focus on combination ipratropium bromide and albuterol in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2013, 8, 221-230.
[http://dx.doi.org/10.2147/COPD.S31246] [PMID: 23658481]
[4]
Barnes, P.J. Muscarinic receptor subtypes: implications for therapy. Agents Actions Suppl., 1993, 43, 243-252.
[PMID: 8368167]
[5]
Lebois, E.P.; Thorn, C.; Edgerton, J.R.; Popiolek, M.; Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology, 2018, 136(Pt C), 362-373.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.018] [PMID: 29138080]
[6]
Calzetta, L.; Coppola, A.; Ritondo, B.L.; Matino, M.; Chetta, A.; Rogliani, P. The impact of muscarinic receptor antagonists on airway inflammation: A systematic review. Int. J. Chron. Obstruct. Pulmon. Dis., 2021, 16, 257-279.
[http://dx.doi.org/10.2147/COPD.S285867] [PMID: 33603353]
[7]
Tanahashi, Y.; Komori, S.; Matsuyama, H.; Kitazawa, T.; Unno, T. Functions of muscarinic receptor subtypes in gastrointestinal smooth muscle: A review of studies with receptor-knockout mice. Int. J. Mol. Sci., 2021, 22(2), 926.
[http://dx.doi.org/10.3390/ijms22020926] [PMID: 33477687]
[8]
Soukup, O.; Winder, M.; Killi, U.K.; Wsol, V.; Jun, D.; Kuca, K.; Tobin, G. Acetylcholinesterase inhibitors and drugs acting on muscarinic receptors- potential crosstalk of cholinergic mechanisms during pharmacological treatment. Curr. Neuropharmacol., 2017, 15(4), 637-653.
[http://dx.doi.org/10.2174/1570159X14666160607212615] [PMID: 27281175]
[9]
Schledwitz, A.; Sundel, M.H.; Alizadeh, M.; Hu, S.; Xie, G.; Raufman, J.P. Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int. J. Mol. Sci., 2021, 22(23), 13153.
[http://dx.doi.org/10.3390/ijms222313153] [PMID: 34884958]
[10]
Saternos, H.C.; Almarghalani, D.A.; Gibson, H.M.; Meqdad, M.A.; Antypas, R.B.; Lingireddy, A.; AbouAlaiwi, W.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomics, 2018, 50(1), 1-9.
[http://dx.doi.org/10.1152/physiolgenomics.00062.2017] [PMID: 29093194]
[11]
Roth, M. Airway and lung remodelling in chronic pulmonary obstructive disease: a role for muscarinic receptor antagonists? Drugs, 2015, 75(1), 1-8.
[http://dx.doi.org/10.1007/s40265-014-0319-0] [PMID: 25414120]
[12]
Leusch, A.; Eichhorn, B.; Müller, G.; Rominger, K.L. Pharmacokinetics and tissue distribution of the anticholinergics tiotropium and ipratropium in the rat and dog. Biopharm. Drug Dispos., 2001, 22(5), 199-212.
[http://dx.doi.org/10.1002/bdd.280] [PMID: 11745922]
[13]
Wood, C.; Fireman, P.; Grossman, J.; Wecker, M.; MacGregor, T. Product characteristics and pharmacokinetics of intranasal ipratropium bromide. J. Allergy Clin. Immunol., 1995, 95(5), 1111-1116.
[http://dx.doi.org/10.1016/S0091-6749(95)70214-8] [PMID: 7751527]
[14]
Laffleur, F.; Bauer, B. Progress in nasal drug delivery systems. Int. J. Pharm., 2021, 607, 120994.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120994] [PMID: 34390810]
[15]
Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; Toppila-Salmi, S. Allergic rhinitis. Nat. Rev. Dis. Primers, 2020, 6(1), 95.
[http://dx.doi.org/10.1038/s41572-020-00227-0] [PMID: 33273461]
[16]
Braido, F.; Arcadipane, F.; Marugo, F.; Hayashi, M.; Pawankar, R. Allergic rhinitis. Curr. Opin. Allergy Clin. Immunol., 2014, 14(2), 168-176.
[http://dx.doi.org/10.1097/ACI.0000000000000043] [PMID: 24535140]
[17]
Li, Y.; Fan, X.; Li, W.; Yang, P.; Zhang, H.; Tang, D.; Yin, X.; Sun, J.; Zheng, A. Metoclopramide nasal spray in vitro evaluation and in vivo pharmacokinetic studies in dogs. Pharm. Dev. Technol., 2018, 23(3), 275-281.
[http://dx.doi.org/10.1080/10837450.2017.1316734] [PMID: 28379057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy