Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Advancement in Synthesis and Bioactivities of 1,3,4-Oxadiazole

Author(s): Tarun Chaudhary* and Prabhat Kumar Upadhyay

Volume 20, Issue 6, 2023

Published on: 16 February, 2023

Page: [663 - 677] Pages: 15

DOI: 10.2174/1570179420666221129153933

Price: $65

Abstract

Derivatives of 1,3,4-oxadiazole are effective in the treatment and cure of a wide range of diseases in medical chemistry, while industrial development has shown that they can be utilised as corrosion inhibitors and light-emitting diodes. The researchers discovered several promising synthetic strategies that created 1,3,4-oxadiazoles in extraordinarily high yields while using environmentally friendly methods. These compounds can potentially be used in a wide range of lifechanging applications. Stable isomeric oxadiazole forms of pleconaril, raltegravir, butalamine, fasiplon, oxolamine, and several other drugs are among the numerous potent and effective pharmaceuticals that are now on the market. Fasiplon, butalamine, raltegravir, and pleconaril treat HIV/AIDS patients. This article has attempted to bring attention to the chemistry and pharmacology of oxadiazole and its derivatives. Oxadiazole derivatives have been used extensively as prospective therapeutic agents in clinical research, and this has become standard practice. The use of biological and in-silico models has enabled scientists to identify more synthetic analogues of cancer prevention, antifungal, and anti-HIV medications. This article provides recent information regarding procedures for synthesizing 1,3,4-oxadiazoles and their biological actions on the body.

Graphical Abstract

[1]
Nayak, S.; Gaonkar, S.L.; Musad, E.A.; Dawsar, A.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc., 2021, 25(8), 101284.
[http://dx.doi.org/10.1016/j.jscs.2021.101284]
[2]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C.; Jena, J.; Mahapatra, M.K.; Borah, P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 2021, 26(4), 1163.
[http://dx.doi.org/10.3390/molecules26041163] [PMID: 33671751]
[3]
Wang, Y.; Mu, S.; Li, X.; Song, Q. [4+1] cyclisation of benzohydrazide and ClCF2COONa towards 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-d5. Chin. Chem. Lett., 2021, 33(3), 1511-1514.
[4]
Ajani, O.O.; Iyaye, K.T. Recent advances on oxadiazole motifs: Synthesis, reactions and biological activities. Mediterr. J. Chem., 2020, 10(5), 418.
[http://dx.doi.org/10.13171/mjc10502005121200ooa]
[5]
Dhonnar, S.L.; More, R.A.; Adole, V.A.; Jagdale, B.S.; Sadgir, N.V.; Chobe, S.S. Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. J. Mol. Struct., 2022, 1253, 132216.
[http://dx.doi.org/10.1016/j.molstruc.2021.132216]
[6]
Ratti, R. Industrial applications of green chemistry: Status, challenges and prospects. SN Appl. Sci., 2020, 2(2), 263.
[http://dx.doi.org/10.1007/s42452-020-2019-6]
[7]
Welton, T. Solvents and sustainable chemistry. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2015, 471(2183), 20150502.
[http://dx.doi.org/10.1098/rspa.2015.0502] [PMID: 26730217]
[8]
Mishra, M.; Sharma, M.; Dubey, R.; Kumari, P.; Ranjan, V.; Pandey, J. Green synthesis interventions of pharmaceutical industries for sustainable development. Curr. Res. Green Sustain. Chem., 2021, 4, 100174.
[http://dx.doi.org/10.1016/j.crgsc.2021.100174]
[9]
Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules, 2015, 20(6), 10928-10946.
[http://dx.doi.org/10.3390/molecules200610928] [PMID: 26076112]
[10]
Priecel, P.; Lopez-Sanchez, J.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem.& Eng., 2019, 7(1), 3-21.
[http://dx.doi.org/10.1021/acssuschemeng.8b03286]
[11]
Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Chapter 1:Microwave-Assisted Green Organic Synthesis. In: Alternative Energy Sources for Green Chemistry; Royal Society of Chemistry, 2016; pp. 1-33.
[12]
Chaudhary, T.; Upadhyay, P.K. A review on novel synthesis approaches and biological activities of 1,2,4- oxadiazole and 1,3,4-oxadiazole tailored compounds. Curr. Org. Synth., 2022, 19(6), 731-747.
[http://dx.doi.org/10.2174/1570179419666220216122238] [PMID: 35170412]
[13]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[14]
Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.P.; Rakesh, K.P. Anti-tuberculosis activity and its Structure-Activity Relation-ship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem., 2021, 209, 112886.
[http://dx.doi.org/10.1016/j.ejmech.2020.112886] [PMID: 33032083]
[15]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-Cancer Activity of Derivatives of 1,3,4-Oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 34209520]
[16]
Arshad, M. 1, 3, 4-oxadiazole nucleus with versatile pharmacological applications: A Review. Int. J. Pharm. Sci. Res., 2014, 5(4), 1124-1137.
[17]
Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-Alzheimer, and antimicrobial agents: Structure, sta-bility and bioactivity comparison with pallado-hydrazides. Biomed. Pharmacother., 2022, 146, 112561.
[http://dx.doi.org/10.1016/j.biopha.2021.112561] [PMID: 34965504]
[18]
Caneschi, W.; Enes, K.B.; Carvalho de Mendonça, C.; de Souza Fernandes, F.; Miguel, F.B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R.R.; Duarte, L.M.; Leal de Oliveira, M.A.; Dos Santos, H.F.; Paz Lopes, M.T.; Dittz, D.; Silva, H.; Costa Couri, M.R. Synthesis and anti-cancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2019, 165, 18-30.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.001] [PMID: 30654237]
[19]
a) Ladani, G.G.; Patel, M.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: Synthesis, characterization and biological eval-uation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J. Chem., 2015, 39(12), 9848-9857.
[http://dx.doi.org/10.1039/C5NJ02566D];
b) Emmerling, F.; Orgzall, I.; Reck, G.; Schulz, B.; Stockhause, S. Structures of substituted di-aryl-1, 3,4-oxadiazole derivatives: 2,5-bis(pyridyl)- and 2,5-bis(aminophenyl)-substitution. J. Mol. Struct., 2006 Dec 1;800, 74-84.
[20]
Yang, R.; Dong, Z.; Liu, Y.; Liu, Y.; Li, H.; Zhang, G.; Ye, Z. Construction of new framework of 1,3,4-oxadiazole energetic compounds using 1,1-dichloro-2-nitroethylene: design of high-performance molten-cast explosives. Chem. Eng. J., 2022, 429, 132503.
[http://dx.doi.org/10.1016/j.cej.2021.132503]
[21]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[22]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[23]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[24]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool Box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[25]
Shukla, C.; Srivastava, S. Biologically active oxadiazole. JDDT, 2015, 5(6), 8-3.
[26]
Binoy, N.; Nargund, S.L.; Nargund, S.L.; Nargund, R. Synthesis of fluorinated heterocyclic compounds for pharmacological screening. J. Ultra Chem., 2021, 17(3), 16-24.
[http://dx.doi.org/10.22147/juc/170301]
[27]
Maria, A.K. Aromaticities of five-membered heterocycles through dimethyldihydropyrenes probe by magnetic and geometric criteria. J. Chem., 2015, 456961.
[28]
Kapoor, G.; Bhutani, R.; Pathak, D.P.; Chauhan, G.; Kant, R.; Grover, P. Current advancement in the oxadiazole-based scaffolds as anti-cancer agents. Polycycl. Aromat. Compd., 2021, 1-33.
[29]
Abou-Seri, S.M. Synthesis and biological evaluation of novel 2,4′-bis substituted diphenylamines as anticancer agents and potential epi-dermal growth factor receptor tyrosine kinase inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4113-4121.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.072] [PMID: 20580136]
[30]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, Synthesis, Docking and QSAR Study of Sub-stituted Benzimidazole Linked Oxadiazole as Cytotoxic Agents, EGFR and ErbB2 Receptor Inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[31]
Sun, J.; Ren, S.Z.; Lu, X.Y.; Li, J.J.; Shen, F.Q.; Xu, C.; Zhu, H.L. Discovery of a series of 1,3,4-oxadiazole-2(3 H)-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg. Med. Chem., 2017, 25(9), 2593-2600.
[http://dx.doi.org/10.1016/j.bmc.2017.03.038] [PMID: 28363444]
[32]
a) Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265.
[http://dx.doi.org/10.1021/jm500303u] [PMID: 24972008];
b) Matore, B.W.; Banjare, P.; Guria, T.; Roy, P.P.; Singh, J. Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery. Eur J Med Chem Reports [Internet], 2022, 5, 100058.
[33]
Mohan, C.D.; Anilkumar, N.C.; Rangappa, S.; Shanmugam, M.K.; Mishra, S.; Chinnathambi, A.; Alharbi, S.A.; Bhattacharjee, A.; Sethi, G.; Kumar, A.P. Basappa; Rangappa, K.S. Novel 1,3,4-oxadiazole induces anticancer activity by targeting NF-κB in hepatocellular car-cinoma cells. Front. Oncol., 2018, 8, 42.
[http://dx.doi.org/10.3389/fonc.2018.00042] [PMID: 29616186]
[34]
Zhang, F.; Wang, X.L.; Shi, J.; Wang, S.F.; Yin, Y.; Yang, Y.S.; Zhang, W.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of N-benzylidene-2-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide derivatives as potential anticancer agents. Bioorg. Med. Chem., 2014, 22(1), 468-477.
[http://dx.doi.org/10.1016/j.bmc.2013.11.004] [PMID: 24286761]
[35]
Du, Q.R.; Li, D.D.; Pi, Y.Z.; Li, J.R.; Sun, J.; Fang, F.; Zhong, W.Q.; Gong, H.B.; Zhu, H.L. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents. Bioorg. Med. Chem., 2013, 21(8), 2286-2297.
[http://dx.doi.org/10.1016/j.bmc.2013.02.008] [PMID: 23490159]
[36]
Shoaib, M.; Shah, I.; Ali, N.; Adhikari, A.; Tahir, M.N.; Shah, S.W.A.; Ishtiaq, S.; Khan, J.; Khan, S.; Umer, M.N. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complement. Altern. Med., 2017, 17(1), 27.
[http://dx.doi.org/10.1186/s12906-016-1517-y] [PMID: 28061778]
[37]
Khalilullah, H.; Khan, S.; Nomani, M.S.; Ahmed, B. Synthesis, characterization and antimicrobial activity of benzodioxane ring containing 1,3,4-oxadiazole derivatives. Arab. J. Chem., 2016, 9, S1029-S1035.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.009]
[38]
Basavanna, V.; Chandramouli, M.; Kempaiah, C.; Bhadraiah, U.K. Chandra; Lingegowda, N.S.; Doddamani, S.; Ningaiah, S. A new series of 1,3,4-oxadiazole linked quinolinyl-pyrazole/isoxazole derivatives: Synthesis and biological activity evaluation. Russ. J. Gen. Chem., 2021, 91(11), 2257-2266.
[http://dx.doi.org/10.1134/S1070363221110128] [PMID: 34934304]
[39]
Bala, S.; Kamboj, S.; Kajal, A.; Saini, V.; Prasad, D.N. 1,3,4-oxadiazole derivatives: Synthesis, characterisation, antimicrobial potential, and computational studies. BioMed Res. Int., 2014, 2014, 172791.
[40]
Yu, G.; Chen, S.; Guo, S.; Xu, B.; Wu, J. Trifluoromethylpyridine 1,3,4-oxadiazole derivatives: Emerging scaffolds as bacterial agents. ACS Omega, 2021, 6(46), 31093-31098.
[http://dx.doi.org/10.1021/acsomega.1c04472] [PMID: 34841151]
[41]
Siwach, A.; Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem., 2020, 14(1), 70.
[http://dx.doi.org/10.1186/s13065-020-00721-2] [PMID: 33372629]
[42]
Ahrabi, N.Z.; Souldozi, A.; Ahrabi, Y.S. Synthesis of new three-component derivatives of 1, 3, 4-oxadiazole and evaluation of their in vitro antibacterial and antifungal properties TT. Med. Lab. J., 2021, 15, 13-18.
[43]
Joshi, B.; Panda, S.K.; Jouneghani, R.S.; Liu, M.; Parajuli, N.; Leyssen, P. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of nepal selected based on ethnobotanical evidence. Evid. Based Complement. Alternat. Med., 2020, 2020, 1043471.
[44]
Ali, A.; Hasan, P.; Irfan, M.; Uddin, A.; Khan, A.; Saraswat, J.; Maguire, R.; Kavanagh, K.; Patel, R.; Joshi, M.C.; Azam, A.; Mohsin, M.; Haque, Q.M.R.; Abid, M. Development of oxadiazole-sulfonamide-based compounds as potential antibacterial agents. ACS Omega, 2021, 6(42), 27798-27813.
[http://dx.doi.org/10.1021/acsomega.1c03379] [PMID: 34722980]
[45]
Peraman, R.; Varma, R.V.; Reddy, Y.P. Re-engineering nalidixic acid’s chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens. Bioorg. Med. Chem. Lett., 2015, 25(19), 4314-4319.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.071] [PMID: 26277407]
[46]
Navin, P.; Sarvil, P.; Amit, P.; Divyesh, P.; Dhansukh, R.; Moo-Puc, R.; Rivera, G. Synthesis and biological evaluation of newer 1,3,4-oxadiazoles incorporated with benzothiazepine and benzodiazepine moieties. Z. Naturforsch. C J. Biosci., 2017, 72(3-4), 133-146.
[http://dx.doi.org/10.1515/znc-2016-0129] [PMID: 28182579]
[47]
Desai, N.C.; Somani, H.; Trivedi, A.; Bhatt, K.; Nawale, L.; Khedkar, V.M.; Jha, P.C.; Sarkar, D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1776-1783.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[48]
Gavarkar, P.S.; Somani, R.R. Synthesis of novel azole heterocycles with their antitubercular and antifungal evaluation. Int. J. Chem. Sci., 2015, 13, 432-440.
[49]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[http://dx.doi.org/10.1016/j.bmc.2015.06.053] [PMID: 26164624]
[50]
Nimbalkar, U.; Tupe, S.; Seijas Vazquez, J.; Khan, F.; Sangshetti, J.; Nikalje, A. Ultrasound- and molecular sieves-assisted synthesis, molecular docking and antifungal evaluation of 5-(4-(Benzyloxy)-substituted phenyl)-3-((phenylamino)methyl)-1,3,4-oxadiazole-2(3H)-thiones. Molecules, 2016, 21(5), 484.
[http://dx.doi.org/10.3390/molecules21050484] [PMID: 27171073]
[51]
Thakkar, S.S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(15), 4064-4075.
[http://dx.doi.org/10.1016/j.bmc.2017.05.054] [PMID: 28634040]
[52]
Taha, M.; Ismail, N.H.; Ali, M.; Rashid, U.; Imran, S.; Uddin, N.; Khan, K.M. Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorg. Chem., 2017, 71, 192-200.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.005] [PMID: 28228228]
[53]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[54]
Tawfik, S.S.; Farahat, A.A.; El-Sayed, M.; Tantawy, A.S.; Bagato, O.; Ali, M.A. Synthesis and anti-influenza activity of novel thiadiazole, oxadiazole and triazole based scaffolds. Lett. Drug Des. Discov., 2018, 15, 363-374.
[http://dx.doi.org/10.2174/1570180814666170512122832]
[55]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[http://dx.doi.org/10.2174/138955711797655407] [PMID: 22353222]
[56]
Wu, W.; Chen, Q.; Tai, A.; Jiang, G.; Ouyang, G. Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(10), 2243-2246.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.069] [PMID: 25900217]
[57]
Peng, F.; Liu, T.; Wang, Q.; Liu, F.; Cao, X.; Yang, J.; Liu, L.; Xie, C.; Xue, W. Antibacterial and antiviral activities of 1,3,4-oxadiazole thioether 4 H -chromen-4-one derivatives. J. Agric. Food Chem., 2021, 69(37), 11085-11094.
[http://dx.doi.org/10.1021/acs.jafc.1c03755] [PMID: 34516137]
[58]
Farahat, A.; Tawfik, S.; Liu, M. Antiviral activity of thiadiazoles, oxadiazoles, triazoles and thiazoles. ARKIVOC, 2020, 1, 180-218.
[59]
El-Sayed, W.A.; El-Essawy, F.A.; Ali, O.M.; Nasr, B.S.; Abdalla, M.M.; Abdel-Rahman, A.A.H. Anti-HIV activity of new substituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues. Z. Naturforsch. C J. Biosci., 2009, 64(11-12), 773-778.
[http://dx.doi.org/10.1515/znc-2009-11-1203] [PMID: 20158144]
[60]
Somani, R.R.; Agrawal, A.G.; Kalantri, P.P.; Gavarkar, P.S.; Clercq, E.D. Investigation of 1,3,4-oxadiazole scaffold as potentially active compounds. Int. J. Drug Des. Dis., 2011, 2, 353-360.
[61]
Gan, X.; Hu, D.; Li, P.; Wu, J.; Chen, X.; Xue, W.; Song, B. Design, synthesis, antiviral activity and three-dimensional quantitative struc-ture-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag. Sci., 2016, 72(3), 534-543.
[http://dx.doi.org/10.1002/ps.4018] [PMID: 25847602]
[62]
Mihailović, N.; Marković, V.; Matić, I.Z.; Stanisavljević, N.S.; Jovanović, Ž.S.; Trifunović, S.; Joksović, L. Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids. RSC Advances, 2017, 7(14), 8550-8560.
[http://dx.doi.org/10.1039/C6RA28787E]
[63]
Ma, L.; Xiao, Y.; Li, C.; Xie, Z.L.; Li, D.D.; Wang, Y.T.; Ma, H.T.; Zhu, H.L.; Wang, M.H.; Ye, Y.H. Synthesis and antioxidant activity of novel Mannich base of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan. Bioorg. Med. Chem., 2013, 21(21), 6763-6770.
[http://dx.doi.org/10.1016/j.bmc.2013.08.002] [PMID: 23993673]
[64]
Shakir, R.; Ariffin, A.; Abdulla, M. Synthesis of new 2,5-di-substituted 1,3,4-oxadiazoles bearing 2,6-di-tert-butylphenol moieties and evaluation of their antioxidant activity. Molecules, 2014, 19(3), 3436-3449.
[http://dx.doi.org/10.3390/molecules19033436] [PMID: 24658568]
[65]
Zabiulla, M.J.; Nagesh Khadri, M.J.; Bushra Begum, A.; Sunil, M.K.; Khanum, S.A. Synthesis, docking and biological evaluation of thia-diazole and oxadiazole derivatives as antimicrobial and antioxidant agents. Results. Chem, 2020, 2, 100045.
[http://dx.doi.org/10.1016/j.rechem.2020.100045]
[66]
Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Venkata Rao, C. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 58, 340-345.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.007] [PMID: 23149297]
[67]
Malhotra, M.; Rawal, R.K.; Malhotra, D.; Dhingra, R.; Deep, A.; Sharma, P.C. Synthesis, characterization and pharmacological evaluation of (Z)-2-(5-(biphenyl-4-yl)-3-(1-(imino)ethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenol derivatives as potent antimicrobial and antioxi-dant agents. Arab. J. Chem., 2017, 10(10), S1022-S1031.
[http://dx.doi.org/10.1016/j.arabjc.2013.01.005]
[68]
Rahul, R.; Jat, R.K.; Saravanan, J. Synthesis and in vitro antioxidant activity of novel 1,3,4-oxadiazole-2-thione. J. Innov. Pharm. Biol. Sci., 2016, 3, 114-122.
[69]
Lelyukh, M. Synthesis and antioxidant properties of novel 2-(2,4-Thia/Oxadiazole Moieties). Biointerface Res. Appl. Chem., 2022, 12(5), 6710-6722.
[70]
Ambhore, A.N. An Efficient Green Synthesis of Diphenyl Pyrazol-4-Yl-Thiopyridin-4-Yl-1,3,4-Oxadiazole Derivatives and Evaluation of Their Antimicrobial and Antioxidant Activity. In: Modern Green Chemistry and Heterocyclic Compounds, 1st ed; Apple Academic Press, 2020.
[http://dx.doi.org/10.1201/9780367276942-3]
[71]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[72]
Goldberg, K.; Groombridge, S.; Hudson, J.; Leach, A.G.; MacFaul, P.A.; Pickup, A.; Poultney, R.; Scott, J.S.; Svensson, P.H.; Sweeney, J. Oxadiazole isomers: All bioisosteres are not created equal. MedChemComm, 2012, 3(5), 600-604.
[http://dx.doi.org/10.1039/c2md20054f]
[73]
Khan, I.; Ibrar, A.; Abbas, N. Oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects. Arch. Pharm., 2014, 347(1), 1-20.
[http://dx.doi.org/10.1002/ardp.201300231] [PMID: 24265208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy