Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Current Research on Spray-Dried Chitosan Nanocomposite Microparticles for Pulmonary Drug Delivery

Author(s): Saba Albetawi*

Volume 11, Issue 2, 2023

Published on: 27 December, 2022

Page: [127 - 137] Pages: 11

DOI: 10.2174/2211738511666221128093822

Price: $65

Abstract

Using the pulmonary route for systemic and local drug delivery is an attractive method of drug administration because it has a high alveolar surface area, abundant blood flow, a thin airblood barrier, and low metabolic activity. In recent years, the evolution of inhalable chitosan nanocomposite microparticles formulations enabled researchers to develop new pulmonary drug delivery platforms that combine the advantages of microparticles and nanoparticles using a biocompatible, biodegradable polymer with polycationic nature and inherent immunogenicity that enhances cell targeting. Therefore, this review aims to offer an overview of the recent advances in inhalable chitosan nanocomposites microparticles formulated in the previous five years in terms of primary nanoparticles manufacturing methods; namely, ionic crosslinking of chitosan using tripolyphosphate, electrospinning/electrospraying, layer-by-layer deposition, and nanospray drying; final microparticles manufacturing techniques using spray drying, nano spray drying, and supercritical assisted spray drying; in addition to the process optimization of the previously mentioned manufacturing methods. Furthermore, this review highlights using chitosan and its derivatives in primary nanoparticles preparation and as a polysaccharide to distribute the prepared nanoparticles in microparticles. Finally, this review discusses the factors affecting yield, encapsulation efficiency, in vitro aerosolization properties, size, morphological characters, in vitro release, and in vivo evaluation of inhalable chitosan nanocomposite microparticles.

Graphical Abstract

[1]
Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003; 56(6): 588-99.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01892.x] [PMID: 14616418]
[2]
Zhou QT, Tang P, Leung SSY, Chan JGY, Chan HK. Emerging inhalation aerosol devices and strategies: Where are we headed? Adv Drug Deliv Rev 2014; 75: 3-17.
[http://dx.doi.org/10.1016/j.addr.2014.03.006] [PMID: 24732364]
[3]
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85: 83-99.
[http://dx.doi.org/10.1016/j.addr.2014.10.022] [PMID: 25451137]
[4]
Malamatari M, Charisi A, Malamataris S, Kachrimanis K, Nikolakakis I. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes 2020; 8(7): 788.
[http://dx.doi.org/10.3390/pr8070788]
[5]
Dolovich MB, Ahrens RC, Hess DR, et al. Device selection and outcomes of aerosol therapy: Evidence-based guidelines: American college of chest physicians/american college of asthma, allergy, and immunology. Chest 2005; 127(1): 335-71.
[http://dx.doi.org/10.1378/chest.127.1.335] [PMID: 15654001]
[6]
Stegemann S, Kopp S, Borchard G, et al. Developing and advancing dry powder inhalation towards enhanced therapeutics. Eur J Pharm Sci 2013; 48(1-2): 181-94.
[http://dx.doi.org/10.1016/j.ejps.2012.10.021] [PMID: 23142635]
[7]
Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 2008; 60(8): 863-75.
[http://dx.doi.org/10.1016/j.addr.2007.11.006] [PMID: 18308418]
[8]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[9]
Wan KY, Weng J, Wong SN, Kwok PCL, Chow SF, Chow AHL. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Eur J Pharm Biopharm 2020; 149: 238-47.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.010] [PMID: 32112895]
[10]
Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 2014; 10(6): 2643-52.
[http://dx.doi.org/10.1016/j.actbio.2014.01.033] [PMID: 24512977]
[11]
Guan X, Zhang W. Applications of Chitosan in Pulmonary Drug Delivery. In: Role of novel drug delivery vehicles in nanobiomedicine. IntechOpen 2019. [cited 2022 Dec 16].
[http://dx.doi.org/10.5772/intechopen.87932]
[12]
Shanmuganathan R, Edison TNJI. LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int J Biol Macromol 2019; 130: 727-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.060] [PMID: 30771392]
[13]
Kumar Dutta P, Dutta J, Tripathi VS. Chitin and Chitosan: Chemistry, Properties and Applications. J Sci Indus Res 2004; p. 63.
[14]
Huang G, Liu Y, Chen L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv 2017; 24(2): 108-13.
[http://dx.doi.org/10.1080/10717544.2017.1399305] [PMID: 29124981]
[15]
Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 2005; 102(2): 373-81.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.010] [PMID: 15653158]
[16]
Gorzelanny C, Pöppelmann B, Pappelbaum K, Moerschbacher BM, Schneider SW. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials 2010; 31(33): 8556-63.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.100] [PMID: 20797781]
[17]
Rogueda PGA, Traini D. The nanoscale in pulmonary delivery. Part 1: Deposition, fate, toxicology and effects. Expert Opin Drug Deliv 2007; 4(6): 595-606.
[http://dx.doi.org/10.1517/17425247.4.6.595] [PMID: 17970663]
[18]
Semmler-Behnke M, Takenaka S, Fertsch S, et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 2007; 115(5): 728-33.
[http://dx.doi.org/10.1289/ehp.9685] [PMID: 17520060]
[19]
Nemmar A, Hoet PHM, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105(4): 411-4.
[http://dx.doi.org/10.1161/hc0402.104118] [PMID: 11815420]
[20]
Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006; 58(9-10): 1030-60.
[http://dx.doi.org/10.1016/j.addr.2006.07.012] [PMID: 17010473]
[21]
Yang W, Peters JI, Williams RO III. Inhaled nanoparticles-A current review. Int J Pharm 2008; 356(1-2): 239-47.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011] [PMID: 18358652]
[22]
Al-Hallak MHDK, Sarfraz MK, Azarmi S, Roa WH, Finlay WH, Löbenberg R. Pulmonary delivery of inhalable nanoparticles: Dry powder inhalers. Ther Deliv 2011; 2(10): 1313-24.
[http://dx.doi.org/10.4155/tde.11.100] [PMID: 22826885]
[23]
Abdelaziz HM, Gaber M, Abd-Elwakil MM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018; 269: 374-92.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[24]
Walters RH, Bhatnagar B, Tchessalov S, Izutsu KI, Tsumoto K, Ohtake S. Next generation drying technologies for pharmaceutical applications. J Pharm Sci 2014; 103(9): 2673-95.
[http://dx.doi.org/10.1002/jps.23998] [PMID: 24916125]
[25]
Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv Powder Technol 2011; 22(1): 1-19.
[http://dx.doi.org/10.1016/j.apt.2010.09.011]
[26]
Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008; 25(5): 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[27]
Tawfeek HM, Evans AR, Iftikhar A, et al. Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers. Int J Pharm 2013; 441(1-2): 611-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.036] [PMID: 23124106]
[28]
Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design – Spray drying of insulin intended for inhalation. Eur J Pharm Biopharm 2008; 70(3): 828-38.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.015] [PMID: 18755270]
[29]
Arpagaus C. A novel laboratory-scale spray dryer to produce nanoparticles. Dry Technol 2012; 30(10): 1113-21.
[http://dx.doi.org/10.1080/07373937.2012.686949]
[30]
Arpagaus C. Evaluation of a vibrating mesh spray dryer for preparation of submicron particles laboratory scale spray drying view project high temperature heat pumps view project 2009.
[31]
Lee SH, Heng D, Ng WK, Chan HK, Tan RBH. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 2011; 403(1-2): 192-200.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.012] [PMID: 20951781]
[32]
Tabernero A, Martín del Valle EM, Galán MA. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem Eng Process 2012; 60: 9-25.
[http://dx.doi.org/10.1016/j.cep.2012.06.004]
[33]
Adami R, Liparoti S, Reverchon E. A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds. Chem Eng J 2011; 173(1): 55-61.
[http://dx.doi.org/10.1016/j.cej.2011.07.036]
[34]
Moura C, Casimiro T, Costa E, Aguiar-Ricardo A. Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. Powder Technol 2019; 357: 387-97.
[http://dx.doi.org/10.1016/j.powtec.2019.08.090]
[35]
Liu K, Chen W, Yang T, et al. Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery. Int J Nanomedicine 2017; 12: 8239-55.
[http://dx.doi.org/10.2147/IJN.S147028] [PMID: 29180863]
[36]
Wei Y, Huang YH, Cheng KC, Song YL. Investigations of the influences of processing conditions on the properties of spray dried chitosan-tripolyphosphate particles loaded with theophylline. Sci Rep 2020; 10(1): 1155.
[http://dx.doi.org/10.1038/s41598-020-58184-3] [PMID: 31980705]
[37]
Jatal R, Osman R, Mamdouh W, Awad GAS. Lung targeted electrosprayed chitosan nanocomposite microparticles boost the cytotoxic activity of magnolol. Carbohydr Polymer Technol Appl 2021; 2: 100169.
[http://dx.doi.org/10.1016/j.carpta.2021.100169]
[38]
Silva M, Silva A, Fernandez-Lodeiro J, Casimiro T, Lodeiro C, Aguiar-Ricardo A. Supercritical CO2-assisted spray drying of strawberry-like gold-coated magnetite nanocomposites in chitosan powders for inhalation. Materials 2017; 10(1): 74.
[http://dx.doi.org/10.3390/ma10010074] [PMID: 28772434]
[39]
Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW. Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian J Pharm Sci 2020; 15(3): 374-84.
[http://dx.doi.org/10.1016/j.ajps.2019.02.001] [PMID: 32636955]
[40]
Aranaz I, Paños I, Peniche C, Heras Á, Acosta N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules 2017; 22(11): 1980.
[http://dx.doi.org/10.3390/molecules22111980] [PMID: 29140306]
[41]
Daman Z, Gilani K, Najafabadi AR, Eftekhari HR, Barghi MA. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique. Daru 2014; 22(1): 50.
[http://dx.doi.org/10.1186/2008-2231-22-50]
[42]
Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res 2007; 24(3): 411-37.
[http://dx.doi.org/10.1007/s11095-006-9174-3] [PMID: 17245651]
[43]
Selomulya C, Liu W, Wu WD, Chen XD. Uniform chitosan microparticles prepared by a novel spray-drying technique. Int J Chem 2011; 2011: 267218.
[http://dx.doi.org/10.1155/2011/267218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy