Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Adsorption of Chromium (VI) from Aqueous Solution Using Nano TiO2 Doped Strong Base Anion Exchange Resin

Author(s): Prasanna S. Koujalagi, Harish N. Revankar, Vijayendra R. Gurjar and Raviraj M. Kulkarni*

Volume 8, Issue 4, 2023

Published on: 13 December, 2022

Page: [397 - 408] Pages: 12

DOI: 10.2174/2405461508666221124161113

Price: $65

Abstract

Background: The evolution of environmentally-safe methods for treating hazardous chemicals in wastewater, particularly urban and industrial wastewater, has increased interest over recent years. The chromium-containing wastewater is produced by industries from steel, metallurgical, electroplating, chemical, refractory, leather tanning, dye manufacturing, mining, cementing, textiles, etc. Consequently, advanced techniques are essential for treating chromium-polluted water.

Objective: The prime objective of this effort was to assess the adsorption performance of nanoTiO2 (nanoparticles of average crystallite size 19.15 nm) doped strong base anion exchange resin (TDTulsion) for Cr (VI) to that of the host Tulsion A-62 (MP).

Methods: The tests were carried out in batches in the temperature-controlled water bath shaking unit, with 30 ml of the aqueous solution containing Cr (VI) and a certain amount of resin being stirred for 6 hours at 303 K. Using a standard diphenylcarbazide (DPC) procedure at 540 nm, the solution was spectrophotometrically analyzed for Cr (VI).

Results: The majority of the Cr (VI) ions are adsorbed by the anion exchange resins Tulsion A- 62(MP), and TD-Tulsion is in the pH range of 4.0 to 5.0. The maximal sorption capacity of Cr (VI) was established to be 181.5 and 204.8 mg/g for Tulsion A-62(MP) and TD-Tulsion, respectively.

Conclusion: The TD-Tulsion has a substantially better adsorption capacity than Tulsion A-62(MP) under similar conditions. The outcomes show that modifying anion-exchange resin with nano titanium dioxide improves adsorption performance in Cr (VI) removal from drinking water and contaminated water.

Graphical Abstract

[1]
Goyal AK, Johal S, Rath G. Nanotechnology for water treatment. Curr Nanosci 2011; 7(4): 640-54.
[http://dx.doi.org/10.2174/157341311796196772]
[2]
Meshram P, Ghosh A, Ramamurthy Y, Pandey BD. Abhilash, Torem ML. Removal of hexavalent chromium from mine effluents by ion exchange resins-comparative study of amberlite IRA 400 and IRA 900. Russ J Non-Ferrous Met 2018; 59(5): 533-42.
[http://dx.doi.org/10.3103/S1067821218050103]
[3]
Tenório JAS, Espinosa DCR. Treatment of chromium plating process effluents with ion exchange resins. Waste Manag 2001; 21(7): 637-42.
[http://dx.doi.org/10.1016/S0956-053X(00)00118-5] [PMID: 11530919]
[4]
Xie Y, Lin J, Lin H, et al. Removal of anionic hexavalent chromium and methyl orange pollutants by using imidazolium-based mesoporous poly(ionic liquid)s as efficient adsorbents in column. J Hazard Mater 2020; 392: 122496.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122496] [PMID: 32193121]
[5]
Sowmya A, Meenakshi S. Removal of nitrate and phosphate anions from aqueous solutions using strong base anion exchange resin. Desalination Water Treat 2013; 51(37-39): 7145-56.
[http://dx.doi.org/10.1080/19443994.2013.771286]
[6]
Gautam A, Kushwaha A, Rani R. Reduction of hexavalent chromium [Cr (VI)] by heavy metal tolerant Bacterium Alkalihalobacillus clausii CRA1 and its toxicity assessment through flow cytometry. Curr Microbiol 2022; 79(1): 33.
[http://dx.doi.org/10.1007/s00284-021-02734-z] [PMID: 34952958]
[7]
Sarojini G, Venkatesh BS, Rajamohan N, Senthil KP, Rajasimman M. Surface modified polymer-magnetic-algae nanocomposite for the removal of chromium- equilibrium and mechanism studies. Environ Res 2021; 201: 111626.
[http://dx.doi.org/10.1016/j.envres.2021.111626] [PMID: 34217718]
[8]
Matome SM, Makhado E, Katata-Seru LM, et al. Green synthesis of polypyrrole/nanoscale zero valent iron nanocomposite and use as an adsorbent for hexavalent chromium from aqueous solution. S Afr J Chem Eng 2020; 34: 1-10.
[http://dx.doi.org/10.1016/j.sajce.2020.05.004]
[9]
Rapti S, Pournara A, Sarma D, et al. Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chem Sci 2016; 7(3): 2427-36.
[http://dx.doi.org/10.1039/C5SC03732H] [PMID: 29997784]
[10]
Ballav N, Maity A, Mishra SB. High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chem Eng J 2012; 198-199: 536-46.
[http://dx.doi.org/10.1016/j.cej.2012.05.110]
[11]
Hamilton EM, Young SD, Bailey EH, Watts MJ. Chromium speciation in foodstuffs: A review. Food Chem 2018; 250: 105-12.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.016] [PMID: 29412899]
[12]
Liu W, Yang L, Xu S, et al. Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites. RSC Advances 2018; 8(27): 15087-93.
[http://dx.doi.org/10.1039/C8RA01805G] [PMID: 35541367]
[13]
Jayakumar R, Rajasimman M, Karthikeyan C. Sorption of hexavalent chromium from aqueous solution using marine green algae Halimeda gracilis: Optimization, equilibrium, kinetic, thermodynamic and desorption studies. J Environ Chem Eng 2014; 2(3): 1261-74.
[http://dx.doi.org/10.1016/j.jece.2014.05.007]
[14]
Choudhary B, Paul D. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J Environ Chem Eng 2018; 6(2): 2335-43.
[http://dx.doi.org/10.1016/j.jece.2018.03.028]
[15]
Deveci H, Kar Y. Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J Ind Eng Chem 2013; 19(1): 190-6.
[http://dx.doi.org/10.1016/j.jiec.2012.08.001]
[16]
Ntuli TD, Pakade VE. Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption–reduction mechanism: Adsorption isotherms, kinetics and thermodynamics. Chem Eng Commun 2020; 207(3): 279-94.
[http://dx.doi.org/10.1080/00986445.2019.1581619]
[17]
Barbosa RFS, Souza AG, Maltez HF, Rosa DS. Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures. Chem Eng J 2020; 395: 125055.
[http://dx.doi.org/10.1016/j.cej.2020.125055]
[18]
Sharma N, Sodhi KK, Kumar M, Singh DK. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ Nanotechnol Monit Manag 2021; 15: 100388.
[http://dx.doi.org/10.1016/j.enmm.2020.100388]
[19]
Fu F, Ma J, Xie L, Tang B, Han W, Lin S. Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manage 2013; 128: 822-7.
[http://dx.doi.org/10.1016/j.jenvman.2013.06.044] [PMID: 23867839]
[20]
Dong H, Deng J, Xie Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. J Hazard Mater 2017; 332: 79-86.
[http://dx.doi.org/10.1016/j.jhazmat.2017.03.002] [PMID: 28285109]
[21]
Zhu S, Huang X, Wang D, Wang L, Ma F. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere 2018; 207: 50-9.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.046] [PMID: 29772424]
[22]
Wang Y, Zhao D, Feng S, Chen Y, Xie R. Ammonium thiocyanate functionalized graphene oxide-supported nanoscale zero-valent iron for adsorption and reduction of Cr (VI). J Colloid Interface Sci 2020; 580: 345-53.
[http://dx.doi.org/10.1016/j.jcis.2020.07.016] [PMID: 32688125]
[23]
Zhang W, Qian L, Ouyang D, Chen Y, Han L, Chen M. Effective removal of Cr (VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization. Chemosphere 2019; 221: 683-92.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.070] [PMID: 30669110]
[24]
Gao W, Zhong D, Xu Y, Luo H, Zeng S. Nano zero-valent iron supported by macroporous styrene ion exchange resin for enhanced Cr (VI) removal from aqueous solution. J Dispers Sci Technol 2020; 1-11.
[25]
Jianlong W, Xinmin Z, Yi Q. Removal of Cr (VI) from aqueous solution by macroporous resin adsorption. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2000; 35(7): 1211-30.
[http://dx.doi.org/10.1080/10934520009377029]
[26]
Boldaji MR, Nabizadeh R, Dehghani MH, Nadafi K, Mahvi AH. Evaluating the performance of iron nanoparticle resin in removing arsenate from water. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2010; 45(8): 946-50.
[http://dx.doi.org/10.1080/10934521003772337] [PMID: 20473804]
[27]
Al-Enezi G, Hamoda MF, Fawzi N. Ion exchange extraction of heavy metals from wastewater sludges. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2004; 39(2): 455-64.
[http://dx.doi.org/10.1081/ESE-120027536] [PMID: 15027828]
[28]
Verbych S, Hilal N, Sorokin G, Leaper M. Ion exchange extraction of heavy metal ions from wastewater. Sep Sci Technol 2005; 39(9): 2031-40.
[http://dx.doi.org/10.1081/SS-120039317]
[29]
Gorzin F, Bahri Rasht Abadi MM. Adsorption of Cr (VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt Sci Technol 2018; 36(1-2): 149-69.
[http://dx.doi.org/10.1177/0263617416686976]
[30]
Zhang Y, Lan G, Liu Y, et al. Enhanced adsorption of Cr (VI) from aqueous solution by zirconium impregnated chitosan microspheres: Mechanism and equilibrium. Sep Sci Technol 2021; 56(15): 2532-45.
[http://dx.doi.org/10.1080/01496395.2020.1842451]
[31]
Nigam M, Rajoriya S, Rani Singh S, Kumar P. Adsorption of Cr (VI) ion from tannery wastewater on tea waste: Kinetics, equilibrium and thermodynamics studies. J Environ Chem Eng 2019; 7(3): 103188.
[http://dx.doi.org/10.1016/j.jece.2019.103188]
[32]
Li L, Li Y, Liu Y, et al. Preparation of a novel activated carbon from cassava sludge for the high-efficiency adsorption of hexavalent chromium in potable water: Adsorption performance and mechanism insight. Water 2021; 13(24): 3602.
[http://dx.doi.org/10.3390/w13243602]
[33]
Murugesan A, Vidhyadevi T, Kirupha SD, Ravikumar L, Sivanesan S. Removal of chromium (VI) from aqueous solution using chemically modified corncorb-activated carbon: Equilibrium and kinetic studies. Environ Prog Sustain Energy 2013; 32(3): 673-80.
[http://dx.doi.org/10.1002/ep.11684]
[34]
Ghashghaee M, Farzaneh V. Removal of Cr (VI) species from aqueous solution by different nanoporous materials. Iranian J Toxicol 2016; 10(6): 15-21.
[http://dx.doi.org/10.29252/arakmu.10.6.15]
[35]
Islam MA, Angove MJ, Morton DW. Recent innovative research on chromium (VI) adsorption mechanism. Environ Nanotechnol Monit Manag 2019; 12: 100267.
[http://dx.doi.org/10.1016/j.enmm.2019.100267]
[36]
Edebali S, Pehlivan E. Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr (VI) from aqueous solution. Chem Eng J 2010; 161(1-2): 161-6.
[http://dx.doi.org/10.1016/j.cej.2010.04.059]
[37]
Koujalagi PS, Divekar SV, Kulkarni RM, Nagarale RK. Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalination Water Treat 2013; 51(16-18): 3273-83.
[http://dx.doi.org/10.1080/19443994.2012.749049]
[38]
Salih SS, Ghosh TK. Preparation and characterization of bioadsorbent beads for chromium and zinc ions adsorption. Cogent Environ Sci 2017; 3(1): 1401577.
[http://dx.doi.org/10.1080/23311843.2017.1401577]
[39]
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage 2011; 92(3): 407-18.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[40]
Petruzzelli D, Passino R, Tiravanti G. Ion exchange process for chromium removal and recovery from tannery wastes. Ind Eng Chem Res 1995; 34(8): 2612-7.
[http://dx.doi.org/10.1021/ie00047a009]
[41]
Li X, Shi S, Cao H, Li Y, Xu D. Comparative study of chromium(VI) removal from simulated industrial wastewater with ion exchange resins. Russ J Phys Chem A Focus Chem 2018; 92(6): 1229-36.
[http://dx.doi.org/10.1134/S0036024418060237]
[42]
Baral SS, Das SN, Rath P, Roy CG, Swamy YV. Removal of Cr (VI) from aqueous solution using waste weed, Salvinia cucullata. Chem Ecol 2007; 23(2): 105-17.
[http://dx.doi.org/10.1080/02757540701197697]
[43]
Koujalagi PS, Revankar HN, Kulkarni RM, Gurjar VR. Sorption of chromium (VI) from electroplating rinse water by strong base anion exchanger: equilibrium and kinetic studies. International Conference on Research Frontiers In Sciences. Nagpur, India 2021; 1913.(1)
[http://dx.doi.org/10.1088/1742-6596/1913/1/012076]
[44]
Rzig B, Guesmi F, Sillanpää M, Hamrouni B. Modelling and optimization of hexavalent chromium removal from aqueous solution by adsorption on low-cost agricultural waste biomass using response surface methodological approach. Water Sci Technol 2021; 84(3): 552-75.
[http://dx.doi.org/10.2166/wst.2021.233] [PMID: 34388119]
[45]
Gurjar VR, Koujalagi PS, Revankar HN, Kulkarni RM. Adsorptive removal of vanadium from aqueous media by ion exchange resin. Emergent Materials 2021; 4(4): 1.
[http://dx.doi.org/10.1007/s42247-021-00251-0]
[46]
Al-Jaser ZA, Hamoda MF. Removal of nickel and vanadium from desalination brines by ion-exchange resins. Desalination Water Treat 2019; 157: 148-56.
[http://dx.doi.org/10.5004/dwt.2019.24127]
[47]
Gogoi H, Zhang R, Matusik J, Leiviskä T, Rämö J, Tanskanen J. Vanadium removal by cationized sawdust produced through iodomethane quaternization of triethanolamine grafted raw material. Chemosphere 2021; 278: 130445.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130445] [PMID: 33838423]
[48]
Mulani K, Patil V, Chavan N, Donde K. Adsorptive removal of chromium(VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization. J Polym Res 2019; 26(2): 41.
[http://dx.doi.org/10.1007/s10965-019-1705-9]
[49]
Lakatos J, Brown SD, Snape CE. Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams. Fuel 2002; 81(5): 691-8.
[http://dx.doi.org/10.1016/S0016-2361(01)00159-4]
[50]
Koujalagi PS, Revanakar HN, Kulkarni RM. Studies on hexavalent chromium removal from electroplating rinse solution onto an anion exchanger. In: AIP conference proceeding (ICAMR). Bangalore, India. 2019.2274 (1)
[http://dx.doi.org/10.1063/5.0022923]
[51]
Kauspediene D, Kazlauskiene E, Cesuniene R, Gefeniene A, Ragauskas R, Selskiene A. Removal of the phatalocynaine dye from acidic solutions using resin with the polystyrene divinylbenzne matrix. Chemija 2013; 24: 171-81.
[52]
Ghosh S, Dhole K, Tripathy MK, Kumar R, Sharma RS. FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins. J Radioanal Nucl Chem 2015; 304(2): 917-23.
[http://dx.doi.org/10.1007/s10967-014-3906-3]
[53]
Alshehri SM, Naushad M, Ahamad T, Alothman ZA, Aldalbahi A. Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chem Eng J 2014; 254: 181-9.
[http://dx.doi.org/10.1016/j.cej.2014.05.100]
[54]
Gebru KA, Das C. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere 2018; 191: 673-84.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.107] [PMID: 29078191]
[55]
Li D, Song H, Meng X, et al. Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 2020; 10(3): 546.
[http://dx.doi.org/10.3390/nano10030546] [PMID: 32197421]
[56]
Álvarez-Ayuso E, García-Sánchez A, Querol X. Purification of metal electroplating waste waters using zeolites. Water Res 2003; 37(20): 4855-62.
[http://dx.doi.org/10.1016/j.watres.2003.08.009] [PMID: 14604631]
[57]
Elton J, Hristovski K, Westerhoff P. Titanium dioxide-based hybrid ion-exchange media for simultaneous removal of arsenic and nitrate. ACS Symp Ser. 2013; 1123: pp. 223-36.
[http://dx.doi.org/10.1021/bk-2013-1123.ch013]
[58]
Koujalagi PS, Divekar SV, Kulkarni RM. Adsorption studies of hexavalent chromium on weak base macroporous anion exchanger Tulsion A 2X(MP) in water and organic solvent mixed media. Asian J Chem 2018; 30(5): 1083-7.
[http://dx.doi.org/10.14233/ajchem.2018.21188]
[59]
Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM. Ni (II) biosorption by Cassia fistula (Golden Shower) biomass. J Hazard Mater 2007; 139(2): 345-55.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.040] [PMID: 16860463]
[60]
Rengaraj S, Yeon KH, Kang SY, Lee JU, Kim KW, Moon SH. Studies on adsorptive removal of Co (II), Cr (III) and Ni (II) by IRN77 cation-exchange resin. J Hazard Mater 2002; 92(2): 185-98.
[http://dx.doi.org/10.1016/S0304-3894(02)00018-3] [PMID: 11992702]
[61]
Rengaraj S, Moon SH. Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Res 2002; 36(7): 1783-93.
[http://dx.doi.org/10.1016/S0043-1354(01)00380-3] [PMID: 12044078]
[62]
Al-Abdullah J, Al Lafi AG, Alnama T, Al Masri W, Amin Y, Alkfri MN. Adsorption mechanism of lead on wood/nano-manganese oxide composite. Iran J ChemChem Eng 2018; 37(4): 131-44.
[63]
Yu Q, Kaewsarn P. Binary adsorption of copper (II) and cadmium (II) from aqueous by biomass of marine alga Durvillae apotatorum. Sep Sci Technol 1999; 34(8): 1595-605.
[http://dx.doi.org/10.1080/01496399909353759]
[64]
Haerizade B, Ghavami M, Koohi M. Green removal of toxic Pb(II) from water by a novel and recyclable Ag/γ-Fe2O3@r-GO nanocomposite. Iran J Chem Chem Eng 2018; 37(1): 29-37.
[65]
Kondalkar M, Fegade U. Inamuddin , et al. Adsorption of Cr (VI) on Ultrafine Al2O3-doped MnFe2O4 nanocomposite surface: Experimental and theoretical study using double-layer modeling. J Phys Chem Solids 2022; 163: 110544.
[http://dx.doi.org/10.1016/j.jpcs.2021.110544]
[66]
Haddad D, Mellah A, Nibou D, Khemaissia S. Promising enhancement in the removal of uranium ions by surface-modified activated carbons: kinetic and equilibrium studies. J Environ Eng 2018; 144(5): 04018027.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001349]
[67]
Gode F, Pehlivan E. A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J Hazard Mater 2003; 100(1-3): 231-43.
[http://dx.doi.org/10.1016/S0304-3894(03)00110-9] [PMID: 12835025]
[68]
Cheng T, Chen C, Tang R, Han C. Competitive adsorption of Cu, Ni, Pb and Cd from aqueous solution onto fly ash-based linde F(K) zeolite. Iran J Chem Chem Eng 2018; 37(1): 61-72.
[69]
Shi T, Wang Z, Liu Y, Jia S, Changming D. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater 2009; 161(2-3): 900-6.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.041] [PMID: 18513867]
[70]
Singha B, Das SK. Biosorption of Cr (VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf B Biointerfaces 2011; 84(1): 221-32.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.004] [PMID: 21282045]
[71]
Koujalagi PS, Divekar SV, Kulkarni RM, Cuerda-Correa EM. Sorption of hexavalent chromium from water and water–organic solvents onto an ion exchanger Tulsion A-23(Gel). Desalination Water Treat 2016; 57(50): 23965-74.
[http://dx.doi.org/10.1080/19443994.2016.1138329]
[72]
Goyal D, Mishra A. Adsorption of hexavalent chromium ion from aqueous solutions on psyllium mucilage and cross-linked psyllium mucilage beads. Curr Environ Eng 2015; 1(3): 191-8.
[http://dx.doi.org/10.2174/221271780103150522163248]
[73]
de Moura ECM, do Vale Souza Gois PR, da Silva DR, de Araujo DM, Martinez-Huitle CA. Application of combined electrochemical approaches for removing/determining Cr (VI). Curr Anal Chem 2017; 13(3): 202-9.
[http://dx.doi.org/10.2174/1573411012666160622081420]
[74]
Metidji T, Bendjeffal H, Djebli A, Mamine H, Bekakria H, Bouhedja Y. Optimization, kinetic and thermodynamic studies on biosorption and bio-reduction of chromium hexavalent by Myrtus communis leaves. Recent Innov Chem Eng 2021; 14(3): 259-69.
[http://dx.doi.org/10.2174/2405520414666210203221527]
[75]
Parlayıcı Ş, Sezer KT, Pehlivan E. Nano-ZrO2/TiO2 impregnated orange wood sawdust and peach stone shell adsorbents for Cr (VI) removal. Curr Anal Chem 2020; 16(7): 880-92.
[http://dx.doi.org/10.2174/1573411015666191114143128]
[76]
Shahram Forouz F, Hosseini Ravandi SA, Allafchian AR. Removal of Ag and Cr heavy metals using nanofiber membranes functionalized with aminopropyltriethoxysilane (APTES). Curr Nanosci 2016; 12(2): 266-74.
[http://dx.doi.org/10.2174/1573413712999151216162920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy