Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Perspective

Recent Advancements in Surface Plasmon Resonance-Based Sensors

Author(s): Ramesh Kohar and Rohit Bhatia*

Volume 19, Issue 2, 2023

Published on: 27 December, 2022

Page: [102 - 104] Pages: 3

DOI: 10.2174/1573411019666221124090441

Price: $65

[1]
Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 2015, 15(5), 10481-10510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[2]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[3]
Jing, J.Y.; Wang, Q.; Zhao, W.M.; Wang, B.T. Long-range surface plasmon resonance and its sensing applications: A review. Opt. Lasers Eng., 2019, 112, 103-118.
[http://dx.doi.org/10.1016/j.optlaseng.2018.09.013]
[4]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[5]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E.S.; Jeon, T.J.; Kang, S-M.; Oh, M-H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[6]
Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, 43(10), 3426-3452.
[http://dx.doi.org/10.1039/c3cs60479a] [PMID: 24549396]
[7]
Wang, D.; Loo, J.; Chen, J.; Yam, Y.; Chen, S.C.; He, H.; Kong, S.; Ho, H. Recent advances in surface plasmon resonance imaging sensors. Sensors (Basel), 2019, 19(6), 1266.
[http://dx.doi.org/10.3390/s19061266] [PMID: 30871157]
[8]
Harpaz, D.; Koh, B.; Marks, R.S.; Seet, R.C.S.; Abdulhalim, I.; Tok, A.I.Y. Point-of-Care surface plasmon resonance biosensor for stroke biomarkers NT-proBNP and S100β using a functionalized gold chip with specific antibody. Sensors (Basel), 2019, 19(11), 2533.
[http://dx.doi.org/10.3390/s19112533] [PMID: 31163612]
[9]
Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: review. Sens. Actuators B Chem., 1999, 54(1-2), 3-15.
[http://dx.doi.org/10.1016/S0925-4005(98)00321-9]
[10]
Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett., 2012, 12(2), 1092-1095.
[http://dx.doi.org/10.1021/nl204496g] [PMID: 22268768]
[11]
Yan, J.; Liu, P.; Lin, Z.; Yang, G. New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale, 2016, 8(11), 5996-6007.
[http://dx.doi.org/10.1039/C5NR07871G] [PMID: 26926420]
[12]
Ghiculescu, R. Therapeutic drug monitoring: which drugs, why, when and how to do it. Aust. Prescr., 2008, 31, 42-44.
[http://dx.doi.org/10.18773/austprescr.2008.025]
[13]
Qi, M.; Lv, D.; Zhang, Y.; Wang, D.; Chen, X.; Zhu, Z.; Hong, Z.; Chai, Y.; Zhang, H.; Cao, Y. Development of a surface plasmon resonance biosensor for accurate and sensitive quantitation of small molecules in blood samples. J. Pharm. Anal., 2022, 12(6), 929-936.
[http://dx.doi.org/10.1016/j.jpha.2022.06.003]
[14]
Price, A. Clissold salbutamol in the 1980s. A Reappraisal of Its Clinical Efficacy Drugs. 1989, 38, 77-122.
[15]
Shishani, E.I.; Chai, S.C.; Jamokha, S.; Aznar, G.; Hoffman, M.K. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 2003, 483(1-2), 137-145.
[http://dx.doi.org/10.1016/S0003-2670(03)00120-X]
[16]
Fan, S.; Li, C.; Ma, J.; Meng, Z.; Zhao, L.; Zhang, Y. Surface plasmon resonance biosensor for the detection of phenylethanolamine A in swine urine. Anal. Methods, 2021, 13(10), 1278-1285.
[http://dx.doi.org/10.1039/D1AY00132A] [PMID: 33624658]
[17]
Miti, A.; Thamm, S.; Müller, P.; Csáki, A.; Fritzsche, W.; Zuccheri, G. A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction. Biosens. Bioelectron., 2020, 167, 112465.
[http://dx.doi.org/10.1016/j.bios.2020.112465] [PMID: 32798803]
[18]
Chafen, J.J.S.; Newberry, S.J.; Riedl, M.A.; Bravata, D.M.; Maglione, M.; Suttorp, M.J.; Sundaram, V.; Paige, N.M.; Towfigh, A.; Hulley, B.J.; Shekelle, P.G. Diagnosing and managing common food allergies: a systematic review. JAMA, 2010, 303(18), 1848-1856.
[http://dx.doi.org/10.1001/jama.2010.582] [PMID: 20460624]
[19]
Zhou, J.; Wang, Y.; Qian, Y.; Zhang, T.; Zheng, L.; Fu, L. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control, 2020, 107, 106547.
[http://dx.doi.org/10.1016/j.foodcont.2019.02.041]
[20]
Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo Wong, D.M.A.; Jensen, A.B.; Wegener, H.C.; Aarestrup, F.M. Global monitoring of salmonella serovar distribution from the world health organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis., 2011, 8(8), 887-900.
[http://dx.doi.org/10.1089/fpd.2010.0787] [PMID: 21492021]
[21]
Bhandari, D.; Chen, F.C.; Bridgman, R.C. Detection of Salmonella typhimurium in romaine lettuce using a surface plasmon resonance biosensor. Biosensors (Basel), 2019, 9(3), 94.
[http://dx.doi.org/10.3390/bios9030094] [PMID: 31357708]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy