Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Antidepressant-like Properties of Melatonin and Atorvastatin Combination following the Restraint Stress in Mice: A Study of Oxidative Stress Factors

Author(s): Vahid Nikoui, Azam Hosseinzadeh, Solmaz Javadi Khotab, Seyyedeh Zahra Mousavi, Meysam Abolmaali and Saeed Mehrzadi*

Volume 23, Issue 1, 2023

Published on: 20 January, 2023

Page: [32 - 39] Pages: 8

DOI: 10.2174/1871524923666221121111501

Price: $65

Abstract

Background: Antidepressant properties of melatonin and atorvastatin have been reported by clinical and experimental studies. Since both melatonin and atorvastatin possess antioxidant properties and considering the involvement of oxidative stress factors in depression, the aim of the present investigation was to study the possible role of oxidative stress factors in the antidepressant- like effect of melatonin and atorvastatin combination in mice forced swimming test.

Methods: Following the induction of restraint stress, mice were randomly divided into eight groups including the non-stressed and stressed vehicle-treated groups, melatonin- and atorvastatintreated groups, a combination of melatonin and atorvastatin-treated group, and fluoxetineadministrated group. The open field test (OFT) and forced swimming test (FST) were carried out, and the hippocampus and prefrontal cortex were removed for the measurement of oxidative stress factors.

Results: Induction of restraint stress increased the immobility time in FST, and melatonin (10 mg/kg) significantly reduced it. Atorvastatin at both doses of 1 and 10 mg/kg could not alter the immobility time, significantly. Co-administration of melatonin and atorvastatin (10 mg/kg) exerted a significant antidepressant-like response and decreased the immobility time compared with melatonin or atorvastatin (10 mg/kg), alone. Induction of restraint stress elevated the malondialdehyde (MDA) levels in mice's hippocampus, while pretreatment of animals with atorvastatin (10 mg/kg) could reverse it. The co-administration of melatonin and atorvastatin (10 mg/kg) increased the cortical superoxide dismutase (SOD) activity compared with atorvastatin alone, but could not alter the catalase (CAT) activity.

Conclusion: It is concluded that atorvastatin might augment the antidepressant-like properties of melatonin in FST.

Graphical Abstract

[1]
Lange, K.W.; Nakamura, Y.; Lange, K.M.; Zhao, H. Tea and depression. Food Sci. Hum. Wellness, 2022, 11(3), 476-482.
[http://dx.doi.org/10.1016/j.fshw.2021.12.032]
[2]
Vaváková, M.; Ďuračková, Z.; Trebatická, J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid. Med. Cell. Longev., 2015, 2015, 898393.
[http://dx.doi.org/10.1155/2015/898393] [PMID: 26078821]
[3]
Islam, M.R.; Ali, S.; Karmoker, J.R.; Kadir, M.F.; Ahmed, M.U.; Nahar, Z.; Islam, S.M.A.; Islam, M.S.; Hasnat, A.; Islam, M.S. Evaluation of serum amino acids and non-enzymatic antioxidants in drug-naïve first-episode major depressive disorder. BMC Psychiatry, 2020, 20(1), 333.
[http://dx.doi.org/10.1186/s12888-020-02738-2] [PMID: 32580709]
[4]
Al-harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[5]
Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A meta-analysis of oxidative stress markers in depression. PLoS One, 2015, 10(10), e0138904.
[http://dx.doi.org/10.1371/journal.pone.0138904] [PMID: 26445247]
[6]
Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology, 2015, 144(3), 365-373.
[http://dx.doi.org/10.1111/imm.12443] [PMID: 25580634]
[7]
Gandhi, S; Abramov, AY Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012, 428010.
[http://dx.doi.org/10.1155/2012/428010]
[8]
Juybari, K.B.; Hosseinzadeh, A.; Ghaznavi, H.; Kamali, M.; Sedaghat, A.; Mehrzadi, S.; Naseripour, M. Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells. Curr. Pharm. Des., 2019, 25(28), 3057-3073.
[http://dx.doi.org/10.2174/1381612825666190829151314] [PMID: 31465274]
[9]
Shahriari, M.; Mehrzadi, S.; Naseripour, M.; Fatemi, I.; Hosseinzadeh, A.; Kanavi, M.R.; Ghaznavi, H. Beneficial effects of melatonin and atorvastatin on retinopathy in streptozocin-induced diabetic rats. Curr. Drug Ther., 2020, 15(4), 396-403.
[http://dx.doi.org/10.2174/1574885514666191204104925]
[10]
Pourhanifeh, M.H.; Kamali, M.; Mehrzadi, S.; Hosseinzadeh, A. Melatonin and neuroblastoma: A novel therapeutic approach. Mol. Biol. Rep., 2021, 48(5), 4659-4665.
[http://dx.doi.org/10.1007/s11033-021-06439-1] [PMID: 34061325]
[11]
Mehrzadi, S.; Karimi, M.Y.; Fatemi, A.; Reiter, R.J.; Hosseinzadeh, A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: Beneficial effects of melatonin. Pharmacol. Ther., 2021, 224, 107825.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107825] [PMID: 33662449]
[12]
Dehdashtian, E.; Hosseinzadeh, A.; Hemati, K.; Karimi, M.Y.; Fatemi, I.; Mehrzadi, S. Anti-convulsive effect of thiamine and melatonin combination in mice: Involvement of oxidative stress. Cent. Nerv. Syst. Agents Med. Chem., 2021, 21(2), 125-129.
[http://dx.doi.org/10.2174/1871524921666210623161212] [PMID: 34165417]
[13]
Hosseinzadeh, A.; Kamrava, S.K.; Moore, B.C.J.; Reiter, R.J.; Ghaznavi, H.; Kamali, M.; Mehrzadi, S. Molecular aspects of melatonin treatment in tinnitus: A review. Curr. Drug Targets, 2019, 20(11), 1112-1128.
[http://dx.doi.org/10.2174/1389450120666190319162147] [PMID: 30892162]
[14]
Melo, M.C.A.; Abreu, R.L.C.; Linhares Neto, V.B.; de Bruin, P.F.C.; de Bruin, V.M.S. Chronotype and circadian rhythm in bipolar disorder: A systematic review. Sleep Med. Rev., 2017, 34, 46-58.
[http://dx.doi.org/10.1016/j.smrv.2016.06.007] [PMID: 27524206]
[15]
Ogłodek, E.A.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol. Rep., 2016, 68(5), 945-951.
[http://dx.doi.org/10.1016/j.pharep.2016.04.003] [PMID: 27367919]
[16]
Sundberg, I.; Ramklint, M.; Stridsberg, M.; Papadopoulos, F.C.; Ekselius, L.; Cunningham, J.L. Salivary melatonin in relation to depressive symptom severity in young adults. PLoS One, 2016, 11(4), e0152814.
[http://dx.doi.org/10.1371/journal.pone.0152814] [PMID: 27042858]
[17]
Hickie, I.B.; Rogers, N.L. Novel melatonin-based therapies: Potential advances in the treatment of major depression. Lancet, 2011, 378(9791), 621-631.
[http://dx.doi.org/10.1016/S0140-6736(11)60095-0] [PMID: 21596429]
[18]
Juybari, K.B.; Hosseinzadeh, A.; Sharifi, A.M. Protective effects of atorvastatin against high glucose-induced nuclear factor-κB activation in cultured C28I2 chondrocytes. J. Recept. Signal Transduct. Res., 2019, 39(1), 1-8.
[http://dx.doi.org/10.1080/10799893.2018.1557206] [PMID: 31237181]
[19]
Hosseinzadeh, A.; Mehrzadi, S.; Rezaei, M.; Badavi, M.; Nesari, A.; Goudarzi, M. Lovastatin attenuates glyoxal-induced toxicity on rat liver mitochondria. Hum. Exp. Toxicol., 2021, 40(12), 2215-2222.
[http://dx.doi.org/10.1177/09603271211027939] [PMID: 34165024]
[20]
Hemati, K.; Karimi, M.Y.; Hosseinzadeh, A.; Abolmaali, M.; Najjar, N.; Aghanoori, M-R. Induction of analgesia using atorvastatin in experimental diabetic neuropathy through NMDA receptor and inflammatory cytokine inhibition. Iran. Red Crescent Med. J., 2021, 23(1), e454.
[21]
Hosseinzadeh, A.; Bahrampour Juybari, K.; Kamarul, T.; Sharifi, A.M. Protective effects of atorvastatin on high glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes. J. Physiol. Biochem., 2019, 75(2), 153-162.
[http://dx.doi.org/10.1007/s13105-019-00666-8] [PMID: 30796627]
[22]
Hai-Na, Z.; Xu-Ben, Y.; Cong-Rong, T.; Yan-Cheng, C.; Fan, Y.; Lei-Mei, X.; Ruo-Lan, S.; Ye-Zi; Ye-Xuan, W.; Jing, L. Atorvastatin ameliorates depressive behaviors and neuroinflammatory in streptozotocin-induced diabetic mice. Psychopharmacology (Berl.), 2020, 237(3), 695-705.
[http://dx.doi.org/10.1007/s00213-019-05406-w] [PMID: 31786648]
[23]
Taniguti, E.H.; Ferreira, Y.S.; Stupp, I.J.V.; Fraga-Junior, E.B.; Doneda, D.L.; Lopes, L.; Rios-Santos, F.; Lima, E.; Buss, Z.S.; Viola, G.G.; Vandresen-Filho, S. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res. Bull., 2019, 146, 279-286.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.018] [PMID: 30690060]
[24]
Redlich, C.; Berk, M.; Williams, L.J.; Sundquist, J.; Sundquist, K.; Li, X. Statin use and risk of depression: A Swedish national cohort study. BMC Psychiatry, 2014, 14(1), 348.
[http://dx.doi.org/10.1186/s12888-014-0348-y] [PMID: 25471121]
[25]
Poleszak, E.; Wlaź, P.; Kêdzierska, E.; Nieoczym, D.; Wyska, E.; Szymura-Oleksiak, J.; Fidecka, S.; Radziwoń-Zaleska, M.; Nowak, G. Immobility stress induces depression-like behavior in the forced swim test in mice: Effect of magnesium and imipramine. Pharmacol. Rep., 2006, 58(5), 746-752.
[PMID: 17085867]
[26]
Zafir, A.; Ara, A.; Banu, N. In vivo antioxidant status: A putative target of antidepressant action. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 220-228.
[http://dx.doi.org/10.1016/j.pnpbp.2008.11.010] [PMID: 19059298]
[27]
Nikoui, V.; Ostadhadi, S.; Azhand, P.; Zolfaghari, S.; Amiri, S.; Foroohandeh, M.; Motevalian, M.; Sharifi, A.M.; Bakhtiarian, A. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels. Eur. J. Pharmacol., 2016, 791, 369-376.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.017] [PMID: 27615446]
[28]
Yang, W.; Wang, H. 5, 7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels. Saudi J. Biol. Sci., 2018, 25(2), 253-258.
[PMID: 29472774]
[29]
Farhan, M.; Haleem, D.J. Anxiolytic profile of fluoxetine as monitored following repeated administration in animal rat model of chronic mild stress. Saudi Pharm. J., 2016, 24(5), 571-578.
[http://dx.doi.org/10.1016/j.jsps.2015.03.006] [PMID: 27752230]
[30]
Haj-Mirzaian, A.; Ostadhadi, S.; Kordjazy, N.; Dehpour, A.R.; Ejtemaei Mehr, S. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur. J. Pharmacol., 2014, 735, 26-31.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.053] [PMID: 24726844]
[31]
Kordjazy, N.; Haj-Mirzaian, A.; Amiri, S.; Ostadhadi, S.; Kordjazy, M.; Sharifzadeh, M.; Dehpour, A.R. Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice. Eur. J. Pharmacol., 2015, 762, 411-418.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.030] [PMID: 26101064]
[32]
Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther., 1977, 229(2), 327-336.
[PMID: 596982]
[33]
Zomkowski, A.D.E.; Santos, A.R.S.; Rodrigues, A.L.S. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci. Lett., 2005, 381(3), 279-283.
[http://dx.doi.org/10.1016/j.neulet.2005.02.026] [PMID: 15896484]
[34]
Ostadhadi, S.; Ahangari, M.; Nikoui, V.; Norouzi-Javidan, A.; Zolfaghari, S.; Jazaeri, F.; Chamanara, M.; Akbarian, R.; Dehpour, A.R. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test. Biomed. Pharmacother., 2016, 82, 713-721.
[http://dx.doi.org/10.1016/j.biopha.2016.05.035] [PMID: 27470415]
[35]
Nazari, S.K.; Nikoui, V.; Ostadhadi, S.; Chegini, Z.H.; Oryan, S.; Bakhtiarian, A. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test. Pharmacol. Rep., 2016, 68(6), 1214-1220.
[http://dx.doi.org/10.1016/j.pharep.2016.07.006] [PMID: 27657484]
[36]
Khan, M.I.; Nikoui, V.; Naveed, A.; Mumtaz, F.; Zaman, H.; Haider, A.; Aman, W.; Wahab, A.; Khan, S.N.; Ullah, N.; Dehpour, A.R. Antidepressant-like effect of ethanol in mice forced swimming test is mediated via inhibition of NMDA/nitric oxide/cGMP signaling pathway. Alcohol, 2021, 92, 53-63.
[http://dx.doi.org/10.1016/j.alcohol.2021.01.005] [PMID: 33581263]
[37]
Dmitrzak-Weglarz, M.; Reszka, E. Pathophysiology of depression: Molecular regulation of melatonin homeostasis–current status. Neuropsychobiology, 2017, 76(3), 117-129.
[http://dx.doi.org/10.1159/000489470] [PMID: 29898451]
[38]
Li, K.; Shen, S.; Ji, Y.T.; Li, X.Y.; Zhang, L.S.; Wang, X.D. Melatonin augments the effects of fluoxetine on depression-like behavior and hippocampal BDNF–TrkB signaling. Neurosci. Bull., 2018, 34(2), 303-311.
[http://dx.doi.org/10.1007/s12264-017-0189-z] [PMID: 29086908]
[39]
Ludka, F.K.; Cunha, M.P.; Dal-Cim, T.; Binder, L.B.; Constantino, L.C.; Massari, C.M.; Martins, W.C.; Rodrigues, A.L.S.; Tasca, C.I. Atorvastatin protects from Aβ1–40-induced cell damage and depressive-like behavior via ProBDNF cleavage. Mol. Neurobiol., 2017, 54(8), 6163-6173.
[http://dx.doi.org/10.1007/s12035-016-0134-6] [PMID: 27709490]
[40]
Ludka, F.K.; Constantino, L.C.; Kuminek, G.; Binder, L.B.; Zomkowski, A.D.E.; Cunha, M.P.; Dal-Cim, T.; Rodrigues, A.L.S.; Tasca, C.I. Atorvastatin evokes a serotonergic system-dependent antidepressant-like effect in mice. Pharmacol. Biochem. Behav., 2014, 122, 253-260.
[http://dx.doi.org/10.1016/j.pbb.2014.04.005] [PMID: 24769309]
[41]
Borsini, F.; Meli, A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl.), 1988, 94(2), 147-160.
[http://dx.doi.org/10.1007/BF00176837] [PMID: 3127840]
[42]
Hajmirzaeyian, A.; Chamanara, M.; Rashidian, A.; Shakyba, S.; Nassireslami, E.; Akhavan-Sigari, R. Melatonin attenuated the behavioral despair induced by acute neurogenic stress through blockade of N-methyl D-aspartate receptors in mice. Heliyon, 2021, 7(1), e05900.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05900] [PMID: 33490672]
[43]
Bahrami, N.; Goudarzi, M.; Hosseinzadeh, A.; Sabbagh, S.; Reiter, R.J.; Mehrzadi, S. Evaluating the protective effects of melatonin on di(2-ethylhexyl) phthalate-induced testicular injury in adult mice. Biomed. Pharmacother., 2018, 108, 515-523.
[http://dx.doi.org/10.1016/j.biopha.2018.09.044] [PMID: 30243084]
[44]
Ghaznavi, H.; Mehrzadi, S.; Dormanesh, B.; Tabatabaei, S.M.T.H.; Vahedi, H.; Hosseinzadeh, A.; Pazoki-Toroudi, H.; Rashidian, A. Comparison of the protective effects of melatonin and silymarin against gentamicin-induced nephrotoxicity in rats. J. Evid.-Based Complement. Altern. Med., 2016, 21(4), NP49-NP55.
[http://dx.doi.org/10.1177/2156587215621672] [PMID: 26703224]
[45]
Hosseinzadeh, A.; Kamrava, S.K.; Joghataei, M.T.; Darabi, R.; Shakeri-Zadeh, A.; Shahriari, M.; Reiter, R.J.; Ghaznavi, H.; Mehrzadi, S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J. Pineal Res., 2016, 61(4), 411-425.
[http://dx.doi.org/10.1111/jpi.12362] [PMID: 27555371]
[46]
Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci., 2018, 193, 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[47]
Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Yarahmadi, R.; Ghaznavi, H.; Mehrzadi, S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin. Ther. Targets, 2018, 22(12), 1049-1061.
[http://dx.doi.org/10.1080/14728222.2018.1541318] [PMID: 30445883]
[48]
Fotso Soh, J.; Almadani, A.; Beaulieu, S.; Rajji, T.; Mulsant, B.H.; Su, C.L.; Renaud, S.; Mucsi, I.; Torres-Platas, S.G.; Levinson, A.; Schaffer, A.; Dols, A.; Cervantes, P.; Low, N.; Herrmann, N.; Mantere, O.; Rej, S. The effect of atorvastatin on cognition and mood in bipolar disorder and unipolar depression patients: A secondary analysis of a randomized controlled trial. J. Affect. Disord., 2020, 262, 149-154.
[http://dx.doi.org/10.1016/j.jad.2019.11.013] [PMID: 31733459]
[49]
Mehrzadi, S.; Kamrava, S.K.; Dormanesh, B.; Motevalian, M.; Hosseinzadeh, A.; Hosseini Tabatabaei, S.M.T.; Ghaznavi, H. Melatonin synergistically enhances protective effect of atorvastatin against gentamicin-induced nephrotoxicity in rat kidney. Can. J. Physiol. Pharmacol., 2016, 94(3), 265-271.
[http://dx.doi.org/10.1139/cjpp-2015-0277] [PMID: 26762621]
[50]
Gürpınar, T.; Ekerbicer, N.; Uysal, N.; Barut, T.; Tarakçı, F.; Tuğlu, M. The histologic evaluation of atorvastatin and melatonin treatment on oxidative stress and apoptosis of diabetic rat pancreas. Kafkas Univ. Vet. Fak. Derg., 2010, 16(4), 547-552.
[51]
Dayoub, J.C.; Ortiz, F.; López, L.C.; Venegas, C.; del Pino-Zumaquero, A.; Roda, O.; Sánchez-Montesinos, I.; Acuña-Castroviejo, D.; Escames, G. Synergism between melatonin and atorvastatin against endothelial cell damage induced by lipopolysaccharide. J. Pineal Res., 2011, 51(3), 324-330.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00892.x] [PMID: 21585521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy