Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Natural Products with BACE1 and GSK3β Inhibitory Activity

Author(s): Paulo Cézar Prado, Josélia Alencar Lima, Lidilhone Hamerski* and Magdalena Nascimento Rennó

Volume 23, Issue 7, 2023

Published on: 26 December, 2022

Page: [881 - 895] Pages: 15

DOI: 10.2174/1389557523666221118113923

Price: $65

Abstract

Alzheimer’s disease (AD) is a neurodegenerative, progressive, and fatal disorder characterized by marked atrophy of the cerebral cortex and loss of basal forebrain cholinergic neurons. The main pathological features of AD are related to neuronal degeneration and include extracellular deposition of amyloid beta plaques (Aβ plaques), intracellular formation of neurofibrillary tangles (NFTs), and neuroinflammation. So far, drugs used to treat AD have symptomatic and palliative pharmacological effects, disappearing with continued use due to neuron degeneration and death. Therefore, there are still problems with an effective drug for treating AD. Few approaches evaluate the action of natural products other than alkaloids on the molecular targets of β-amyloid protein (Aβ protein) and/or tau protein, which are important targets for developing neuroprotective drugs that will effectively contribute to finding a prophylactic drug for AD. This review gathers and categorizes classes of natural products, excluding alkaloids, which in silico analysis (molecular docking) and in vitro and/or in vivo assays can inhibit the BACE1 and GSK-3β enzymes involved in AD.

« Previous
Graphical Abstract

[1]
Hippius, H.; Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci., 2003, 5(1), 101-108.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[2]
World Health Organization. Global action plan on the public health response to dementia. 2017 - 2025.. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia (Accessed August 05, 2022).
[3]
Ferrari, C.; Sorbi, S. The complexity of Alzheimer’s disease: An evolving puzzle. Physiol. Rev., 2021, 101(3), 1047-1081.
[http://dx.doi.org/10.1152/physrev.00015.2020] [PMID: 33475022]
[4]
Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci., 2013, 15(4), 445-454.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[5]
Chen, X.Q.; Mobley, W.C. Exploring the pathogenesis of Alzheimer’s disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses. Front. Neurosci., 2019, 13(13), 446.
[http://dx.doi.org/10.3389/fnins.2019.00446] [PMID: 31133787]
[6]
Zvěřová, M. Clinical aspects of Alzheimer’s disease. Clin. Biochem., 2019, 72, 3-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.015] [PMID: 31034802]
[7]
Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers, 2021, 7(1), 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[8]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[9]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[10]
Husna Ibrahim, N.; Yahaya, M.F.; Mohamed, W.; Teoh, S.L.; Hui, C.K.; Kumar, J. Pharmacotherapy of Alzheimer’s disease: Seeking clarity in a time of uncertainty. Front. Pharmacol., 2020, 11, 261.
[http://dx.doi.org/10.3389/fphar.2020.00261]
[11]
Greig, S.L. Memantine ER/Donepezil: A review in Alzheimer’s disease. CNS Drugs, 2015, 29(11), 963-970.
[http://dx.doi.org/10.1007/s40263-015-0287-2] [PMID: 26519339]
[12]
Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement., 2022, 8(1), e12295.
[http://dx.doi.org/10.1002/trc2.12295] [PMID: 35516416]
[13]
Dyer, O. Long delayed publication of data on Alzheimer’s drug Aduhelm leaves questions unanswered. BMJ, 2022, 376, o808.
[http://dx.doi.org/10.1136/bmj.o808] [PMID: 35338031]
[14]
Bauchner, H.; Alexander, G.C. Rejection of aducanumab (aduhelm) by the health care community. Med. Care, 2022, 60(5), 392-393.
[http://dx.doi.org/10.1097/MLR.0000000000001716] [PMID: 35319522]
[15]
Ribaudo, G.; Memo, M.; Gianoncelli, A. Multi-target natural and nature-inspired compounds against neurodegeneration: A focus on dual cholinesterase and phosphodiesterase inhibitors. Appl. Sci., 2021, 11(11), 5044.
[http://dx.doi.org/10.3390/app11115044]
[16]
Bortolami, M.; Rocco, D.; Messore, A.; Di Santo, R.; Costi, R.; Madia, V.N.; Scipione, L.; Pandolfi, F. Acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease – a patent review (2016–present). Expert Opin. Ther. Pat., 2021, 31(5), 399-420.
[http://dx.doi.org/10.1080/13543776.2021.1874344] [PMID: 33428491]
[17]
Silva, M.; Seijas, P.; Otero, P. Exploitation of marine molecules to manage Alzheimer’s disease. Mar. Drugs, 2021, 19(7), 373.
[http://dx.doi.org/10.3390/md19070373] [PMID: 34203244]
[18]
Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother., 2022, 146, 112556.
[http://dx.doi.org/10.1016/j.biopha.2021.112556] [PMID: 34953393]
[19]
Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 898, 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[20]
Li, Q.; Yang, H.; Chen, Y.; Sun, H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 132, 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.062] [PMID: 28371641]
[21]
Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules, 2021, 26(18), 5582.
[http://dx.doi.org/10.3390/molecules26185582] [PMID: 34577053]
[22]
Dembitsky, V.M.; Dzhemileva, L.; Gloriozova, T.; D’yakonov, V. Natural and synthetic drugs used for the treatment of the dementia. Biochem. Biophys. Res. Commun., 2020, 524(3), 772-783.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.123] [PMID: 32037088]
[23]
Ahmed, S.; Khan, S.T.; Zargaham, M.K.; Khan, A.U.; Khan, S.; Hussain, A.; Uddin, J.; Khan, A.; Al-Harrasi, A. Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase. Biomed. Pharmacother., 2021, 139, 111609.
[http://dx.doi.org/10.1016/j.biopha.2021.111609] [PMID: 33915501]
[24]
Dinda, B.; Dinda, M.; Kulsi, G.; Chakraborty, A.; Dinda, S. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: A review. Eur. J. Med. Chem., 2019, 169, 185-199.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.009] [PMID: 30877973]
[25]
Das, S.; Chakraborty, S.; Basu, S. Hybrid approach to sieve out natural compounds against dual targets in Alzheimer’s Disease. Sci. Rep., 2019, 9(1), 3714.
[http://dx.doi.org/10.1038/s41598-019-40271-9] [PMID: 30842555]
[26]
Lima, J.A.; Hamerski, L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer’s Disease. In: Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam,, 2019; 61, pp. 301-334.
[http://dx.doi.org/10.1016/B978-0-444-64183-0.00008-7]
[27]
Silva, T.; Reis, J.; Teixeira, J.; Borges, F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev., 2014, 15, 116-145.
[http://dx.doi.org/10.1016/j.arr.2014.03.008] [PMID: 24726823]
[28]
Iqubal, A.; Rahman, S.O.; Ahmed, M.; Bansal, P.; Haider, M.R.; Iqubal, M.K.; Najmi, A.K.; Pottoo, F.H.; Haque, S.E. Current quest in natural bioactive compounds for Alzheimer’s disease: Multi-targeted-designed-ligand based approach with preclinical and clinical based evidence. Curr. Drug Targets, 2021, 22(6), 685-720.
[http://dx.doi.org/10.2174/1389450121999201209201004] [PMID: 33302832]
[29]
De Boer, D.; Nguyen, N.; Mao, J.; Moore, J.; Sorin, E.J. A comprehensive review of cholinesterase modeling and simulation. Biomolecules, 2021, 11(4), 580.
[http://dx.doi.org/10.3390/biom11040580] [PMID: 33920972]
[30]
Kong, Y.R.; Tay, K.C.; Su, Y.X.; Wong, C.K.; Tan, W.N.; Khaw, K.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules, 2021, 26(3), 728.
[http://dx.doi.org/10.3390/molecules26030728] [PMID: 33573300]
[31]
Li, D.; Cai, C.; Liao, Y.; Wu, Q.; Ke, H.; Guo, P.; Wang, Q.; Ding, B.; Fang, J.; Fang, S. Systems pharmacology approach uncovers the therapeutic mechanism of medicarpin against scopolamine-induced memory loss. Phytomedicine, 2021, 91, 153662.
[http://dx.doi.org/10.1016/j.phymed.2021.153662] [PMID: 34333326]
[32]
Xie, Z.; Cao, N.; Wang, C. A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem., 2021, 348, 129067.
[http://dx.doi.org/10.1016/j.foodchem.2021.129067] [PMID: 33548760]
[33]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[34]
Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702.
[http://dx.doi.org/10.1002/ptr.7099] [PMID: 33847440]
[35]
Biber-Klemm, S.; Soto, G.R.N.; Payet-Lebourges, K.; Silva, M.; Rodriguez, L.; Prieur-Richard, A.; Ocampo, E.H.; Sampaio, M.J.A.M.; Sardiñas, T.C.; Fuente, G.I.; Leff, L.; Limonta, M.; Martínez, A.J.; Alonso, R.M.P.; Pineda, J.W. Access and benefit-sharing in Latin America and the Caribbean. Divrsitas: 2014. Available from: www.diversitas-international.org/activities/policy/cbd-1/access-and-benefits-sharing-abs
[36]
Sayed, A.M.; Khattab, A.R. AboulMagd, A.M.; Hassan, H.M.; Rateb, M.E.; Zaid, H.; Abdelmohsen, U.R. Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale. RSC Advances, 2020, 10(34), 19790-19802.
[http://dx.doi.org/10.1039/D0RA04199H] [PMID: 35685913]
[37]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[38]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[39]
Ou-Yang, S.; Lu, J.; Kong, X.; Liang, Z.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[40]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[41]
Aminpour, M.; Montemagno, C.; Tuszynski, J.A. An overview of molecular modeling for drug discovery with specific illustrative examples of applications. Molecules, 2019, 24(9), 1693.
[http://dx.doi.org/10.3390/molecules24091693] [PMID: 31052253]
[42]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[43]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574.
[http://dx.doi.org/10.3390/ijms20184574] [PMID: 31540192]
[44]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[45]
Adelusi, T.I.; Oyedele, A.Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E.; Xiaoxing, Y.; Abdul-Hammed, M. Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 2022, 29, 100880.
[http://dx.doi.org/10.1016/j.imu.2022.100880]
[46]
Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[47]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[48]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[49]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[50]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4(1), 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[51]
Ugbaja, S.C.; Lawal, I.A.; Kumalo, H.M.; Lawal, M.M. Alzheimer’s disease and β-secretase inhibition: An update with a focus on computer-aided inhibitor design. Curr. Drug Targets, 2022, 23(3), 266-285.
[http://dx.doi.org/10.2174/1389450122666210809100050] [PMID: 34370634]
[52]
Lichtenthaler, S.F.; Tschirner, S.K.; Steiner, H. Secretases in Alzheimer’s disease: Novel insights into proteolysis of APP and TREM2. Curr. Opin. Neurobiol., 2022, 72, 101-110.
[http://dx.doi.org/10.1016/j.conb.2021.09.003] [PMID: 34689040]
[53]
Menting, K.W.; Claassen, J.A.H.R. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 165.
[http://dx.doi.org/10.3389/fnagi.2014.00165] [PMID: 25100992]
[54]
Miranda, A.; Montiel, E.; Ulrich, H.; Paz, C.; Ferreira, S. Selective secretase targeting for Alzheimer’s disease therapy. J. Alzheimers Dis., 2021, 81(1), 1-17.
[http://dx.doi.org/10.3233/JAD-201027] [PMID: 33749645]
[55]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[56]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[57]
MacLeod, R.; Hillert, E.K.; Cameron, R.T.; Baillie, G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci. OA,, 2015, 1(3), fso.15.9.. http://dx.doi.org/10.4155/fso.15.9 PMID: 28031886
[58]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[59]
Yuksel, M.; Tacal, O. Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer’s disease development: An up-to-date review. Eur. J. Pharmacol., 2019, 856, 172415.
[http://dx.doi.org/10.1016/j.ejphar.2019.172415] [PMID: 31132354]
[60]
Mattson, M.P. Ballads of a protein quartet. Nature, 2003, 422(6930), 385-387.
[http://dx.doi.org/10.1038/422385a] [PMID: 12660764]
[61]
Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-aided drug design of β-secretase, γ- secretase and anti-tau inhibitors for the discovery of novel Alzheimer’s therapeutics. Int. J. Mol. Sci., 2020, 21(3), 703.
[http://dx.doi.org/10.3390/ijms21030703] [PMID: 31973122]
[62]
Imbimbo, B.P.; Watling, M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2019, 28(11), 967-975.
[http://dx.doi.org/10.1080/13543784.2019.1683160] [PMID: 31661331]
[63]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[64]
Prati, F.; Bottegoni, G.; Bolognesi, M.L.; Cavalli, A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease. J. Med. Chem., 2018, 61(3), 619-637.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00393] [PMID: 28749667]
[65]
Yun, T.K. The spiritual nature of ginseng in the far east. Korean Acad. Med. Sci., 2001, 16, S3-S5.
[66]
Leung, K.; Wong, A. Pharmacology of ginsenosides: A literature review. Chin. Med., 2010, 5(1), 20.
[http://dx.doi.org/10.1186/1749-8546-5-20] [PMID: 20537195]
[67]
Karpagam, V.; Sathishkumar, N.; Sathiyamoorthy, S.; Rasappan, P.; Shila, S.; Kim, Y.J.; Yang, D.C. Identification of BACE1 inhibitors from Panax ginseng saponins-An in silico approach. Comput. Biol. Med., 2013, 43(8), 1037-1044.
[http://dx.doi.org/10.1016/j.compbiomed.2013.05.009] [PMID: 23816176]
[68]
Choi, R.J.; Roy, A.; Jung, H.J.; Ali, M.Y.; Min, B.S.; Park, C.H.; Yokozawa, T.; Fan, T.P.; Choi, J.S.; Jung, H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol., 2016, 190, 219-230.
[http://dx.doi.org/10.1016/j.jep.2016.06.013] [PMID: 27275774]
[69]
Jannat, S.; Balupuri, A.; Ali, M.Y.; Hong, S.S.; Choi, C.W.; Choi, Y.H.; Ku, J.M.; Kim, W.J.; Leem, J.Y.; Kim, J.E.; Shrestha, A.C.; Ham, H.N.; Lee, K.H.; Kim, D.M.; Kang, N.S.; Park, G.H. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure−activity relationship with a strong BBB permeability. Exp. Mol. Med., 2019, 51(2), 1-18.
[http://dx.doi.org/10.1038/s12276-019-0205-7] [PMID: 30755593]
[70]
Potter, D.M.; Baird, M.S. Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br. J. Cancer, 2000, 83(7), 914-920.
[http://dx.doi.org/10.1054/bjoc.2000.1368] [PMID: 10970694]
[71]
Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol., 2014, 156, 235-270.
[http://dx.doi.org/10.1016/j.jep.2014.08.034] [PMID: 25193684]
[72]
Ali, M.; Seong, S.; Reddy, M.; Seo, S.; Choi, J.; Jung, H. Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from Angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules, 2017, 22(10), 1604.
[http://dx.doi.org/10.3390/molecules22101604] [PMID: 28946641]
[73]
Ali, M.Y.; Seong, S.H.; Jung, H.A.; Jannat, S.; Choi, J.S. Kinetics and molecular docking of dihydroxanthyletin-type coumarins from Angelica decursiva that inhibit cholinesterase and BACE1. Arch. Pharm. Res., 2018, 41(7), 753-764.
[http://dx.doi.org/10.1007/s12272-018-1056-9] [PMID: 30047040]
[74]
Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, R.J.; Roy, A.; Choi, J.S. Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med., 2016, 9(2), 103-111.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.014] [PMID: 26919937]
[75]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Scient. Worl. J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[76]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[77]
Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 45.
[http://dx.doi.org/10.1186/s43088-020-00065-9]
[78]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[79]
Zhumanova, K.; Lee, G.; Baiseitova, A.; Shah, A.B.; Kim, J.H.; Kim, J.Y.; Lee, K.W.; Park, K.H. Inhibitory mechanism of O-methylated quercetins, highly potent β-secretase inhibitors isolated from Caragana balchaschensis (Kom.). Pojark. J. Ethnopharmacol., 2021, 272, 113935.
[http://dx.doi.org/10.1016/j.jep.2021.113935] [PMID: 33609726]
[80]
Youn, K.; Jun, M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 2019, 11(3), 662.
[http://dx.doi.org/10.3390/nu11030662] [PMID: 30893825]
[81]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta, Gen. Subj., 2008, 1780(5), 819-825.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.017] [PMID: 18295609]
[82]
Panche, A.N.; Chandra, S.; Diwan, A.D. Multi-Target β-protease inhibitors from Andrographis paniculata: In silico and in vitro studies. Plants, 2019, 8(7), 231.
[http://dx.doi.org/10.3390/plants8070231] [PMID: 31319560]
[83]
El-Hawary, S.S.; Hammam, W.E.; El-Mahdy El-Tantawi, M.; Yassin, N.A.Z.; Kirollos, F.N.; Abdelhameed, M.F.; Abdelfattah, M.A.O.; Wink, M.; Sobeh, M. Apple leaves and their major secondary metabolite phlorizin exhibit distinct neuroprotective activities: Evidence from in vivo and in silico studies. Arab. J. Chem., 2021, 14(6), 103188.
[http://dx.doi.org/10.1016/j.arabjc.2021.103188]
[84]
Deng, Y.H.; Wang, N.N.; Zou, Z.X.; Zhang, L.; Xu, K.P.; Chen, A.F.; Cao, D.S.; Tan, G.S. Multi-target screening and experimental validation of natural products from Selaginella plants against Alzheimer’s disease. Front. Pharmacol., 2017, 8, 539.
[http://dx.doi.org/10.3389/fphar.2017.00539] [PMID: 28890698]
[85]
Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Kim, J.Y.; Kim, D.; Lee, S.; Lee, W.S.; Park, K.H. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg. Med. Chem. Lett., 2011, 21(10), 2945-2948.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.060] [PMID: 21511472]
[86]
Ahuja, A.; Tyagi, P.K.; Tyagi, S.; Kumar, A.; Kumar, M.; Sharifi-Rad, J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimer’s disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int. J. Biol. Macromol., 2021, 179, 586-600.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.032] [PMID: 33705837]
[87]
Wagle, A.; Seong, S.H.; Shrestha, S.; Jung, H.A.; Choi, J.S. Korean Thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.): A potential dietary supplement against diabetes and Alzheimer’s disease. Molecules, 2019, 24(3), 649.
[http://dx.doi.org/10.3390/molecules24030649] [PMID: 30759846]
[88]
Weng, J.K.; Noel, J.P. Chemodiversity in Selaginella: A reference system for parallel and convergent metabolic evolution in terrestrial plants. Front. Plant Sci., 2013, 4, 119.
[http://dx.doi.org/10.3389/fpls.2013.00119] [PMID: 23717312]
[89]
Long, H.P.; Liu, J.; Xu, P.S.; Xu, K.P.; Li, J.; Tan, G.S. Hypoglycemic flavonoids from Selaginella tamariscina (P.Beauv.) Spring. Phytochemistry, 2022, 195, 113073.
[http://dx.doi.org/10.1016/j.phytochem.2021.113073] [PMID: 34974412]
[90]
Medina, M.; Wandosell, F. Deconstructing GSK-3: The fine regulation of its activity. Int. J. Alzheimers Dis., 2011, 2011, 1-12.
[http://dx.doi.org/10.4061/2011/479249] [PMID: 21629747]
[91]
Saraswati, A.P.; Ali Hussaini, S.M.; Krishna, N.H.; Babu, B.N.; Kamal, A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur. J. Med. Chem., 2018, 144, 843-858.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.103] [PMID: 29306837]
[92]
Sayas, C.L.; Ávila, J. GSK-3 and tau: A key duet in Alzheimer’s disease. Cells, 2021, 10(4), 721.
[http://dx.doi.org/10.3390/cells10040721] [PMID: 33804962]
[93]
Bax, B.; Carter, P.S.; Lewis, C.; Guy, A.R.; Bridges, A.; Tanner, R.; Pettman, G.; Mannix, C.; Culbert, A.A.; Brown, M.J.B.; Smith, D.G.; Reith, A.D. The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation. Structure, 2001, 9(12), 1143-1152.
[http://dx.doi.org/10.1016/S0969-2126(01)00679-7] [PMID: 11738041]
[94]
Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells, 2021, 10(2), 262.
[http://dx.doi.org/10.3390/cells10020262] [PMID: 33572709]
[95]
Yang, Y.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Guo, C.; Xue, M. Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood–brain barrier cell and Caco-2 cell models. Toxicol. In Vitro, 2014, 28(3), 388-396.
[http://dx.doi.org/10.1016/j.tiv.2013.12.002] [PMID: 24362044]
[96]
Silva dos Santos, J.; Gonçalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol., 2021, 11(11), 565700.
[http://dx.doi.org/10.3389/fphar.2020.565700] [PMID: 33519431]
[97]
Williams, R.J.; Spencer, J.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med., 2012, 52(1), 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[98]
Faria, A.; Mateus, N.; Calhau, C. Flavonoid transport across blood-brain barrier: Implication for their direct neuroprotective actions. Nutr. Aging, 2012, 1(2), 89-97.
[http://dx.doi.org/10.3233/NUA-2012-0005]
[99]
Faria, A.; Meireles, M.; Fernandes, I.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; de Freitas, V.; Mateus, N.; Calhau, C. Flavonoid metabolites transport across a human BBB model. Food Chem., 2014, 149, 190-196.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.095] [PMID: 24295694]
[100]
Ferri, P.; Angelino, D.; Gennari, L.; Benedetti, S.; Ambrogini, P.; Del Grande, P.; Ninfali, P. Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol. Food Funct., 2015, 6(2), 394-400.
[http://dx.doi.org/10.1039/C4FO00817K] [PMID: 25474041]
[101]
Lv, F.; Du, Q.; Li, L.; Xi, X.; Liu, Q.; Li, W.; Liu, S. Eriodictyol inhibits glioblastoma migration and invasion by reversing EMT via downregulation of the P38 MAPK/GSK-3β/ZEB1 pathway. Eur. J. Pharmacol., 2021, 900, 174069.
[http://dx.doi.org/10.1016/j.ejphar.2021.174069] [PMID: 33811837]
[102]
Sonawane, S.K.; Balmik, A.A.; Boral, D.; Ramasamy, S.; Chinnathambi, S. Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers. Arch. Biochem. Biophys., 2019, 675, 108119.
[http://dx.doi.org/10.1016/j.abb.2019.108119] [PMID: 31568753]
[103]
Chou, C.H.; Hsu, K.C.; Lin, T.E.; Yang, C.R. Anti-inflammatory and Tau phosphorylation–inhibitory effects of Eupatin. Molecules, 2020, 25(23), 5652.
[http://dx.doi.org/10.3390/molecules25235652] [PMID: 33266202]
[104]
Rasouli, H.; Hosseini Ghazvini, S.M.B.; Yarani, R. Altıntaş, A.; Jooneghani, S.G.N.; Ramalho, T.C. Deciphering inhibitory activity of flavonoids against tau protein kinases: A coupled molecular docking and quantum chemical study. J. Biomol. Struct. Dyn., 2022, 40(1), 411-424.
[http://dx.doi.org/10.1080/07391102.2020.1814868] [PMID: 32897165]
[105]
Liang, Z.; Li, Q.X. Discovery of selective, substrate-competitive, and passive membrane permeable glycogen synthase kinase-3β inhibitors: Synthesis, biological evaluation, and molecular modeling of new C-glycosylflavones. ACS Chem. Neurosci., 2018, 9(5), 1166-1183.
[http://dx.doi.org/10.1021/acschemneuro.8b00010] [PMID: 29381861]
[106]
Tapia-Rojas, C.; Schüller, A.; Lindsay, C.B.; Ureta, R.C.; Mejías-Reyes, C.; Hancke, J.; Melo, F.; Inestrosa, N.C. Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β Autoregulation of GSK-3β in vivo. Biochem. J., 2015, 466(2), 415-430.
[http://dx.doi.org/10.1042/BJ20140207]
[107]
Gorantla, N.V.; Chidambaram, H.R.; Dubey, T.; Mulani, F.A.; Thulasiram, H.V.; Chinnathambi, S. Basic limonoid modulates chaperone-mediated proteostasis and dissolve Tau fibrils. Sci. Rep., 2020, 10(1), 4023.
[http://dx.doi.org/10.1038/s41598-020-60773-1]
[108]
Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics, 2022, 11(2), 135.
[http://dx.doi.org/10.3390/antibiotics11020135]
[109]
Ege, D. Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials, 2021, 14(12), 3332.
[http://dx.doi.org/10.3390/ma14123332] [PMID: 34208692]
[110]
Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol., 2021, 167, 382-394.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.192] [PMID: 33278431]
[111]
Chainoglou, E.; Hadjipavlou-Litina, D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int. J. Mol. Sci., 2020, 21, 6-1975.
[http://dx.doi.org/10.3390/ijms21061975]
[112]
McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Cocco, L.; Ratti, S.; Martelli, A.M.; Candido, S.; Libra, M.; Montalto, G.; Cervello, M.; Gizak, A.; Rakus, D. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Adv. Biol. Regul., 2017, 65, 77-88.
[http://dx.doi.org/10.1016/j.jbior.2017.05.005] [PMID: 28579298]
[113]
Kandezi, N.; Mohammadi, M.; Ghaffari, M.; Gholami, M.; Motaghinejad, M.; Safari, S. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int. J. Mol. Cell. Med., 2020, 9(1), 1-32.
[PMID: 32832482]
[114]
Sun, J.; Zhang, X.; Wang, C.; Teng, Z.; Li, Y. Curcumin decreases hyperphosphorylation of Tau by down-regulating Caveolin-1/GSK-3β in N2a/APP695swe cells and APP/PS1 double transgenic Alzheimer’s disease mice. Am. J. Chin. Med., 2017, 45(8), 1667-1682.
[http://dx.doi.org/10.1142/S0192415X17500902] [PMID: 29132216]
[115]
Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal-curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci., 2021, 22(13), 7094.
[http://dx.doi.org/10.3390/ijms22137094]
[116]
Liu, W.; Hu, X.; Zhou, L.; Tu, Y.; Shi, S.; Yao, T. Orientation-inspired perspective on molecular inhibitor of Tau aggregation by curcumin conjugated with ruthenium(II) complex scaffold. J. Phys. Chem. B, 2020, 124(12), 2343-2353.
[http://dx.doi.org/10.1021/acs.jpcb.9b11705] [PMID: 32130010]
[117]
Jiang, X.; Lu, H.; Li, J.; Liu, W.; Wu, Q.; Xu, Z.; Qiao, Q.; Zhang, H.; Gao, H.; Zhao, Q. A natural BACE1 and GSK3β dual inhibitor Notopterol effectively ameliorates the cognitive deficits in APP/PS1 Alzheimer’s mice by attenuating amyloid-β and tau pathology. Clin. Transl. Med., 2020, 10(3), e50.
[http://dx.doi.org/10.1002/ctm2.50] [PMID: 32652879]
[118]
Barai, P.; Raval, N.; Acharya, S.; Borisa, A.; Bhatt, H.; Acharya, N. Neuroprotective effects of bergenin in Alzheimer’s disease: Investigation through molecular docking, in vitro and in vivo studies. Behav. Brain Res., 2019, 356, 18-40.
[http://dx.doi.org/10.1016/j.bbr.2018.08.010] [PMID: 30118774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy