Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Computational Search for Potential COVID-19 Drugs from Ayurvedic Medicinal Plants to Identify Potential Inhibitors against SARS-CoV-2 Targets

Author(s): V. Alagarsamy*, V. Raja Solomon, P. Shyam Sundar, Vishaka S. Kulkarni, M.T. Sulthana, A. Dharshini Aishwarya, B. Narendhar and S. Murugesan

Volume 19, Issue 1, 2023

Published on: 16 December, 2022

Page: [51 - 67] Pages: 17

DOI: 10.2174/1573409919666221117145404

Price: $65

Abstract

Background: To date, very few small drug molecules are used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has been discovered since the epidemic commenced in November 2019. SARS-CoV-2 RdRp and spike protein are essential targets for drug development amidst whole variants of coronaviruses.

Objective: This study aims to discover and recognize the most effective and promising small molecules against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and spike protein targets through molecular docking screening of 39 phytochemicals from five different Ayurveda medicinal plants.

Methods: The phytochemicals were downloaded from PubChem, and SARS-CoV-2 RdRp and spike protein were taken from the protein data bank. The molecular interactions, binding energy, and ADMET properties were analyzed.

Results: Molecular docking analysis identified some phytochemicals, oleanolic acid, friedelin, serratagenic acid, uncinatone, clemaphenol A, sennosides B, trilobine and isotrilobine from ayurvedic medicinal plants possessing greater affinity against SARS-CoV-2-RdRp and spike protein targets. Two molecules, namely oleanolic acid and sennosides B, with low binding energies, were the most promising. Furthermore, based on the docking score, we carried out MD simulations for the oleanolic acid and sennosides B-protein complexes.

Conclusion: Molecular ADMET profile estimation showed that the docked phytochemicals were safe. The present study suggested that active phytochemicals from medicinal plants could inhibit RdRp and spike protein of SARS-CoV-2.

Graphical Abstract

[1]
Wang, N.; Zhan, Y.; Zhu, L.; Hou, Z.; Liu, F.; Song, P.; Qiu, F.; Wang, X.; Zou, X.; Wan, D.; Qian, X.; Wang, S.; Guo, Y.; Yu, H.; Cui, M.; Tong, G.; Xu, Y.; Zheng, Z.; Lu, Y.; Hong, P. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe, 2020, 28(3), 455-464.e2.
[http://dx.doi.org/10.1016/j.chom.2020.07.005] [PMID: 32707096]
[2]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[3]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in china. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[4]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[5]
Israeli, E. Novel Coronavirus that recently emerged in China. Harefuah, 2020, 159(1), 70-71.
[PMID: 32048481]
[6]
Sumon, T.A.; Hussain, M.A.; Hasan, M.T.; Hasan, M.; Jang, W.J.; Bhuiya, E.H.; Chowdhury, A.A.M.; Sharifuzzaman, S.M.; Brown, C.L.; Kwon, H.J.; Lee, E.W. A Revisit to the research updates of drugs, vaccines, and bioinformatics approaches in combating COVID-19 pandemic. Front. Mol. Biosci., 2021, 7, 585899.
[http://dx.doi.org/10.3389/fmolb.2020.585899] [PMID: 33569389]
[7]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[8]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[9]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[10]
Khandker, S.S.; Godman, B.; Jawad, M.I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, M.A.; Charan, J.; Talukder, A.A.; Azmuda, N.; Sharmin, S.; Jamiruddin, M.R.; Haque, M.; Adnan, N. A systematic review on covid-19 vaccine strategies, their effectiveness, and issues. Vaccines (Basel), 2021, 9(12), 1387.
[http://dx.doi.org/10.3390/vaccines9121387] [PMID: 34960133]
[11]
Morales-Núñez, J.J.; Muñoz-Valle, J.F.; Meza-López, C.; Wang, L.F.; Machado Sulbarán, A.C.; Torres-Hernández, P.C.; Bedolla-Barajas, M.; De la O-Gómez, B.; Balcázar-Félix, P.; Hernández-Bello, J. Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 infection. Vaccines (Basel), 2021, 9(7), 742.
[http://dx.doi.org/10.3390/vaccines9070742] [PMID: 34358158]
[12]
Davidson, A.M.; Wysocki, J.; Batlle, D. Interaction of SARS-CoV-2 and other coronavirus with ACE (Angiotensin-Converting Enzyme)-2 as their main receptor: Therapeutic implications. Hypertens., 2020, 76(5), 1339-1349.
[13]
Butler, C.C.; Yu, L.M.; Dorward, J.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Van Hecke, O.; Berry, N.; Detry, M.A.; Saunders, C.; Fitzgerald, M.; Harris, V.; Djukanovic, R.; Gadola, S.; Kirkpatrick, J.; de Lusignan, S.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Patel, M.G.; Hobbs, F.D.R. Doxycycline for community treatment of suspected COVID-19 in people at high risk of adverse outcomes in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet Respir. Med., 2021, 9(9), 1010-1020.
[http://dx.doi.org/10.1016/S2213-2600(21)00310-6] [PMID: 34329624]
[14]
Xia, Q.; Dai, W.; Xu, K.; Ni, Q.; Li, Y.; Liu, J.; Zhao, H.; Guo, Y.; Yu, L.; Yi, P.; Su, J.; Lang, G.; Tao, J.; Shi, D.; Wu, W.; Wu, X.; Xu, Y.; Xu, M.; Yu, L.; Wang, X.; Cai, H.; Fang, Q.; Zhou, J.; Qiu, Y.; Li, L. Clinical efficacy of methylprednisolone and the combined use of lopinavir/ritonavir with arbidol in treatment of coronavirus disease 2019. J. Med. Virol., 2021, 93(7), 4446-4453.
[http://dx.doi.org/10.1002/jmv.26798] [PMID: 33448426]
[15]
Pilkington, V.; Pepperrell, T.; Hill, A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J. Virus Erad., 2020, 6(2), 45-51.
[http://dx.doi.org/10.1016/S2055-6640(20)30016-9] [PMID: 32405421]
[16]
Saini, M.; Rana, M.; Bhatti, K.; Das, R.; Mehta, D.K.; Chidurala, R.M. Clinical efficacy of Remdesivir and Favipiravir in the treatment of Covid-19 patients: Scenario so far. Curr. Drug Res. Rev., 2021, 13.
[PMID: 34365935]
[17]
Senanayake, S.L. Drug repurposing strategies for COVID-19; Futur. Drug Discov, 2020.
[18]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[19]
Self, W.H.; Semler, M.W.; Leither, L.M.; Casey, J.D.; Angus, D.C.; Brower, R.G.; Chang, S.Y.; Collins, S.P.; Eppensteiner, J.C.; Filbin, M.R.; Files, D.C.; Gibbs, K.W.; Ginde, A.A.; Gong, M.N.; Harrell, F.E., Jr; Hayden, D.L.; Hough, C.L.; Johnson, N.J.; Khan, A.; Lindsell, C.J.; Matthay, M.A.; Moss, M.; Park, P.K.; Rice, T.W.; Robinson, B.R.H.; Schoenfeld, D.A.; Shapiro, N.I.; Steingrub, J.S.; Ulysse, C.A.; Weissman, A.; Yealy, D.M.; Thompson, B.T.; Brown, S.M.; Steingrub, J.; Smithline, H.; Tiru, B.; Tidswell, M.; Kozikowski, L.; Thornton-Thompson, S.; De Souza, L.; Hou, P.; Baron, R.; Massaro, A.; Aisiku, I.; Fredenburgh, L.; Seethala, R.; Johnsky, L.; Riker, R.; Seder, D.; May, T.; Baumann, M.; Eldridge, A.; Lord, C.; Shapiro, N.; Talmor, D.; O’Mara, T.; Kirk, C.; Harrison, K.; Kurt, L.; Schermerhorn, M.; Banner-Goodspeed, V.; Boyle, K.; Dubosh, N.; Filbin, M.; Hibbert, K.; Parry, B.; Lavin-Parsons, K.; Pulido, N.; Lilley, B.; Lodenstein, C.; Margolin, J.; Brait, K.; Jones, A.; Galbraith, J.; Peacock, R.; Nandi, U.; Wachs, T.; Matthay, M.; Liu, K.; Kangelaris, K.; Wang, R.; Calfee, C.; Yee, K.; Hendey, G.; Chang, S.; Lim, G.; Qadir, N.; Tam, A.; Beutler, R.; Levitt, J.; Wilson, J.; Rogers, A.; Vojnik, R.; Roque, J.; Albertson, T.; Chenoweth, J.; Adams, J.; Pearson, S.; Juarez, M.; Almasri, E.; Fayed, M.; Hughes, A.; Hillard, S.; Huebinger, R.; Wang, H.; Vidales, E.; Patel, B.; Ginde, A.; Moss, M.; Baduashvili, A.; McKeehan, J.; Finck, L.; Higgins, C.; Howell, M.; Douglas, I.; Haukoos, J.; Hiller, T.; Lyle, C.; Cupelo, A.; Caruso, E.; Camacho, C.; Gravitz, S.; Finigan, J.; Griesmer, C.; Park, P.; Hyzy, R.; Nelson, K.; McDonough, K.; Olbrich, N.; Williams, M.; Kapoor, R.; Nash, J.; Willig, M.; Ford, H.; Gardner-Gray, J.; Ramesh, M.; Moses, M.; Ng Gong, M.; Aboodi, M.; Asghar, A.; Amosu, O.; Torres, M.; Kaur, S.; Chen, J.T.; Hope, A.; Lopez, B.; Rosales, K.; Young You, J.; Mosier, J.; Hypes, C.; Natt, B.; Borg, B.; Salvagio Campbell, E.; Hite, R.D.; Hudock, K.; Cresie, A.; Alhasan, F.; Gomez-Arroyo, J.; Duggal, A.; Mehkri, O.; Hastings, A.; Sahoo, D.; Abi Fadel, F.; Gole, S.; Shaner, V.; Wimer, A.; Meli, Y.; King, A.; Terndrup, T.; Exline, M.; Pannu, S.; Robart, E.; Karow, S.; Hough, C.; Robinson, B.; Johnson, N.; Henning, D.; Campo, M.; Gundel, S.; Seghal, S.; Katsandres, S.; Dean, S.; Khan, A.; Krol, O.; Jouzestani, M.; Huynh, P.; Weissman, A.; Yealy, D.; Scholl, D.; Adams, P.; McVerry, B.; Huang, D.; Angus, D.; Schooler, J.; Moore, S.; Files, C.; Miller, C.; Gibbs, K.; LaRose, M.; Flores, L.; Koehler, L.; Morse, C.; Sanders, J.; Langford, C.; Nanney, K.; MdalaGausi, M.; Yeboah, P.; Morris, P.; Sturgill, J.; Seif, S.; Cassity, E.; Dhar, S.; de Wit, M.; Mason, J.; Goodwin, A.; Hall, G.; Grady, A.; Chamberlain, A.; Brown, S.; Bledsoe, J.; Leither, L.; Peltan, I.; Starr, N.; Fergus, M.; Aston, V.; Montgomery, Q.; Smith, R.; Merrill, M.; Brown, K.; Armbruster, B.; Harris, E.; Middleton, E.; Paine, R.; Johnson, S.; Barrios, M.; Eppensteiner, J.; Limkakeng, A.; McGowan, L.; Porter, T.; Bouffler, A.; Leahy, J.C.; deBoisblanc, B.; Lammi, M.; Happel, K.; Lauto, P.; Self, W.; Casey, J.; Semler, M.; Collins, S.; Harrell, F.; Lindsell, C.; Rice, T.; Stubblefield, W.; Gray, C.; Johnson, J.; Roth, M.; Hays, M.; Torr, D.; Zakaria, A.; Schoenfeld, D.; Thompson, T.; Hayden, D.; Ringwood, N.; Oldmixon, C.; Ulysse, C.; Morse, R.; Muzikansky, A.; Fitzgerald, L.; Whitaker, S.; Lagakos, A.; Brower, R.; Reineck, L.; Aggarwal, N.; Bienstock, K.; Freemer, M.; Maclawiw, M.; Weinmann, G.; Morrison, L.; Gillespie, M.; Kryscio, R.; Brodie, D.; Zareba, W.; Rompalo, A.; Boeckh, M.; Parsons, P.; Christie, J.; Hall, J.; Horton, N.; Zoloth, L.; Dickert, N.; Diercks, D. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19: A randomized clinical trial. JAMA, 2020, 324(21), 2165-2176.
[http://dx.doi.org/10.1001/jama.2020.22240] [PMID: 33165621]
[20]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational study of Hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[21]
Gordon, A.C.; Angus, D.C.; Derde, L.P.G. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N. Engl. J. Med., 2021, 385(12), 1147-1149.
[http://dx.doi.org/10.1056/NEJMc2108482] [PMID: 34407335]
[22]
Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; Hu, C.; Tao, C.; Yang, R.; Wang, J.; Yu, Y.; Guo, Y.; Wu, X.; Xu, Z.; Zeng, L.; Xiong, N.; Chen, L.; Wang, J.; Man, N.; Liu, Y.; Xu, H.; Deng, E.; Zhang, X.; Li, C.; Wang, C.; Su, S.; Zhang, L.; Wang, J.; Wu, Y.; Liu, Z. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA, 2020, 324(5), 460-470.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[23]
Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; Subedi, S.; Olsen, R.J.; Leveque, C.; Schwartz, M.R.; Dey, M.; Chavez-East, C.; Rogers, J.; Shehabeldin, A.; Joseph, D.; Williams, G.; Thomas, K.; Masud, F.; Talley, C.; Dlouhy, K.G.; Lopez, B.V.; Hampton, C.; Lavinder, J.; Gollihar, J.D.; Maranhao, A.C.; Ippolito, G.C.; Saavedra, M.O.; Cantu, C.C.; Yerramilli, P.; Pruitt, L.; Musser, J.M. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. Am. J. Pathol., 2020, 190(8), 1680-1690.
[http://dx.doi.org/10.1016/j.ajpath.2020.05.014] [PMID: 32473109]
[24]
Breining, P.; Frølund, A.L.; Højen, J.F.; Gunst, J.D.; Staerke, N.B.; Saedder, E.; Cases-Thomas, M.; Little, P.; Nielsen, L.P.; Søgaard, O.S.; Kjolby, M. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin. Pharmacol. Toxicol., 2021, 128(2), 204-212.
[http://dx.doi.org/10.1111/bcpt.13533] [PMID: 33176395]
[25]
Ledford, H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature, 2020, 582(7813), 469.
[http://dx.doi.org/10.1038/d41586-020-01824-5] [PMID: 32546811]
[26]
Uzunova, K.; Filipova, E.; Pavlova, V.; Vekov, T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother., 2020, 131, 110668.
[http://dx.doi.org/10.1016/j.biopha.2020.110668] [PMID: 32861965]
[27]
Koul, S.; Pandurangan, A.; Khosa, R.L. Wedelia chinenis (Asteraceae) – An overview. Asian Pac. J. Trop. Biomed., 2012, 2(2)(Suppl.), S1169-S1175.
[http://dx.doi.org/10.1016/S2221-1691(12)60380-3]
[28]
Suwannarach, N.; Kumla, J.; Sujarit, K.; Pattananandecha, T.; Saenjum, C.; Lumyong, S. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules, 2020, 25(8), 1800.
[29]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[31]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(Web Server issue), W257.
[http://dx.doi.org/10.1093/nar/gky318]
[32]
Sen, D.; Debnath, P.; Debnath, B.; Bhaumik, S.; Debnath, S. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J. Biomol. Struct. Dyn., 2022, 40(2), 941-962.
[http://dx.doi.org/10.1080/07391102.2020.1819883] [PMID: 32948116]
[33]
Hu, X.; Cai, X.; Song, X.; Li, C.; Zhao, J.; Luo, W.; Zhang, Q.; Ekumi, I.O.; He, Z. Possible SARS-coronavirus 2 inhibitor revealed by simulated molecular docking to viral main protease and host toll-like receptor. Future Virol., 2020, 15(6), 359-368.
[http://dx.doi.org/10.2217/fvl-2020-0099]
[34]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hussien, T.A.; Badr, E.A.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy, M.E.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med., 2020, 126, 104046.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104046] [PMID: 33065388]
[35]
Ibrahim, M.A.A.; Mohamed, E.A.R.; Abdelrahman, A.H.M.; Allemailem, K.S.; Moustafa, M.F.; Shawky, A.M.; Mahzari, A.; Hakami, A.R.; Abdeljawaad, K.A.A.; Atia, M.A.M. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. J. Mol. Graph. Model., 2021, 105, 107904.
[http://dx.doi.org/10.1016/j.jmgm.2021.107904] [PMID: 33798836]
[36]
Singh, R.H.; Narsimhamurthy, K.; Singh, G. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology, 2008, 9(6), 369-374.
[http://dx.doi.org/10.1007/s10522-008-9185-z] [PMID: 18931935]
[37]
Rawat, S.; Jugran, A.K.; Bhatt, I.D.; Rawal, R.S. Hedychium spicatum: a systematic review on traditional uses, phytochemistry, pharmacology and future prospectus. J. Pharm. Pharmacol., 2018, 70(6), 687-712.
[http://dx.doi.org/10.1111/jphp.12890] [PMID: 29484653]
[38]
Alam, P.; Tyagi, R.; Farah, M.A.; Rehman, M.T.; Hussain, A.; AlAjmi, M.F.; Siddiqui, N.A.; Al-Anazi, K.M.; Amin, S.; Mujeeb, M.; Mir, S.R. Cytotoxicity and molecular docking analysis of racemolactone I, a new sesquiterpene lactone isolated from Inula racemosa. Pharm. Biol., 2021, 59(1), 941-952.
[http://dx.doi.org/10.1080/13880209.2021.1946090] [PMID: 35294328]
[39]
Patel, J.J.; Acharya, S.R.; Acharya, N.S. Clerodendrum serratum (L.) Moon. – A review on traditional uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., 2014, 154(2), 268-285.
[http://dx.doi.org/10.1016/j.jep.2014.03.071] [PMID: 24727551]
[40]
Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The medicinal properties of Cassia fistula L: A review. Biomed. Pharmacother., 2021, 144, 112240.
[http://dx.doi.org/10.1016/j.biopha.2021.112240] [PMID: 34601194]
[41]
Logesh, R.; Das, N.; Adhikari-Devkota, A.; Devkota, H.P. Cocculus hirsutus (L.) W.Theob. (Menispermaceae): A Review on traditional uses, phytochemistry and pharmacological activities. Medicines (Basel), 2020, 7(11), 69.
[http://dx.doi.org/10.3390/medicines7110069] [PMID: 33182572]
[42]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[43]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[44]
Krieger, E.; Vriend, G. YASARA View-molecular graphics for all devices-from smartphones to workstations. Bioinformatics, 2014, 30(20), 2981-2982.
[http://dx.doi.org/10.1093/bioinformatics/btu426] [PMID: 24996895]
[45]
Schrödinger Release 2020-4: Desmond Molecular Dynamics System,D. E. Shaw Research;; Maestro-Desmond Interoperability tools: New York, NY, 2020.
[46]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[47]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[48]
Berne, M.T. J. Phys. Chem., 1993, 97(51), 13429-13434.
[http://dx.doi.org/10.1021/j100153a002]
[49]
Cheng, A.; Merz, K.M. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics. J. Phys. Chem., 1996, 100(5), 1927-1937.
[http://dx.doi.org/10.1021/jp951968y]
[50]
Kumar, B.K.; Faheem.; Sekhar, K.V.G.C.; Ojha, R.; Prajapati, V.K.; Pai, A.; Murugesan, S. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. J. Biomol. Struct. Dyn., 2020, 0(0), 1-24.
[PMID: 32469279]
[51]
Karan Kumar, B.; Faheem; Balana Fouce, R.; Melcon-Fernandez, E.; Perez-Pertejo Yolanda, Y.; Reguera, R.M.; Adinarayana, N.; Chandra Sekhar, K.V.G.; Vanaparthi, S.; Murugesan, S. Design, synthesis and evaluation of novel β-carboline ester analogues as potential anti-leishmanial agents. J. Biomol. Struct. Dyn., 2021, 0(0), 1-16.
[http://dx.doi.org/10.1080/07391102.2021.1973564] [PMID: 34488559]
[52]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(Suppl. 17), S7.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy