Abstract
The extension of carbon chains, known as homologation, is one of the most fundamental operations of organic synthesis. One and two-carbon homologation reactions are of immense importance because they can be used for synthesizing members of a homologous series by iterative operations. Homologation reactions produce higher analogues of the same functional group, whereas homologation- functional group interconversion (FGI) generates higher analogues with a change in functionality. This general synthesis strategy may be counted for a number of reasons, such as higher accessibility to the successive homologs, a chance for the introduction of additional functionality, or solely to create a regular series of homologs. The advantages of homologation reactions could be measured by the efficiency, technical simplicity, and regio- and/or stereo-selectivity of the overall operations in a synthetic plan. Homologation reactions constitute powerful and versatile tools for preparative chemistry which uses different concepts underpinning the use of homologating reagents in addition to their applications in organic synthesis. A compilation and comparison of diverse methods available for homologation cum functional group interconversion will empower synthetic chemists to undertake studies that require a series of analogues. In this review, we have categorized and summarized such methods and synthetic applications of one and two-carbon homologation-functionalization of various functional groups in organic synthesis.
Graphical Abstract
[http://dx.doi.org/10.1002/cber.19290620106];
b) Pace, V.; Verniest, G.; Sinisterra, J.V.; Alcántara, A.R.; De Kimpe, N. Improved Arndt-Eistert synthesis of α-diazoketones requiring minimal diazomethane in the presence of calcium oxide as acid scavenger. J. Org. Chem., 2010, 75(16), 5760-5763.
[http://dx.doi.org/10.1021/jo101105g] [PMID: 20672806];
c) Candeias, N.R.; Paterna, R.; Gois, P.M.P. Homologation reaction of ketones with diazo compounds. Chem. Rev., 2016, 116(5), 2937-2981.
[http://dx.doi.org/10.1021/acs.chemrev.5b00381] [PMID: 26854865];
d) Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev., 2015, 115(18), 9981-10080.
[http://dx.doi.org/10.1021/acs.chemrev.5b00121] [PMID: 26284754];
e) Castoldi, L.; Ielo, L.; Holzer, W.; Giester, G.; Roller, A.; Pace, V. α-Arylamino diazoketones: diazomethane-loading controlled synthesis, spectroscopic investigations, and structural X-ray analysis. J. Org. Chem., 2018, 83(8), 4336-4347.
[http://dx.doi.org/10.1021/acs.joc.7b03134] [PMID: 29546992]
[http://dx.doi.org/10.1007/s00706-019-02514-3]
[http://dx.doi.org/10.1021/ja01084a033];
b) Corey, E.J.; Chaykovsky, M. Dimethylsulfoxonium methylide. J. Am. Chem. Soc., 1962, 84(5), 867-868.
[http://dx.doi.org/10.1021/ja00864a040];
c) Gololobov, Y.G.; Nesmeyanov, A.N. lysenko, V.P.; Boldeskul, I.E. Twenty-five years of dimethylsulfoxonium ethylide (corey’s reagent). Tetrahedron, 1987, 43(12), 2609-2651.
[http://dx.doi.org/10.1016/S0040-4020(01)86869-1];
d) Triandafillidi, I.; Savvidou, A.; Kokotos, C.G. Synthesis of γ-lactones utilizing ketoacids and trimethylsulfoxonium iodide. Org. Lett., 2019, 21(14), 5533-5537.
[http://dx.doi.org/10.1021/acs.orglett.9b01852] [PMID: 31282685]
[http://dx.doi.org/10.1021/cr00094a007]
[http://dx.doi.org/10.1016/j.tet.2009.07.032]
[http://dx.doi.org/10.1016/j.tetlet.2004.04.154];
b) Bon, D.J.Y.D.; Kováč, O.; Ferugová, V.; Zálešák, F.; Pospíšil, J. One and two-carbon homologation of primary and secondary alcohols to corresponding carboxylic esters using β-Carbonyl BT sulfones as a common intermediate. J. Org. Chem., 2018, 83(9), 4990-5001.
[http://dx.doi.org/10.1021/acs.joc.8b00112] [PMID: 29667824]
[http://dx.doi.org/10.1021/ol025608m] [PMID: 11950351];
b) Katritzky, A.R.; Jiang, R.; Sommen, G.L.; Singh, S.K. One-carbon homologation of aryl and alkyl aldehydes to amides using BtCH2P+Ph3C-. ARKIVOC, 2004, 2004(9), 44-51.
[http://dx.doi.org/10.3998/ark.5550190.0005.907];
c) Nemoto, H.; Kawamura, T.; Kitasaki, K.; Yatsuzuka, K.; Kamiya, M.; Yoshioka, Y. One-portion synthesis of 2-acetoxy carbonyl compounds from aldehydes by using an acetylated masked acyl cyanide. Synthesis, 2009, 2009(10), 1694-1702.
[http://dx.doi.org/10.1055/s-0028-1088044];
d) Yu, H.; Gai, T.; Sun, W.L.; Zhang, M.S. Radical reduction of Passerini 3CR adducts by SmI2/HMPA. Chin. Chem. Lett., 2011, 22(4), 379-381.
[http://dx.doi.org/10.1016/j.cclet.2010.11.013];
e) El Kaïm, L.; Dos Santos, A. Reductive Passerini/Tsuji–Trost strategy towards βγ-unsaturated amides. Synlett, 2014, 25(13), 1901-1903.
[http://dx.doi.org/10.1055/s-0033-1340187]
[http://dx.doi.org/10.1016/S0040-4039(01)80473-1];
b) Satoh, T.; Hayashi, Y.; Yamakawa, K. Fritsch–Wiechell Rearrangement of 1-chlorovinyl sulfoxides:a new method for synthesizing acetylenes from aldehydes with one-carbon homologation. Bull. Chem. Soc. Jpn., 1993, 66(6), 1866-1869.
[http://dx.doi.org/10.1246/bcsj.66.1866];
c) Ohira, S. methanolysis of dimethyl (1-diazo-2-oxopropyl) phosphonate: generation of dimethyl (diazomethyl) phosphonate and reaction with carbonyl compounds. Synth. Commun., 1989, 19(3-4), 561-564.
[http://dx.doi.org/10.1080/00397918908050700];
d) Müller, S.; Liepold, B.; Roth, G.J.; Bestmann, H.J. An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett, 1996, 1996(6), 521-522.
[http://dx.doi.org/10.1055/s-1996-5474];
e) Taber, D.F.; Bai, S.; Guo, P. A convenient reagent for aldehyde to alkyne homologation. Tetrahedron Lett., 2008, 49(48), 6904-6906.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.114] [PMID: 19946355]
[http://dx.doi.org/10.1021/jo00168a042];
b) Satoh, T.; Nakamura, A.; Iriuchijima, A.; Hayashi, Y.; Kubota, K. A new synthesis of βγ-alkenyl carboxylic acids from αβ-alkenyl carboxylic acid chlorides and αβ-alkenyl aldehydes with one-carbon elongation. Tetrahedron, 2001, 57(48), 9689-9696.
[http://dx.doi.org/10.1016/S0040-4020(01)00983-8];
c) Huh, D.H.; Jeong, J.S.; Lee, H.B.; Ryu, H.; Kim, Y.G. An efficient method for one-carbon elongation of aryl aldehydes via their dibromoalkene derivatives. Tetrahedron, 2002, 58(50), 9925-9932.
[http://dx.doi.org/10.1016/S0040-4020(02)01324-8];
d) Gross, H.; Costisella, B. Synthesis of carboxylic acids via PO-activated olefination of tetraethyl dimethylamino-methylene-diphosphonate. Angew. Chem. Int. Ed. Engl., 1968, 7(5), 391-392.
[http://dx.doi.org/10.1002/anie.196803911];
e) Degenhardt, C.R. Use of tetraethyl dimethylaminomethylenediphosphonate in the synthesis of benzothiophene-2-acetic acid and other carboxylic acids. Synth. Commun., 1982, 12(6), 415-421.
[http://dx.doi.org/10.1080/00397918208065945];
f) Seo, Y.; Kim, H.; Chae, D.W.; Kim, Y.G. N-Hydroxymethyl derivatives of α-amino aldehydes used for the stereoselective syntheses of β-amino-α-hydroxy acids. Tetrahedron Asymmetry, 2014, 25(8), 625-631.
[http://dx.doi.org/10.1016/j.tetasy.2014.03.012];
g) Seo, Y.; Lee, S.; Kim, Y.G. Stereoselective synthesis of novel bestatin analogs. Appl. Chem. Eng., 2015, 26, 111-115.
[http://dx.doi.org/10.1021/jo100017t] [PMID: 20392053];
b) Yoo, J.W.; Seo, Y.; Park, J.B.; Kim, Y.G. Two-way homologation of aliphatic aldehydes: Both one-carbon shortening and lengthening via the same intermediate. Tetrahedron, 2020, 76(6), 130883-130894.
[http://dx.doi.org/10.1016/j.tet.2019.130883]
[http://dx.doi.org/10.1055/s-1994-25682];
b) Aggarwal, V.K.; de Vicente, J.; Pelotier, B.; Holmes, I.P.; Bonnert, R.V. A simple, user-friendly process for the homologation of aldehydes using tosylhydrazone salts. Tetrahedron Lett., 2000, 41(52), 10327-10331.
[http://dx.doi.org/10.1016/S0040-4039(00)01856-6];
c) Tsujimoto, S.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. The radical-chain addition of aldehydes to alkenes by the use of N-hydroxyphthalimide (NHPI) as a polarity-reversal catalyst. Chem. Commun. (Camb.), 2001, (22), 2352-2353.
[http://dx.doi.org/10.1039/b107548a] [PMID: 12240071];
d) Wang, L.; Li, P.; Yan, J.; Wu, Z. A novel preparation of methyl ketones through one-carbon homologation of aldehydes. Tetrahedron Lett., 2003, 44(25), 4685-4688.
[http://dx.doi.org/10.1016/S0040-4039(03)01084-0];
e) Huang, X.; Sheng, S.R. Reactions of aldehydes with polymer-supported selenoalkylidenetriphenylphosphoranes. A facile method for the synthesis of carbonyl compounds. Tetrahedron Lett., 2001, 42(51), 9035-9037.
[http://dx.doi.org/10.1016/S0040-4039(01)01931-1];
f) Falck, J.R.; He, A.; Reddy, L.M.; Kundu, A.; Barma, D.K.; Bandyopadhyay, A.; Kamila, S.; Akella, R.; Bejot, R.; Mioskowski, C. Ring expansion/homologation--aldehyde condensation cascade using tert-trihalomethylcarbinols. Org. Lett., 2006, 8(20), 4645-4647.
[http://dx.doi.org/10.1021/ol061953q] [PMID: 16986971]
[http://dx.doi.org/10.1021/ol000102u] [PMID: 10891185];
b) Palombo, E.; Audran, G.; Monti, H. Straightforward enantioselective synthesis of (+)-ancistrofuran. Tetrahedron, 2005, 61(40), 9545-9549.
[http://dx.doi.org/10.1016/j.tet.2005.07.087]
[http://dx.doi.org/10.1021/jo0516741] [PMID: 16292862]
[http://dx.doi.org/10.1016/S0040-4039(00)00087-3];
b) Trost, B.M. alpha.-Sulfenylated carbonyl compounds in organic synthesis. Chem. Rev., 1978, 78(4), 363-382.
[http://dx.doi.org/10.1021/cr60314a002]
[http://dx.doi.org/10.1021/jo01294a033];
b) Ukaji, Y.; Sakata, R.; Soeta, T. One-Carbon homologation of pyrrole carboxaldehyde via Wittig reaction and mild hydrolysis of vinyl ether–toward the synthesis of a sterically locked phytochrome chromophore. Heterocycles, 2015, 91(3), 593-603.
[http://dx.doi.org/10.3987/COM-14-13157];
c) Ko, K.Y.; Wagner, S.; Yang, S.H.; Furkert, D.P.; Brimble, M.A. Improved synthesis of the unnatural amino acids AHMOD and AMD, components of the anticancer Peptaibol Culicinin D. J. Org. Chem., 2015, 80(17), 8631-8636.
[http://dx.doi.org/10.1021/acs.joc.5b01265] [PMID: 26252224];
d) Al-Smadi, D.; Enugala, T.; Norberg, T.; Kihlberg, J.; Widersten, M. Synthesis of substrates for aldolase-catalyzed reactions: A comparison of methods for the synthesis of substituted phenylacetaldehydes. Synlett, 2018, 29(9), 1187-1190.
[http://dx.doi.org/10.1055/s-0036-1591963]
[http://dx.doi.org/10.1039/D1OB00135C] [PMID: 33885561]
[http://dx.doi.org/10.1039/b709754a] [PMID: 17925965]
[http://dx.doi.org/10.1021/ja00834a061]
[http://dx.doi.org/10.1021/ja01044a083]
[http://dx.doi.org/10.1016/S0040-4039(00)82003-1]
[http://dx.doi.org/10.1002/adsc.200404228]
[http://dx.doi.org/10.1016/S0040-4039(02)01202-9]
[http://dx.doi.org/10.1016/S0040-4039(00)61491-0]
[http://dx.doi.org/10.1021/ol005780v] [PMID: 10814471]
[http://dx.doi.org/10.1021/ja00503a033];
b) Grieco, P.A.; Hon, Y.S.; Perez-Medrano, A. Convergent, enantiospecific total synthesis of the novel cyclodepsipeptide (+)-jasplakinolide (jaspamide). J. Am. Chem. Soc., 1988, 110(5), 1630-1631.
[http://dx.doi.org/10.1021/ja00213a050];
c) Battiste, M.A.; Rocca, J.R.; Wydra, R.L.; Tumlinson, J.H., III; Chuman, T. Total synthesis and structure proof of (3E,8E)-suspensolide. Tetrahedron Lett., 1988, 29(50), 6565-6567.
[http://dx.doi.org/10.1016/S0040-4039(00)82398-9];
d) Gnonlonfoun, N.; Zamarlik, H. Cyclisation electrophile induite par le triflate stanneux: Synthese du (±)-tetrahydroactinidiolide trans. Tetrahedron Lett., 1987, 28(35), 4053-4056.
[http://dx.doi.org/10.1016/S0040-4039(01)83859-4]
[http://dx.doi.org/10.1016/S0040-4039(01)85964-5];
b) Biloski, A.J.; Wood, R.D.; Ganem, B. A new. beta.-lactam synthesis. J. Am. Chem. Soc., 1982, 104(11), 3233-3235.
[http://dx.doi.org/10.1021/ja00375a057];
c) Miller, M.J. Hydroxamate approach to the synthesis of. beta.-lactam antibiotics. Acc. Chem. Res., 1986, 19(2), 49-56.
[http://dx.doi.org/10.1021/ar00122a004];
d) Knapp, S.; Levorse, A.T. Synthesis and reactions of iodo lactams. J. Org. Chem., 1988, 53(17), 4006-4014.
[http://dx.doi.org/10.1021/jo00252a024]
[http://dx.doi.org/10.1016/S0040-4020(01)80767-5]
[http://dx.doi.org/10.1016/j.tetlet.2006.09.088]
[http://dx.doi.org/10.1016/j.tetlet.2006.12.035]
[http://dx.doi.org/10.1021/om00130a002]
[http://dx.doi.org/10.1080/00397919508010798]
[http://dx.doi.org/10.1039/C6QO00141F]
[http://dx.doi.org/10.1021/om50004a009];
b) Brown, H.C.; Srebnik, M.; Cole, T.E. Organoboranes. Improved procedures for the preparation of boronic and borinic esters. Organometallics, 1986, 5(11), 2300-2303.
[http://dx.doi.org/10.1021/om00142a020]
[http://dx.doi.org/10.1021/om50004a008]
[http://dx.doi.org/10.1021/cr00006a003];
b) Carroll, A.M.; O’Sullivan, T.P.; Guiry, P.J. The development of enantioselective rhodium-catalysed hydroboration of olefins. Adv. Synth. Catal., 2005, 347(5), 609-631.
[http://dx.doi.org/10.1002/adsc.200404232];
c) Crudden, C.M.; Edwards, D. Catalytic asymmetric hydroboration: recent advances and applications in carbon-carbon bond-forming reactions. Eur. J. Org. Chem., 2003, 2003(24), 4695-4712.
[http://dx.doi.org/10.1002/ejoc.200300433];
d) Ishiyama, T.; Oohashi, Z.; Ahiko, T.; Miyaura, N. Nucleophilic borylation of benzyl halides with bis(pinacolato)diboron catalyzed by palladium(0) complexes. Chem. Lett., 2002, 31(8), 780-781.
[http://dx.doi.org/10.1246/cl.2002.780];
e) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. Synthesis of benzylboronates via palladium-catalyzed borylation of benzyl halides with pinacolborane. Synth. Commun., 2002, 32(16), 2513-2517.
[http://dx.doi.org/10.1081/SCC-120003413];
f) Giroux, A. Synthesis of benzylic boronates via palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with benzylic halides. Tetrahedron Lett., 2003, 44(2), 233-235.
[http://dx.doi.org/10.1016/S0040-4039(02)02566-2];
g) Bej, A.; Srimani, D.; Sarkar, A. Palladium nanoparticle catalysis: borylation of aryl and benzyl halides and one-pot biaryl synthesis via sequential borylation-Suzuki–Miyaura coupling. Green Chem., 2012, 14(3), 661-667.
[http://dx.doi.org/10.1039/c2gc16111g];
h) Yang, C.T.; Zhang, Z.Q.; Tajuddin, H.; Wu, C.C.; Liang, J.; Liu, J.H.; Fu, Y.; Czyzewska, M.; Steel, P.G.; Marder, T.B.; Liu, L. Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides. Angew. Chem. Int. Ed., 2012, 51(2), 528-532.
[http://dx.doi.org/10.1002/anie.201106299] [PMID: 22135233];
i) Atack, T.C.; Lecker, R.M.; Cook, S.P. Iron-catalyzed borylation of alkyl electrophiles. J. Am. Chem. Soc., 2014, 136(27), 9521-9523.
[http://dx.doi.org/10.1021/ja505199u] [PMID: 24955892];
j) Pintaric, C.; Olivero, S.; Gimbert, Y.; Chavant, P.Y.; Duñach, E. An opportunity for Mg-catalyzed Grignard-type reactions: direct coupling of benzylic halides with pinacolborane with 10 mol % of magnesium. J. Am. Chem. Soc., 2010, 132(34), 11825-11287. For an Mg-catalyzed cross-coupling reaction, see:
[http://dx.doi.org/10.1021/ja1052973] [PMID: 20687557]
[http://dx.doi.org/10.1002/anie.201008067] [PMID: 21374774]
[http://dx.doi.org/10.1021/jo00135a013];
b) Thomas, S.P.; French, R.M.; Jheengut, V.; Aggarwal, V.K. Homologation and alkylation of boronic esters and boranes by 1,2-metallate rearrangement of boron ate complexes. Chem. Rec., 2009, 9(1), 24-39.
[http://dx.doi.org/10.1002/tcr.20168] [PMID: 19243084]
[http://dx.doi.org/10.1021/ja00545a045];
b) Matteson, D.S.; Majumdar, D. Homologation of boronic esters to. alpha.-chloro boronic esters. Organometallics, 1983, 2(11), 1529-1535.
[http://dx.doi.org/10.1021/om50005a008];
c) Brown, H.C.; Rangaishenvi, M.V.; Jayaraman, S. Organoboranes. 54. Exploration of the reactions of (.alpha.-haloallyl)lithium with organoborane derivatives. Simple and convenient procedure for the synthesis of three-carbon homologated boronate esters and terminal alkenes. Organometallics, 1992, 11(5), 1948-1954.
[http://dx.doi.org/10.1021/om00041a029]
[http://dx.doi.org/10.1016/S0040-4020(98)00321-4];
b) Sadhu, K.M.; Matteson, D.S. (Chloromethyl)lithium: efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics, 1985, 4(9), 1687-1689.
[http://dx.doi.org/10.1021/om00128a038];
c) Wallace, R.H.; Zong, K.K. Preparation and 1-carbon homologation of boronic ester substituted Δ2-isoxazolines: The 1,3 dipolar cycloaddition of nitrile oxides to vinyl boronic esters. Tetrahedron Lett., 1992, 33(46), 6941-6944.
[http://dx.doi.org/10.1016/S0040-4039(00)60901-2];
d) Soundararajan, R.; Li, G.; Brown, H.C. Homologation of representative boronic esters using in situ generated (halomethyl)lithiums: A comparative study. Tetrahedron Lett., 1994, 35(48), 8957-8960.
[http://dx.doi.org/10.1016/0040-4039(94)88399-8];
e) Werle, S.; Fey, T.; Neudörfl, J.M.; Schmalz, H.G. Enantioselective synthesis of a trans-7,8-dimethoxycalamenene. Org. Lett., 2007, 9(18), 3555-3558.
[http://dx.doi.org/10.1021/ol071228v] [PMID: 17676856]
[http://dx.doi.org/10.1055/s-0036-1589164]
[http://dx.doi.org/10.1002/anie.202002246] [PMID: 32109329]
[http://dx.doi.org/10.1021/ol702851t] [PMID: 18225908]
[http://dx.doi.org/10.1021/ja00291a063];
b) Reddy, R.E.; Kowalski, C.J. Ethyl 1-naphthylacetate: Ester homologation via ynolate anions. Org. Synth., 1993, 71, 146-157.
[http://dx.doi.org/10.15227/orgsyn.071.0146]
[http://dx.doi.org/10.1016/S0040-4039(00)61176-0];
b) Derek, H.R.; Barton Ching-Yuh, C.; Joseph, J.C. Homologation of acids via carbon radicals generated from the acyl derivatives of N-hydroxy-2-thiopyridone. (The two-carbon problem). Tetrahedron Lett., 1991, 32(28), 3309-3312.
[http://dx.doi.org/10.1016/S0040-4039(00)92693-5]
[http://dx.doi.org/10.1021/jo0017640] [PMID: 11485491]
[http://dx.doi.org/10.1021/ol0002370] [PMID: 11101420]
[http://dx.doi.org/10.1016/j.checat.2021.10.010]
b) Martin, S.F. Synthesis of aldehydes, ketones, and carboxylic acids from lower carbonyl compounds by C-C coupling reactions. Synthesis, 1979, 633-665.;
c) Hase, T.A.; Koskimies, J.K. A Compilation of references on formyl and acyl anion synthons. Aldrichim Acta, 1981, 14, 73-77.;
d) Stowell, J.C. Three-carbon homologating agents. Chem. Rev., 1984, 84, 409-435.;
e) Badham, N.F. Homologation of ketones into carboxylic acids. Tetrahedron, 2004, 60, 11-42.;
f) Satoh, T. Carbon elongation of carbonyl compounds utilizing the rearrangement of carbenoids-recent developments. J. Synth. Org. Chem. Jpn., 2009, 67, 381-394.
b) Hiyama, T.; Nozaki, H. Ring enlargement of carbocycles. J. Synth. Org. Chem. Jpn., 1977, 35, 979-991.;
c) Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev., 1993, 93, 2091-2115.;
d) Roxburgh, C.J. Syntheses of medium sized rings by ring expansion reactions. Tetrahedron, 1993, 49, 10749-10784.;
e) Tochtermann, W.; Kraft, P. Our tactics in ring enlargement - construction of medium and large ring compounds. Synlett, 1996, 11, 1029-1035.
b) Satoh, T.; Hayashi, Y.; Mizu, Y.; Yamakawa, K. Generation of the α-Sulfinyl carbenoid from α-chloro sulfoxides: a new method for one-carbon homologation of ketones to α-sulfinyl ketones. Bull. Chem. Soc. Jpn., 1994, 67, 1412-1418.;
c) Satoh, T.; Itoh, N.; Gengyo, K.; Takada, S.; Asakawa, N.; Yamani, Y.; Yamakawa, K. New method for generation of β-oxido carbenoid via ligand exchange reaction of sulfoxides: A versatile procedure for one-carbon homologation of carbonyl compounds. Tetrahedron, 1994, 50, 11839-11852.;
d) Satoh, T.; Mizu, Y.; Kawashima, T.; Yamakawa, K. Ligand exchange reaction of sulfoxides in organic synthesis: A new synthesis of α-chloroketones from carbonyl compounds with one-carbon homologation. Tetrahedron, 1995, 51, 703-710.;
e) Satoh, T.; Unno, H.; Mizu, Y.; Hayashi, Y. Ligand exchange reaction of sulfoxides in organic synthesis: A versatile procedure for one-carbon homologation of methylesters to esters, thioesters, carboxylic acids and amides. Tetrahedron, 1997, 53, 7843-7854.;
f) Satoh, T.; Kurihara, T. One-carbon ring enlargement of lactones. Tetrahedron Lett., 1998, 39, 9215-9218.;
g) Satoh, T.; Imai, K. Dianion of sulfinylacetone as a synthetic equivalent of β-enolate of propionic acid: a novel synthesis of carboxylic acids from alkyl halides with three-carbon elongation. Chem. Pharm. Bull., 2003, 51, 602-604.;
h) Miyashita, K.; Satoh, T. A new method for synthesis of αα-disubstituted carbonyl compounds from carbonyl compounds with one-carbon homologation through β-oxido carbenoid rearrangement as the key reaction. Tetrahedron, 2005, 61, 5067-5080.;
i) Satoh, T.; Tanaka, S.; Asakawa, N. One-carbon ring-expansion of 2-substituted cyclohexanones via lithium- and magnesium β-oxido carbenoid rearrangement: a new synthesis of 2,7-disubstituted and 2,2,7-trisubstituted cycloheptanones. Tetrahedron Lett., 2006, 47, 6769-6773.
[http://dx.doi.org/10.1002/anie.201706236] [PMID: 28722252]
[http://dx.doi.org/10.1016/j.tetlet.2011.06.069]
[http://dx.doi.org/10.1055/s-0036-1588139];
b) Pace, V.; Holzer, W.; De Kimpe, N. lithium halomethylcarbenoids: preparation and use in the homologation of carbon electrophiles. Chem. Rec., 2016, 16(4), 2061-2076.
[http://dx.doi.org/10.1002/tcr.201600011] [PMID: 27381551];
c) Castoldi, L.; Monticelli, S.; Senatore, R.; Ielo, L.; Pace, V. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chem. Commun. (Camb.), 2018, 54(50), 6692-6704.
[http://dx.doi.org/10.1039/C8CC02499E] [PMID: 29850663]
[http://dx.doi.org/10.1055/s-0040-1706404]
[http://dx.doi.org/10.1039/C39940000969]
[http://dx.doi.org/10.1038/s41586-019-0926-8] [PMID: 30758326]
[http://dx.doi.org/10.1002/ejoc.200801216]
[http://dx.doi.org/10.1016/j.tet.2008.05.079]
[http://dx.doi.org/10.1021/ja01463a040];
b) Trost, B.M.; Melvin, L.S. Organic Chemistry, A Series of Monographs; Elsevier: New York, NY, 1975. ;
c) Ng, J-S.; Liu, C. Encyclopedia of Reagents in Organic Synthesis; Paquette, L.A., Ed.; Wiley: New York, 1995, pp. 2159-2165.;
d) Donaldson, W.A. Synthesis of cyclopropane containing natural products. Tetrahedron, 2001, 57(41), 8589-8627.
[http://dx.doi.org/10.1016/S0040-4020(01)00777-3]
[http://dx.doi.org/10.1016/j.tet.2008.01.024]
[http://dx.doi.org/10.1021/jo801515k] [PMID: 18826279]
[http://dx.doi.org/10.1021/acs.orglett.0c02831] [PMID: 32910659]
[http://dx.doi.org/10.1021/acs.orglett.7b02429] [PMID: 28880095]
[http://dx.doi.org/10.1021/cr00028a010];
b) Doyle, M.P.; Mckervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998. ;
c) Zhang, Z.; Wang, J. Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron, 2008, 64(28), 6577-6605.
[http://dx.doi.org/10.1016/j.tet.2008.04.074];
d) Zhang, Y.; Wang, J. Recent development of reactions with α-diazocarbonyl compounds as nucleophiles. Chem. Commun. (Camb.), 2009, (36), 5350-5361.
[http://dx.doi.org/10.1039/b908378b] [PMID: 19724784];
e) Moebius, D.C.; Rendina, V.L.; Kingsbury, J.S. Catalysis of diazoalkane-carbonyl homologation. How new developments in hydrazone oxidation enable the carbon insertion strategy for synthesis. Top. Curr. Chem., 2014, 346, 111-162.
[http://dx.doi.org/10.1007/128_2013_521] [PMID: 24770564];
f) Guttenberger, N.; Breinbauer, R. C H and C C bond insertion reactions of diazo compounds into aldehydes. Tetrahedron, 2017, 73(49), 6815-6829.
[http://dx.doi.org/10.1016/j.tet.2017.10.051];
g) Wommack, A.J.; Moebius, D.C.; Travis, A.L.; Kingsbury, J.S. Diverse alkanones by catalytic carbon insertion into the formyl C-H bond. Concise access to the natural precursor of achyrofuran. Org. Lett., 2009, 11(15), 3202-3205.
[http://dx.doi.org/10.1021/ol9010932] [PMID: 19588908];
h) Moebius, D.C.; Kingsbury, J.S. Catalytic homologation of cycloalkanones with substituted diazomethanes. Mild and efficient single-step access to α-tertiary and α-quaternary carbonyl compounds. J. Am. Chem. Soc., 2009, 131(3), 878-879.
[http://dx.doi.org/10.1021/ja809220j] [PMID: 19125571]
[http://dx.doi.org/10.1021/jacs.0c12683] [PMID: 33507075]
[http://dx.doi.org/10.1016/S0040-4039(00)94397-1]
[http://dx.doi.org/10.1021/ol1002847] [PMID: 20199034]
[http://dx.doi.org/10.1039/C6CC08227K] [PMID: 27853766]
[http://dx.doi.org/10.1016/j.tetlet.2009.03.010] [PMID: 20161269]
[http://dx.doi.org/10.1021/ja045563f] [PMID: 15535689];
b) Sammis, G.M.; Jacobsen, E.N. Highly enantioselective, catalytic conjugate addition of cyanide to αβ-unsaturated imides. J. Am. Chem. Soc., 2003, 125(15), 4442-4443.
[http://dx.doi.org/10.1021/ja034635k] [PMID: 12683813];
c) Li, B-J.; Jiang, L.; Liu, M.; Chen, Y-C.; Ding, L-S.; Wu, Y. Asymmetric michael addition of arylthiols to αβ-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett, 2005, 4, 603-606.;
d) Myers, J.K.; Jacobsen, E.N. Asymmetric synthesis of β-amino acid derivatives via catalytic conjugate addition of hydrazoic acid to unsaturated imides. J. Am. Chem. Soc., 1999, 121(38), 8959-8960.
[http://dx.doi.org/10.1021/ja991621z];
e) Sibi, M.P.; Prabagaran, N.; Ghorpade, S.G.; Jasperse, C.P. Enantioselective synthesis of αβ-disubstituted-β-amino acids. J. Am. Chem. Soc., 2003, 125(39), 11796-11797.
[http://dx.doi.org/10.1021/ja0372309] [PMID: 14505383];
f) Taylor, M.S.; Jacobsen, E.N. Enantioselective Michael additions to αβ-unsaturated imides catalyzed by a Salen-Al complex. J. Am. Chem. Soc., 2003, 125(37), 11204-11205.
[http://dx.doi.org/10.1021/ja037177o] [PMID: 16220935];
g) Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective michael addition to αβ-unsaturated imides catalyzed by a bifunctional organocatalyst. Angew. Chem. Int. Ed., 2005, 44(26), 4032-4035.
[http://dx.doi.org/10.1002/anie.200500459] [PMID: 15906403];
h) Inokuma, T.; Hoashi, Y.; Takemoto, Y. Thiourea-catalyzed asymmetric michael addition of activated methylene compounds to αβ-unsaturated imides: dual activation of imide by intra- and intermolecular hydrogen bonding. J. Am. Chem. Soc., 2006, 128(29), 9413-9419.
[http://dx.doi.org/10.1021/ja061364f] [PMID: 16848477]
[http://dx.doi.org/10.1021/jo3001723] [PMID: 22432777]
[http://dx.doi.org/10.1021/jo010370l] [PMID: 11597218]
[http://dx.doi.org/10.1021/ol303062a] [PMID: 23234269]
[http://dx.doi.org/10.1021/ar960061v] [PMID: 10891060];
b) Padwa, A.; Murphree, S.S. Three-membered ring systems. Heterocycl. Chem., 1999, 11, 66-86.;
c) Gorzynski Smith, J. Synthetically useful reactions of epoxides. Synthesis, 1984, 1984(8), 629-656.
[http://dx.doi.org/10.1055/s-1984-30921]
[http://dx.doi.org/10.1016/S0040-4039(00)73522-2];
b) Baylon, C.; Heck, M.P.; Mioskowski, C. Bis ring closing olefin metathesis for the synthesis of unsaturated polycyclic ethers. O-membered ring cyclization in favor of C-membered ring cyclization. J. Org. Chem., 1999, 64(9), 3354-3360. For an example of the synthetic use of the reaction, see:
[http://dx.doi.org/10.1021/jo982098u] [PMID: 11674445];
c) Davoille, R.J.; Rutherford, D.T.; Christie, S.D.R. Homologation of allylic alcohols. An approach to cyclic and acyclic polyoxygenated compounds. Tetrahedron Lett., 2000, 41(8), 1255-1259.
[http://dx.doi.org/10.1016/S0040-4039(99)02263-7]
[http://dx.doi.org/10.1021/jo015791h] [PMID: 11559194]
[http://dx.doi.org/10.1021/ol402466y] [PMID: 24069903]
[http://dx.doi.org/10.1021/ol0502329] [PMID: 15787516]
[http://dx.doi.org/10.1021/ol016782y] [PMID: 11735582]
[http://dx.doi.org/10.1055/s-1983-30473];
b) Johannsen, M.; Jørgensen, K.A. Allylic amination. Chem. Rev., 1998, 98(4), 1689-1708.
[http://dx.doi.org/10.1021/cr970343o] [PMID: 11848944]
[http://dx.doi.org/10.1021/ja981419g];
b) Gontcharov, A.V.; Liu, H.; Sharpless, K.B. Tert-butylsulfonamide. A new nitrogen source for catalytic aminohydroxylation and aziridination of olefins. Org. Lett., 1999, 1(5), 783-786.
[http://dx.doi.org/10.1021/ol990761a] [PMID: 10823205];
c) Kim, S.K.; Jacobsen, E.N. General catalytic synthesis of highly enantiomerically enriched terminal aziridines from racemic epoxides. Angew. Chem. Int. Ed., 2004, 43(30), 3952-3954.
[http://dx.doi.org/10.1002/anie.200460369] [PMID: 15274223];
d) Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Asymmetric catalytic synthesis of enantiopure N-protected 1,2-amino alcohols. Org. Lett., 2004, 6(22), 3973-3975.
[http://dx.doi.org/10.1021/ol048322l] [PMID: 15496077];
e) Tanner, D. Chiral aziridines-Their synthesis and use in stereoselective transformations. Angew. Chem. Int. Ed. Engl., 1994, 33(6), 599-619.
[http://dx.doi.org/10.1002/anie.199405991];
f) Jacobsen, E.N. Comprehensive Asymmetric Catalysis; Springer-Verlag: Berlin, 1999, pp. 607-618.;
g) Müller, P.; Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev., 2003, 103(8), 2905-2920.
[http://dx.doi.org/10.1021/cr020043t] [PMID: 12914485]
[http://dx.doi.org/10.1016/S0040-4020(02)00729-9];
b) Müller, P.; Riegert, D.; Bernardinelli, G. Desymmetrization ofN-sulfonated aziridines by alkyllithium reagents in the presence of chiral ligands. Helv. Chim. Acta, 2004, 87(1), 227-239.
[http://dx.doi.org/10.1002/hlca.200490010]
[http://dx.doi.org/10.1002/hlca.19930760719]
[http://dx.doi.org/10.1055/s-2001-17441]
[http://dx.doi.org/10.1016/S0040-4020(01)90793-8]
[http://dx.doi.org/10.1021/ol051124p] [PMID: 16018644]
[http://dx.doi.org/10.1021/ja01180a520]
[http://dx.doi.org/10.1246/bcsj.59.2565]
[http://dx.doi.org/10.1021/jo2015517] [PMID: 21919452]
[http://dx.doi.org/10.1021/jo300725v] [PMID: 22559051]
[http://dx.doi.org/10.1021/ol500200n] [PMID: 24593196]
[http://dx.doi.org/10.1002/ejoc.201501089]
[http://dx.doi.org/10.1021/acs.orglett.6b00790] [PMID: 27135854]
[http://dx.doi.org/10.1016/S0040-4039(01)80653-5]
[http://dx.doi.org/10.1016/S0040-4039(00)60583-X]
[http://dx.doi.org/10.1098/rsos.160374] [PMID: 28018615]
[http://dx.doi.org/10.1021/ol9005757] [PMID: 19419211]
[http://dx.doi.org/10.3390/molecules16065062] [PMID: 21694671]
[http://dx.doi.org/10.1021/jf063337e] [PMID: 17319690]
[http://dx.doi.org/10.1016/j.tetlet.2008.05.026]
[http://dx.doi.org/10.1016/S0040-4039(01)91067-6];
b) Fetizon, M.; Hanna, I.; Rens, J. Chemistry of 1,4-dioxene II. Tetrahedron Lett., 1985, 26(29), 3453-3456.
[http://dx.doi.org/10.1016/S0040-4039(00)98662-3]
[http://dx.doi.org/10.1016/S0040-4020(01)90345-X]
[http://dx.doi.org/10.1055/s-1993-25844]
[http://dx.doi.org/10.1016/0022-1139(93)02961-D]
[http://dx.doi.org/10.1081/SCC-120017196]
[http://dx.doi.org/10.1021/ol701812w] [PMID: 17854195]
[http://dx.doi.org/10.1021/ol050255n] [PMID: 15844892]
[http://dx.doi.org/10.1021/jo980853y]
[http://dx.doi.org/10.1021/jo010092q] [PMID: 11463256]
[http://dx.doi.org/10.1016/j.jorganchem.2005.01.049]
[http://dx.doi.org/10.1021/ja910825g] [PMID: 20201522]
[http://dx.doi.org/10.1016/j.tetlet.2008.11.027]
[http://dx.doi.org/10.1016/j.jorganchem.2005.03.058]
[http://dx.doi.org/10.1016/j.tetlet.2005.11.128]
[http://dx.doi.org/10.1016/j.tet.2012.02.039]
[http://dx.doi.org/10.1246/bcsj.69.1043];
b) Shimada, K.; Otaki, A.; Yanakawa, M.; Mabuchi, S.; Yamakado, N.; Shimoguchi, T.; Inoue, K.; Kagawa, T.; Shoji, K.; Takikawa, Y. A homologation of aldehydes and ketones via the formation and the subsequent pummerer-type ring fission of 2-methylsulfinyl-5,6-dihydro-4h-1,3,4-thiadiazine derivatives. Chem. Lett., 1995, 24(10), 925-926.
[http://dx.doi.org/10.1246/cl.1995.925]
[http://dx.doi.org/10.1039/c3gc41383g]
[http://dx.doi.org/10.1021/acs.orglett.5b02839] [PMID: 26636719]
b) Krow, G.R. One carbon ring expansions of bridged bicyclic ketones. Tetrahedron, 1987, 43(1), 3-38.
[http://dx.doi.org/10.1016/S0040-4020(01)89927-0];
c) Deprés, J.P.; Navarro, B.; Greene, A.E. A new two-carbon olefin homologation procedure that leads to α-chloroenones. An efficient synthesis of, -muscone. Tetrahedron, 1989, 45(10), 2989-2998.
[http://dx.doi.org/10.1016/S0040-4020(01)80126-5]
[http://dx.doi.org/10.1080/00397918908051004]
[http://dx.doi.org/10.1021/ol401747u] [PMID: 23885976]
[http://dx.doi.org/10.1016/B0-08-044705-8/00166-7];
b) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. An efficient palladium-catalyzed synthesis of cinnamaldehydes from acrolein diethyl acetal and aryl iodides and bromides. Org. Lett., 2003, 5(5), 777-780.
[http://dx.doi.org/10.1021/ol034071p] [PMID: 12605513];
c) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Efficient transformation of propargylic alcohols to αβ-unsaturated aldehydes catalyzed by ruthenium/water under neutral conditions. Tetrahedron Lett., 2002, 43(42), 7531-7533.
[http://dx.doi.org/10.1016/S0040-4039(02)01821-X];
d) Nicolaou, K.C.; Zhong, Y-L.; Baran, P.S. A new method for the one-step synthesis of αβ-unsaturated carbonyl systems from saturated alcohols and carbonyl compounds. J. Am. Chem. Soc., 2000, 122(31), 7596-7597.
[http://dx.doi.org/10.1021/ja001825b];
e) Reid, M.; Rowe, D.J.; Taylor, R.J.K. Two carbon homologated αβ-unsaturated aldehydes from alcohols using the in situ oxidation-Wittig reaction. Chem. Commun. (Camb.), 2003, (18), 2284-2285.
[http://dx.doi.org/10.1039/B306738F] [PMID: 14518876]
[http://dx.doi.org/10.1021/jo0303057] [PMID: 14725481]
[http://dx.doi.org/10.1021/jo00239a036]
[http://dx.doi.org/10.1021/jo010872z] [PMID: 11722240]
[http://dx.doi.org/10.1016/j.tet.2011.09.132]
b) Danishefsky, S.J.; DeNinno, M.P. Totally synthetic routes to the higher monosaccharides. Angew. Chem. Int. Ed. Engl., 1987, 26(1), 15-23.
[http://dx.doi.org/10.1002/anie.198700151];
c) Jørgensen, M.; Iversen, E.H.; Madsen, R. A convenient route to higher sugars by two-carbon chain elongation using Wittig/dihydroxylation reactions. J. Org. Chem., 2001, 66(13), 4625-4629.
[http://dx.doi.org/10.1021/jo010128e] [PMID: 11421783]
[http://dx.doi.org/10.1039/b415943h] [PMID: 15632978]
[http://dx.doi.org/10.1039/b712753g] [PMID: 18264570]
[http://dx.doi.org/10.1021/acs.joc.7b03063] [PMID: 29369620]
[http://dx.doi.org/10.1021/acs.orglett.0c01847] [PMID: 32663012]
[http://dx.doi.org/10.1021/jo00302a056]
[http://dx.doi.org/10.1016/S0040-4039(97)00418-8]
[http://dx.doi.org/10.1021/bc960004m] [PMID: 8983351]
[http://dx.doi.org/10.1021/jo00389a052]
[http://dx.doi.org/10.1016/S0040-4039(00)84232-X]
[http://dx.doi.org/10.1016/S0040-4039(01)93802-X]
[http://dx.doi.org/10.1021/ol300722e] [PMID: 22545983]
[http://dx.doi.org/10.1016/j.tetlet.2013.08.040]
[http://dx.doi.org/10.1021/ol802803x] [PMID: 19128025]
[http://dx.doi.org/10.1021/jo402181w] [PMID: 24364699]
[http://dx.doi.org/10.1021/acs.orglett.5b03514] [PMID: 26829490]
[http://dx.doi.org/10.1039/a815073y];
b) Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 1997, 14(2), 145-162.
[http://dx.doi.org/10.1039/np9971400145];
c) Ciceri, P.; Demnitz, F.W.J.; Souza, M.C.F.; Lehmann, M. A common approach to the synthesis of monocyclofarnesyl sesquiterpenes. J. Braz. Chem. Soc., 1998, 9(4), 409-414.
[http://dx.doi.org/10.1590/S0103-50531998000400015]
[http://dx.doi.org/10.1016/S0040-4020(03)01063-9]
[http://dx.doi.org/10.1016/S0040-4039(02)02588-1] [PMID: 12839461]
[http://dx.doi.org/10.1039/B401829J] [PMID: 15254633]
[http://dx.doi.org/10.1016/j.tetlet.2007.09.165]
[http://dx.doi.org/10.1021/ol702962z] [PMID: 18254636]
[http://dx.doi.org/10.1021/jf903468c] [PMID: 20041659]
[http://dx.doi.org/10.1016/j.bmcl.2013.03.071] [PMID: 23570785]
[http://dx.doi.org/10.1016/j.tet.2012.12.045]
[http://dx.doi.org/10.3390/magnetochemistry3040037]
[http://dx.doi.org/10.1002/slct.201700921]
[http://dx.doi.org/10.1021/acs.orglett.8b00626] [PMID: 29517914]
[http://dx.doi.org/10.1002/chem.202002581] [PMID: 32463529]